Polish Journal of Environmental Studies
ISO Abbrev. Title: Pol. J. Environ. Stud.
Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Board :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Scope :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Impact Factor :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Articles Published :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Monographs :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Supplements :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Most Cited Articles :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Indexed in... :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Notes :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Subsription :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.
Form
Submission :: Polish Journal of Environmental Studies :: Pol. J. Environ. Stud.

ISO Abbrev. Title: Pol. J. Environ. Stud.

DOI: 10.15244/pjoes/63656

Vol. 25, No. 6 (2016), 2339-2347


Atmospheric Emissions of As, Sb, and Se from Coal Combustion in Shandong Province, 2005-2014

Jianxin Fan1, Yong Wang2

1Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University,
Chongqing 400074, China
2School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China


Abstract: The emissions of hazardous trace elements have gained considerable attention because of their negative impacts on local air quality, regional environmental health, and ecological risks. Shandong Province has been considered to be the top provincial emitter of Sb, As, and Se in China owing to rapid economic development and its energy consumption structure (mainly coal). In this study we investigate the atmospheric emissions of Sb, As, and Se from coal combustion in Shandong from 2005 to 2014, and we analyze a scenario for future emissions from coal-fired power plants. The inventory is based on the following parameters: coal consumption, economic sectors, boiler types, and air pollution control technologies. Results indicate that the calculated provincial total emissions of Sb, As, and Se from coal combustion in 2005 were estimated at 40.26, 246.5, and 255.9 t, respectively, and increased to 51.36, 311.9, and 313.9 t by 2014 with annual growth rates of 2.75%, 2.65%, and 2.27%. Industrial use was the largest single sector, accounting for nearly 83.2%, 82.6%, and 74.2% of the provincial total emissions for Sb, As, and Se in 2014, respectively. The emissions from coal-fired power plants have been controlled by the installation of flue gas desulfurization systems. In addition, scenario analysis shows that Sb and As emissions from coal-fired power plants will decrease in the future in a high-efficiency control technology scenario. However, Se emissions in 2030 will still be higher than in 2014. This study demonstrates the importance of assessing the effectiveness of control measures and supplying necessary suggestions for managing coal combustion in Shandong.

 

Keywords: atmospheric emission; coal combustion; Sb, As, and Se; coal-fired power plants


Download full text: PDF
 

Recommend:



Share


<- Previous

This Issue Content

Next ->

<< BACK

Hits: 144 since: 2007-01-01.

Post Office Box 6  10-718 Olsztyn 5, Poland
phone: +48 (89) 523 46 36; fax: +48 (89) 524 01 24
e-mail: h.radecka@pan.olsztyn.pl , office@pjoes.com

Stronę wykonał i administruje: Daniel Żukowski