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Abstract

The transport sector, as an industry with high energy consumption and high carbon emissions, 
plays an increasing role in achieving the goal of carbon emissions reduction in China. Understanding 
the situation of the transport sector’s carbon emissions efficiency and the relevant dominating driving 
forces is an important prerequisite for formulating carbon emissions reduction polices. This study 
evaluated the transport sector carbon emissions efficiency of 30 provinces in China from 2004 to 
2016 using the Super slacks-based measure (Super-SBM) model,which employs Moran’s I indexand 
spatial econometric approaches to examine its spatial dependence and the dominating driving factors.  
The results are shown as follows. Firstly, the transport carbon emissions efficiency had a noticeable 
disparity across the provinces and regions, and the spatial distribution characteristic of transport sector 
carbon emissions efficiency could be described as “high in the east and low in the west”. Secondly, 
transport sector carbon emissions efficiency presented significant spatial dependence and clustering 
characteristics, and the pattern evolutions of spatial distribution presented a path-dependence effect 
to some extent. Thirdly, the regression results of the spatial Durbin model (SDM) indicated that the 
per-capita GDP and transportation energy consumption structure had significantly positive effects 
on transport sector carbon emissions efficiency, whereas the urbanization, transportation intensity, 
transportation energy intensity, and transportation service structure hada negative effect on transport 
sector carbon emissions efficiency.
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Introduction

Since the reform and opening up in 1978, China’s 
economy has maintained a trend of rapid development in 
general. From the second quarter of 2010, China’s total 
economic output exceeded that of Japan and become 
the second largest economy in the world. However, 
the achievement of economic development was largely 
based on the high consumption of resources and high 
emissions of pollution [1]. China has been the largest 
greenhouse gas emitter since 2007, and surpassed 
 the United States in 2010 to become the largest energy 
consumer in the world [2]. The resulting environmental 
deterioration not only affects the health of the people, 
but also threatens the sustainable development of the 
country in the future.

Transportation, as a high energy consumption 
sector [3, 4], is a major contributor to carbon emissions 
in each country [5]. From a global perspective, in the 
total energy consumption of the world, the transport 
sector accounts for one-third [6]. Meanwhile, according  
to the China Statistical Yearbook, in 2015 the relevant 
energy consumption in China’s transport sector was 
383 million tons of standard coal equivalent (CE), 
which maintained a relatively high growth rate in the 
past 10 years. It can be seen that the transport sector 
has increasingly become a key industry for China to 
fulfill the commitment of reducing carbon emissions. 
The sustainability of energy-saving and environmental 
protection is largely related to the improvement of 
efficiency during the production process [7]. Improving 
environmental efficiency is increasingly important 
for achieving the goal of carbon emissions reduction 
[8, 9]. Therefore, it has great practical significance for 
evaluating China’s transport sector carbon emissions 
efficiency.

It is worth noting that due to the remarkable disparity 
among the provincial natural geography, the scale of 
population, and the socio-economic development level, 
the problems faced by each provincial transport sector 
in the process of energy conservation and carbon 
emissions reduction are also quite different. However, 
the relevant studies indicate that geography is an 
important issue that cannot be neglected in the research 
of environmental quality (especially for air pollution)
[10]. Importantly, except for the geography conditions, 
the socio-economic factors are also interrelated and 
interact in different regions. That is, the inter-regional 
dependence and spatial spillover effects of different 
regions have a significant influence on China’s 
provincial economic development [11]. For example, as 
pointed out by Chuai et al. [12], the level of economic 
development in the surrounding areas will lead to  
a certain regional correlation of energy consumption  
and carbon emissions. Furthermore, for the carbon 
emissions policies, reduction formulated by regional 
governments also have a certain correlation and 
significant positive externalities. In other words, the 
measures of transport carbon emissions abatement 

adopted in a region will generate a positive externality 
of the neighboring provinces. Therefore, under this 
background, it seems to be necessary to further analyze 
the spatial dependence of provincial transport sector 
carbon emissions efficiency as well as the main driving 
factors. 

A large number of studies focus on the evaluation of 
carbon emissions efficiency in the transport sector, and 
the influencing factors analysis explain why there were 
discrepancies in transport sector carbon emissions. The 
methods of measuring carbon emissions efficiency can 
be divided into the single factors, like energy intensity 
[13], carbon emissions intensity [14], and multiple-
factors, generally. However, the single-factor indicator 
approaches just evaluate the partial performance of 
carbon emissions because the total factors do not take 
into account the production system. For this reason, the 
data envelopment analysis (DEA) method is commonly 
used to evaluate the carbon emissions efficiency based 
on the framework of total factor production [2]. As for 
China’s transport sector, some scholars have proposed 
the relevant model based on the DEA model to evaluate 
transport environmental efficiency. For example, 
Chang et al. [15] proposed a non-radial DEA model 
with the slacks-based measure(SBM) to measure the 
environmental efficiency in China’s transport sector.
Liu et al. [16] proposed a parallel Slack-Based measure 
(SBM) data envelopment analysis (DEA) model to 
evaluate the overall efficiency of the land transportation 
sector. Zhou et al. [17] examined the energy efficiency 
performance of China’s transport sector based on 
the data envelopment analysis (DEA) approach with 
considering undesirable outputs. 

Meanwhile, existing studies have paid extensive 
attention to the dominant driving factors of transport 
sector carbon emissions, and the relevant research 
methods can be divided into two categories, generally. 
The first research method is the index decomposition 
method, which is also the most commonly used. 
Greening et al. [18] analyzed the 10 OECD countries’ 
carbon emissions change in the freight sector from 
1970 to 1993. They found that the increase in carbon 
emissions intensity for nine countries is mainly 
due to the shifts in modal structure toward more  
carbon-intensive transportation modes. Mazzarino [19] 
found that growth in the economy was the main driving 
factors for Italy’s transport sector carbon emissions 
during the period 1970-1993. Timilsina and Shrestha  
[20] found that economic development and  
transportation energy intensity play a dominant role in 
20 Latin American and Caribbean (LAC) countries’ 
transport sector carbon emissions during the period 
1980-2005. Andreoni and Galmarini [21] found that the 
European water and aviation transport sector carbon 
emissions are mainly determined by transportation 
energy intensity and economic growth. Achour and 
Belloumi [22] found that the scale of economy and 
population, transportation intensity, and energy 
intensity play a positive effect on Tunisia‘s transport 
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sector carbon emissions growth. Wang et al. [23] found 
that the per-capita GDP and transport modal shifts  
are the main driving factors for China’s transport sector 
carbon emissions during the period 1985-2009. Loo and 
Li [24] analyzed the influencing factor in passenger 
transportation carbon emissions in China since 1949; 
they found that per-capita income level is, firstly, 
responsible for carbon emissions growth. The second 
research method is the econometric model. Using  
the vector autoregressive (VAR) model, Talbi [25] 
found that the improvement of energy efficiency and 
fuel rate have a positive influence on Tunisia’s road 
transport sector carbon emissions reduction. Zhang et 
al. [26] found that electrification and energy efficiency 
improvement are effective in reducing the transport 
sector carbon emissions reduction in China. Liao et 
al. [27] found that the economic growth and oil price 
are to be responsible for carbon emissions growth for 
the inland container transport by using the multiple 
regression models.

The previous studies have enriched our 
understanding of the transport carbon emissions 
efficiency and its main influencing factors. However, 
there were few studies that focus on the temporal-
spatial distribution characteristics of transport carbon 
emissions efficiency and the influencing factors analysis 
from the spatial econometric approaches. Especially for 
the influencing factors analysis, the above studies did 
not take the spatial interaction effects into consideration 
and the relationship of the relevant variables are based 
on the assumption of spatial independence. As pointed 
out by Le Sage et al. [28], the characteristics of a local 
region will be affected by the adjacent regions to some 
extent. Furthermore, it may lead to the estimation bias 
on the regression results for the conventional estimation 
techniques when ignoring the spatial interaction 
effects according to “the first law of geography” [29]. 
Meanwhile, the relevant studies have indicated that 
the significant spatial dependence of carbon emissions 
cannot be ignored [30-32]. To fill such a research gap, 
we will study China’s province-level transport sector 
carbon emissions efficiency based on the spatial effects 
perspective. Specifically, we analyzed the spatiotemporal 
distribution pattern of transport sector carbon emissions 
efficiency based on the panel data from 2004 to 2016. 
Additionally, we examined spatial dependence and 
analyzed the dominating driving factors. To our 
knowledge, this study is the first attempt to investigate 
the dominant driving factors of transport sector carbon 
emissions efficiency using the spatial econometric 
approaches. It is expected that such research can provide 
the scientific basis for decision-making in formulating 
the regional transport sector carbon emissions reduction 
policies to a certain extent.

Compared to the existing literature, this study has 
three possible contributions. Firstly, unlike the previous 
studies that employed the method of single factors to 
evaluate the carbon emissions efficiency, we used the 
method of super-SBM based on the DEA model to 

measure transport carbon emissions efficiency, which 
is better to analyze the influencing factors. Secondly, 
unlike the previous studies that neglected the spatial 
dependence of transport carbon emissions efficiency, we 
employed the method of Moran’s I index to evaluate the 
spatial autocorrelation and analyze the temporal-spatial 
distribution pattern. Finally, unlike the previous studies 
that employed the traditional econometric approaches, 
we employed the spatial econometric approaches to 
analyze the driving factors of transport carbon emissions 
efficiency.

Materials and Methods

Variables and Data Resource

Calculation for Carbon Emissions Efficiency

Due to the increasing attention to environmental 
issues, a large number of studies [33-35] take the 
undesirable output, such as carbon dioxide, waste 
water, and waster gas, into consideration on evaluating 
the environmental efficiency based on the traditional 
DEA model in the transport sector. Here we employed 
the Super-SBM model to calculate China’s province-
level transport sector carbon emissions efficiency. We 
assumed that the transportation production system 
has n decision making units, each with three factors: 
input, desirable outputs, and undesirable outputs, and is 
described by three vectors: x ∈ Rm, yg ∈ Rs1, yb ∈ Rs2, 
respectively. We define the matrices X, Y g, and Y b as 
follows:
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…where the objective function ρ denotes the carbon 
emissions efficiency value of DMU (x0, y0

g, y0
b ); m, s1, 
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and s2 stand for the number of factors for input, desirable 
and undesirable outputs, respectively; s–, sg and sb refer 
to the slacks in the input, desirable and undesirable 
outputs, respectively; λ is the intensity vector. The object 
function ρ has values in the range [0, 1]. If ρ = 1, it means 
the decision making unit is SBM-efficient and if 0≤ρ<1, 
it means the decision making unit is SBM-inefficient.

However, most empirical results of efficiency 
evaluation research indicated that plural decision making 
units are SBM-efficient at the same time [37]. Therefore, 
how to reasonably distinguish these SBM-efficient 
DMUs is critical to efficiency ranking, especially for the 
dominant driving factors analysis of carbon emissions 
efficiency. Therefore, to more accurately evaluate the 
transport sector carbon, According to the research of Li 
et al. [38], the Super-SBM model is used to evaluate the 
SBM-efficient DMUs:
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…where ρ* is the objective function whose value can 
be more than 1, and the other variables have the same 
meaning as in Eq. (3). In general, The Super-SBM 
model described above has three main advantages. First,  
it can effectively solve the slackness problem of  
input and output factors. Second, it is particularly 
suitable for dealing with undesirable outputs. Third, 
it effectively solves the problem of distinguishing  
and ranking the SBM-efficient DMUs in the SBM  
model.

Input and Output Indicators

Based on the model described above, we will employ 
the Super-SBM model to calculate the transport sector 
carbon emissions efficiency change of 30 provinces in 
mainland China from 2004 to 2016 (excluding Tibet 
because of the absence of relevant data). The input and 
output indicators are described below.

Input indicators: Based on economic growth theory, 
labor and capital are the basic and core input factors. 
Therefore, we chose the number of employed labor in 
transport sector as the labor input. As for the capital 
input, the most commonly used indicator is the capital 
stock, but due to the official statistics on this indicator 

not being available in China, a feasible solution is to 
replace the capital stock with the amount of fixed capital 
investment as some scholars did [39, 40]. Meanwhile, 
this study mainly chooses the relevant fuel consumption 
(including raw coal, coke, crude oil, gasoline, kerosene, 
diesel, fuel oil, liquefied petroleum gas, and natural gas) 
in the transport sector as energy inputs, and all kinds of 
energy types are translated into standard coal equivalent 
using the National Standard Conversion Coefficient of 
China.

Output indicators: We chose gross domestic product 
by transportation as the desirable output, while the 
amount of the transport sector carbon emissions from 
energy consumption are chosen as the undesirable 
output. Owing to the fact that official statistics on 
provincial-level carbon emissions from the transport 
sector are not available in China, we will employ the 
method described in reference [41] to calculate the 
amount of transport carbon emissions.

According to China’s Statistical Yearbooks and the 
China Energy Statistical Yearbook, the data resource 
of the transport sector in China derives from the data 
of transport, storage, and post. From the availability 
of the data, we follow the method to collect the 
relevant data as most scholars did [42]. Meanwhile, 
the monetary indicators, including the amount of fixed 
capital investment and gross domestic product by 
transportation, are converted into year 2004 constant 
prices using the fixed capital investment price index and 
the third industry added value deflators, respectively. 
Table 1 shows the descriptive statistics for the input and 
output indicators.

Independent Variables

Based on the data availability and the relevant 
literature, per-capita GDP, urbanization, transportation 
intensity, transportation energy intensity, transportation 
service structure, and transportation energy consumption 
structure were chosen to be the dominant driving factor 
of transport sector carbon emissions efficiency.

Per-capita GDP (PGDP) refers to the gross domestic 
product divided by the total population, which reflects 
the economic development scale effects on carbon 
emissions. The environmental Kuznets curve theory 
indicates that economic development is the most 
important factor influencing carbon emissions, and 
there is a nonlinear relationship between economic 
development and carbon dioxide emissions [43].

Urbanization (UR) refers to the proportion of the 
permanent residents of an urban area in a region to 
the total resident population in that region according 
to the National Bureau of Statistics of China. A large 
number of empirical studies show that the process 
of urbanization has resulted in very large energy 
consumption and subsequent worldwide environmental 
concerns [44]. Meanwhile, urbanization may be an 
important factor influencing carbon emissions in the 
transport sector [45]. 
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Transportation intensity (TI) refers to the ratio of 
comprehensive transportation service and the added 
value in transport sector, which reflects the economic 
efficiency of the transport sector. According to Yu et 
al. [46], the comprehensive transportation service is 
defined as the sum of passenger kilometers and freight 
kilometers. According to the statistical methods of 
the Ministry of Transport of China, the conversion 
coefficients of passenger kilometers to freight kilometers 
for railway, highway, waterway, and civil aviation 
transportation modes are 1.0, 0.1, 0.33, and 0.09, 
respectively. An increase in the transportation intensity 
can reduce carbon emissions and improve transport 
sector carbon emissions efficiency [23].

Transportation energy intensity (TEI) refers to the 
ratio of the transport sector total energy consumption 
and the comprehensive transportation service, which 
reflects the efficiency of energy utilization in the 
transport sector. A decrease in transportation energy 
intensity indicates an improvement in the efficiency of 
energy utilization and the technological progress level in 
the transport sector [47].

Transportation service structure (TSS) refers to the 
proportion of the highway comprehensive transportation 
service to the total comprehensive transportation service. 
As a high-carbon emissions-intensive transportation 
mode (in terms of carbon emissions per passenger/
freight kilometers), highway transportation accounts for 
a majority of the transport sector carbon emissions in 
China [5]. A feasible and effective solution to improve 
the transport sector emissions efficiency could be modal 
shifting, that is, from highway transportation to lower 
carbon emissions-intensive transportation modes, such 
as railway and water transportation.

The transportation energy consumption structure 
(TECS) refers to the proportion of coal consumption 
to total energy consumption in the transport sector. 
Different fuels have different carbon contents, which 
lead to a significant difference in the contribution 
of carbon emissions. Coal, as a high carbon content 
energy, pays primary responsibility for China’s energy 
consumption for production needs [48]. Therefore, 
we assume that a decrease in the proportion of coal 
consumption can improve transport sector carbon 
emissions efficiency.

Thus, the classical econometric model of transport 
sector carbon emissions efficiensy can be given as:
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…where CEE refers to the transport sector carbon 
emissions efficiency, C refers to the constant, β refers to 
the estimation coefficient, μit refers to the error term, i 
refers to the province i and t refers to the year t.

Spatial Econometrics Model

Global Spatial Autocorrelation

In practice, spatial dependence is commonly 
examined by the global Moran I index method [49]. 
In this study, we also employ it to examine the spatial 
dependence of transport sector carbon emissions 
efficiency. Concretely, the global Moran I index can be 
expressed as:
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…where n denotes the number of geographical units, that 
is, the provinces we researched in this study; ρ– * stands 
for the average value of ρ*; and ωij is the element in the 
spatial weight matrix W , which describes the spatial 
relationship corresponding to the geographic districts  
(i, j). In this study, we will adopt the most widely used 
spatial weight matrix: the binary contiguity matrix 
[50]. For provinces i and j, which are adjacent to each 
other, then the spatial weight matrix element ωij will be 
assigned a weight of 1, otherwise ωij will be assigned a 
weight of 0. Meanwhile, the global Moran I index has 
values in the range [-1, 1], If 0<Moran's I≤1, which 
means a positive spatial dependence; if –1<Moran's 
I<0, which means a negative spatial dependence; and 
Moran's I = 0 means there is no spatial correlation.

Model Specification

Following Elhorst [51], three spatial econometric 
models have been commonly used to describe the 
spatial dependence, including spatial lag model  

Table 1. Descriptive statistical characteristics of input and output indicators.

Inputs and outputs Variable Unit Min Max Mean Std. dev.

Non-energy input
Capital stock 108Yuan 35.51 726.67 272.34 162.66

Labor employment 104 persons 2.01 63.55 16.53 10.28

Energy input Energy consumption 104 tons of SCE 23.89 3069.69 799.17 567.34

Desirable output GDP by transport sector 108 Yuan 30.00 2961.12 727.33 561.18

Undesirable output Carbon emissions 104 tons 61.07 6680.93 1763.26 1231.73
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(SLM), spatial error model (SEM), and spatial Durbin 
model (SDM). The SLM adds the spatial lag terms of 
the dependent variable to the non-spatial panel model, 
which hypothesizes that the value of the dependent 
variable observed in a region is affected by the value 
of the neighboring dependent variable. That is, the 
transport sector carbon emissions efficiency in the 
province is affected by the carbon emissions efficiency 
of neighboring provinces. The SLM is defined as:

Y WY Xϕ β ε= + +                      (8)

…where X, Y stands for the vector of independent 
variable and dependent variable; φ is the spatial 
autoregressive coefficient; and ε is normally distributed 
disturbance term with a diagonal covariance matrix. The 
SEM considers the spatial dependence of the error term. 
The SEM is defined as:

         Y X Wβ ε ε γ ε µ= + = +              (9)

…where μ and γ denote the spatial dependence of 
the error term and its spatial autoregressive  
coefficient, respectively. The SDM adds the spatial  
lag terms of the dependent variable and independent 
variable to the non-spatial panel model. The SDM is 
defined as:

Y WY X WXϕ β φ ε= + + +             (10)

…where ϕ denotes the spatial autoregressive coefficient 
on independent variables. Meanwhile, we will follow 
the test method outlined by Elhorst [51] to test which 
of SLM, SEM and SDM is more appropriate. Firstly, 
we estimate the classical econometric model and test 
the joint significance of spatial fixed effects and time-
period fixed effect. Then we employ the LM spatial lag 

Fig. 1. Provincial transport sector carbon emissions efficiency in China from 2004 to 2016.
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and LM spatial error and their robustness to test whether 
the spatial effects models are better than the non-spatial 
panel model or not. Secondly, we employ the Wald 
test and LR test method to examine whether the SDM 
can be simplified to the SLM or SEM. The two null 
hypotheses: H0: ϕ = 0 and H0: ϕ + φ ∙ β = 0 are used 
to test for determining which spatial econometric model 
should be chosen. If the first null hypothesis H0: ϕ = 0 
is rejected by Wald test, then the SDM can be 
simplified to the SLM; and if the second null hypothesis  
H0: ϕ + φ ∙ β = 0 is rejected by the LR test, then 
the SDM can be simplified to the SEM. If the first null 
hypothesis and the second null hypothesis are both 
rejected, then we can consider that the SDM is more 
acceptable.

Results and Discussion

Spatial Distribution Characteristics 
of Carbon Emissions Efficiency

Fig. 1 clearly shows the tendency of the China 
province-level transport sector carbon emissions 

efficiency from 2004 to 2016. The maximum value 
appeared in Hebei Province in 2004, where the 
corresponding carbon emissions efficiency was 1.1881. 
The minimum value appeared in Qinghai in 2016, the 
corresponding carbon emissions efficiency was 0.1772. 
The three provinces with the highest value of average 
carbon emissions efficiency were Tianjin, Hebei, and 
Fujian; and the three lowest provinces were Yunnan, 
Qinghai and Xinjiang. The results showed that the 
average carbon emissions efficiency of the transport 
sector in Tianjin is 4.84 times that of Yunnan. It can be 
seen that the provincial transport sector carbon emissions 
efficiency had an obvious difference. Furthermore, the 
average value of carbon emissions efficiency in China’s 
transport sector is 0.5157, the overall carbon emission 
efficiency is low. Those results indicated that China’s 
transportation industry has not yet formed an effective 
coordination between environmental protection and 
economic development, but it also means that China’s 
transportation industry has a greater space for resource 
conservation and environmental protection improvement 
in the future development process.

The disparity in the transport sector carbon 
emissions efficiency also showed the spatial 

Fig. 2. Quartile graphs of transport sector carbon emissions efficiencies through time.
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dependence. Due to the limitation of space, this study 
just listed the quartile graphs of the transport sector 
carbon emissions efficiency in the years 2004, 2008, 
2012, and 2016. As shown in Fig. 2, the provincial 
transport carbon emissions efficiency had great spatial 
differences and clustering characteristics. For example, 
at the beginning of the observation period (2004), the 
five highest provinces were Hebei, Fujian, Tianjin, 
Shandong, and Beijing, while Shaanxi, Xinjiang, Hubei, 
Gansu, and Guizhou had the lowest carbon emissions 
efficiency. At the end of the observation period (2016), 
the five highest provinces were Tianjin, Inner Mongolia, 
Hebei, Shandong, and Fujian while Guizhou, Ningxia, 
Xinjiang, Yunnan, and Qinghai had the lowest carbon 

emissions efficiency. Overall, the transport sector 
carbon emissions efficiencies of the eastern provinces 
were higher than the central and western provinces. 
Specifically, the average carbon emissions efficiency 
in eastern, central, and western provinces was 0.6373, 
0.5561, and 0.3646, respectively (three regional division 
methods can be found in reference [17]). The spatial 
distribution characteristic of transport sector carbon 
emissions efficiency can be described as a “three-
step” spatial pattern, that is, high in the east and low 
in the west. This indicates that there may be a certain 
correlation between the transport sector carbon emission 
efficiency and the socio-economic development level.

Fig. 3. Moran I scatter plots of the transport sector carbon emissions efficiencies through time.

Table 2. Global Moran I index of transport sector carbon emissions efficiency.

Year Moran’s I P-value Z Year Moran’s I P-value Z

2004 0.442 0.001 4.632 2011 0.325 0.002 3.063

2005 0.431 0.001 4.148 2012 0.301 0.001 2.837

2006 0.431 0.001 4.094 2013 0.255 0.001 2.641

2007 0.405 0.003 3.474 2014 0.304 0.001 3.615

2008 0.411 0.001 4.074 2015 0.298 0.001 3.101

2009 0.409 0.001 3.819 2016 0.263 0.001 2.504

2010 0.359 0.004 3.579

Notes: The symbol * denotes P<0.1, ** denotes P<0.05, *** denotes P<0.01.
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Global Spatial Autocorrelation

As shown in Table 2, the annual Moran I index 
showed the positive value and passed the significance 
test at the 1% level. It can be seen that the transport 
sector carbon emissions efficiency showed a significant 
spatial autocorrelation. The geographic distribution 
of the transport sector carbon emissions efficiency 
tended to cluster together. Meanwhile, the value of 
global Moran’s I index of carbon emissions efficiency 
showed a declining trend ranging from 0.442 to 0.263, 
which indicated that the spatial clustering degree had 
a decreasing tendency. However, the global Moran’s 
I index can just be used to examine the average 
correlation degree overall [48]. When some provinces 
show the positive effects, whereas the other present the 
negative effects, the global Moran index may reveal 
non-spatial autocorrelation because the spatial effects 
may offset each other. Therefore, we further employed 
the Moran I scatter plot method to further examine the 
spatial autocorrelation and the clustering characteristics 
of the transport carbon emissions efficiency in 2004, 
2008, 2012, and 2016.

As shown in Fig. 3, the horizontal axis of the Moran 
I scatter plot denotes the carbon emissions efficiency, 
and the vertical axis denotes the corresponding spatial 
lag. There are four quadrants with corresponding 
clustering characteristic in the Moran I scatter 
plot: quadrant I with a High-High (HH) clustering 
characteristic, quadrant II with a Low-High (LH) 
clustering characteristic, quadrant III with a Low-Low 
(LL) clustering characteristic, and quadrant IV with a 
High-Low (HL) clustering characteristic. Meanwhile, 
the HH and LL clustering indicate positive spatial 
autocorrelation. The LH and HL clustering indicate 
the negative spatial autocorrelation characteristics.
In years 2004, 2008, 2012, and 2016 there were 23 
provinces (76.67%), 23 provinces (76.67%), 21 provinces 
(70%), and 19 provinces (63.33%) that show positive 
spatial autocorrelation, respectively. This indicated 
that the improvement of the transport sector carbon 
emissions in the above provinces will have significant 
positive externalities of the neighboring provinces. 
Meanwhile, the results indicated that the provinces in 

quadrant I were mainly distributed in the eastern and 
central region, whereas the provinces in quadrant III 
were mainly distributed in the western region. This 
result further indicated that transport sector carbon 
emissions efficiency had a significant spatial clustering 
characteristic. Additionally, there were some provinces 
that presented a negative spatial autocorrelation, as 
well. For example, Shanghai, Beijing, Liaoning, Hainan, 
Guangdong, Hubei, and Ningxia located in quadrant II, 
and Hunan and Fujian located in quadrant IV, in 2016. 
Furthermore, compared to the year 2004, in 2016, the 
number of provinces that belonged to quadrants I and 
III decreased by four, while the number of provinces 
that belonged to quadrants II and IV increased by four. 
This showed that the spatial clustering degree of the 
transport sector carbon emissions efficiency seemed to 
be weakening. The results of global Moran I index and 
Moran I scatter plot indicated that there was a significant 
spatial autocorrelation of the transport sector carbon 
emissions efficiency during the observation period.

Meanwhile, in order to further reveal the dynamic 
spatial distribution characteristics of carbon emissions 
efficiency in China’s transport sector, we employed 
the space-time transition method proposed by Rey 
[52] in order to depict the transfer of Moran I scatter 
plots between the different local agglomeration areas.  
Table 4 presents the space-time transition matrices of 
Moran I plot of carbon emissions efficiency in 3 time 
periods. As shown in Table 4, the space-time transition 
of provinces mainly occurred in Type I and Type II, 
and most of the provinces still remained in the previous 
state. Meanwhile, according to the calculation results of 
the spatial stability index, the value of spatial stability 
of Moran I scatter plots during the periods 2004-2008, 
2008-2012, and 2012-2016 were 0.77, 0.87, 0.90 and 
0.9393, respectively. Meanwhile, the value of spatial 
stability index showed an upward trend. These results 
indicated that the spatial distribution characteristics of 
carbon emissions efficiency in China’s transport sector 
were shown to be highly stable and presented the 
characteristics of certain path-dependence or the spatial 
lock-in effect during the study period. The results 
indicated that it was difficult for most provinces to break 
away from the original agglomeration area. 

Table 3. Space-time transition matrices.

Type 2004-2008 2008-2012 2012-2016

Type I
HH→LH : Zhejiang

LH→HH : Jiangsu, Inner Mongolia
LL→HL : Hunan

HH→LH : Shanghai
LH→HH : Jilin HH→LH : Beijing

Type II HL→HH : Shanghai
LL→LH : Hubei LL→LH : Ningxia, Shaanxi HH→HL : Fujian

Type III HL→LH : Shanghai None None

Type 0 The remaining
23 provinces

The remaining
26 provinces

The remaining
28 provinces

Spatial stability index 0.77 0.87 0.93
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Spatial Econometric Estimation Results

Due to the existence of spatial autocorrelation,  
the classical econometric model may lead to estimation 
bias of the regression results. Therefore, this paper 
examined the dominant influencing factors of transport 
sector carbon emission efficiency by spatial econometric 
approaches. Following the test procedures described in 
Table 4, the null hypothesis that the joint significance 
of spatial fixed effects (818.8533, with 30 degrees of 
freedom, P = 0.0000<0.01) and time-period fixed effects 
(235.6161, with 13 degrees of freedom, P = 0.0000<0.01) 
were both rejected under the 1% significance level. In 
other words, the spatial and time-period fixed effects 
were more suitable to fitting the non-spatial panel model. 
Meanwhile, as for the LM tests, the results showed that, 
under the 1% significance level, the null hypotheses of 
no spatial lag term and the null hypotheses of no spatial 
error term were both rejected, except for the spatial 
and time-period fixed effects. As for the robust LM 
tests, the results showed that the null hypothesis of no 

spatial lag term and no spatial error for the spatial fixed 
effects were rejected under the 10% and 1% significance 
levels, respectively. The null hypothesis of no spatial 
lag term and no spatial error for the time-period fixed 
effects were rejected under the 1% and 5% significance 
levels, respectively. These results further showed that 
the spatial econometric models are better than the 
traditional mixed panel models and it needed to provide 
more evidence to determine which spatial econometric 
model should be chosen.

As shown in Table 5, according to results of  
the Wald test and LR test, the first hypothesis  
(H0 : ϕ = 0) and the second hypothesis (H0 : ϕ + φ 
· β = 0) for the spatial fixed effects and time-period 
fixed effects could both be rejected under the 1% 
significance level, and for the spatial and time-period 
fixed effects, the first hypothesis and the second 
hypothesis could be rejected, as well, under the 5% 
significance level. The results showed that the spatial 
Durbin model cannot be simplified. Meanwhile, the 
Houseman test was used to examine whether the spatial 

Table 4. Estimation results of non-spatial panel model.

Determinants Pooled OLS Spatial fixed effects Time-period fixed 
effects

Spatial and time-period 
fixed effects

Intercept –0.3412**(–2.1719)

ln PGDP –0.1597*** (–3.3260) –0.2581***(–8.0848) 0.2654***(3.8386) 0.2868***(4.6231)

ln UR 0.1014 (0.8771) –0.1018(–1.3472) –0.1151(–1.0236) –0.0781(–1.3012)

ln TI –0.4352*** (–8.2840) –0.2656***(–5.7815) –0.4362*** (–8.5252) –0.5018*** (–12.2744)

ln TEI –0.5816*** (–12.7692) –0.3651** (–8.7109) –0.6225*** (–14.3564) –0.4980*** (–14.2013)

ln TSS –0.1087*** (–4.4722) 0.0795***(3.2179) 0.0099 (0.3404) 0.0112 (0.4847)

ln TECS 0.0225***(2.7269) 0.0170**(2.0878) 0.0150* (1.9023) 0.01277** (1.9804)

σ2 0.0886 0.0188 0.0761 0.0111

R2 0.5431 0.9088 0.6129 0.9476

Log-likelihood –92.8267 234.0911 –49.7078 345.547

LM spatial lag 92.7156*** 16.3397*** 31.6592*** 1.1347

LM spatial error 66.4462*** 27.0930*** 8.9837*** 0.1069

Robust LM spatial lag 26.5196*** 3.6618* 29.2879*** 2.4711

Robust LM spatial error 0.2501 14.4152*** 6.6124** 1.4433

Notes: the number in parentheses represent t-stat values. The symbol * denotes P<0.1, ** denotes P<0.05, *** denotes P<0.01.

Table 5. Diagnostic tests of spatial specification.

Determinants Spatial fixed effects Time-period fixed effects Spatial and time-period fixed effects

Wald test spatial lag 184.2826*** 104.4423*** 13.9419**

LR test spatial lag 160.8217*** 98.1052*** 14.7506**

Wald test spatial error 107.2481*** 120.8932*** 14.1381**

LR test spatial error 146.9906*** 116.6127*** 15.5367**

Notes: The symbol * denotes P<0.1, ** denotes P<0.05, *** denotes P<0.01.
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Durbin model with random effects was better than the 
fixed effects or not. The result showed that the Hausman 
test did not pass the significance test at the 5% level 
(23.7696, with 13 degrees of freedom, P = 0.0333<0.05). 
Therefore, we chose the spatial Durbin model with fixed 
effects to analyze the driving factors of the transport 
sector carbon emissions efficiency. Additionally, based 
on the results of R2 and log-likelihood, the spatial Durbin 
model with spatial and time-period fixed effects was 
selected. The estimation results of spatial Durbin model 
are shown in Table 6.

As shown in Table 6, the per-capita GDP had a 
positive impact on province-level transport sector 
carbon emissions efficiency. The coefficient of PGDP 
was 0.2736 and passed the significance test at the 1% 
level. The probable reason for this result is that China’s 
transportation industry is in a downward phase under an 
inverted U-shaped curve according to the environmental 
Kuznets curve hypothesis. Some empirical studies have 
indicated that the relationship between economic growth 
and transport sector carbon emissions has become 
decoupled in China [53]. As pointed out by Wei et al. 
[54], the development of the economy is accompanied 
by higher economic efficiency relative to the less 
inefficient carbon emissions. In other words, when the 
level of economic development is higher, the people can 
pay more attention to environmental protection, and  
the government also has a higher ability to develop  
a low-carbon economy [55].

Urbanization had a negative impact on province-
level transport sector carbon emissions efficiency, which 

was consistent with our expectations. The urbanization 
rate in China increased from 41.7% in 2004 to 56.65% 
in 2016. Urbanization means the population is shifting 
from rural areas to urban areas, and this may lead to 
three main impacts on carbon emissions in the transport 
sector [8]: Firstly, with the increase of the urban 
population, the number of vehicles, especially for civil 
car ownership, will increase accordingly. Secondly, with 
the development of urbanization, it certainly brings the 
flow for the passenger and freight in space and leads to 
an increase of carbon emissions and energy consumption 
in the transport sector [56]. Finally, with the increase of 
the social-economic activities in the growth process of 
urbanization, it may lead to more frequent vehicle use, 
and it will also lead to more energy consumption in 
the transport sector. Meanwhile, compared to the other 
transportation modes, such as railways and waterways, 
the carbon emissions efficiency of cars is relatively 
lower. Therefore, urbanization may lead to lower carbon 
emissions efficiency in the transport sector to some 
extent.

Transportation intensity had a negative impact 
on province-level transport sector carbon emissions 
efficiency. The coefficient of TI was –0.5008 and passed 
the significance test at the 1% level. Some studies have 
proven that the improvement of transportation intensity 
is an important driving factor to carbon emissions 
reduction. However, compared to the year 2004, in 
2016, transportation intensity decreased by 26.7%. The 
downward trend of the transportation intensity means 
the deterioration of the transport sector efficiency and 

Determinants Spatial fixed effects Time-period fixed effects Spatial and time-period fixed effects

ln PGDP 0.3261*** (4.3630) 0.3217*** (4.7361) 0.2736*** (3.8730)

ln UR 0.0037 (0.0590) –0.2481** (–2.3401) –0.0563 (–0.9204)

ln TI –0.4153*** (–9.7992) –0.3261*** (–6.4087) –0.5008*** (–12.1363)

ln TEI 0.4467*** (–12.4562) –0.4571*** (–10.1754) –0.4993*** (–14.2411)

ln TSS 0.0065 (0.2743) 0.1502*** (4.7654) –0.0047* (–1.7848)

ln TECS 0.0114* (1.6782) 0.0302*** (3.0749) 0.0130** (1.9702)

W * ln PGDP –0.3025*** (–3.6734) 0.0338 (0.2281) –0.0391 (–0.3355)

W * ln UR –0.2539 (–1.5956) 1.3293*** (5.1796) –0.2932* (–1.8557)

W * ln TI 0.6733*** (10.0461) –0.4169*** (–3.7141) 0.1254** (2.3108)

W * ln TEI 0.5612*** (9.1283) –0.2718*** (–2.8496) 0.1303 (1.5153)

W * ln TSS 0.0723** (2.2380) 0.0853 (1.2573) –0.0561 (–1.1995)

W * ln TECS 0.0179 (1.3914) –0.0354** (–2.4372) 0.0281** (2.1190)

σ2 0.0124 0.0605 0.0107

R2 0.9399 0.6922 0.9495

Log-likelihood 314.5020 –0.6552 352.9224

Notes: the number in parentheses represents t-stat values. The symbol * denotes P<0.1, ** denotes P<0.05, *** denotes P<0.01.

Table 6. Estimation results of spatial Durbin model.
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makes a positive contribution to carbon emissions in 
the transport sector [23]. Therefore, achieving progress 
in transportation intensity is beneficial to improving 
economic efficiency in the transport sector.

Transportation energy intensity had a negative 
impact on province-level transport sector carbon 
emissions efficiency. The coefficient of TEI was 
–0.4993 and passed the significance test at the 1% level. 
Generally speaking, the improvement in transportation 
energy intensity has a positive role in promoting  
the transport sector carbon emissions efficiency. 
However, compared to the year 2004, in 2016 the 
transportation energy intensity decreased by 20.5%.  
That is, the efficiency of energy utilization in the 
transport sector had a downward trend in the observation 
period. This result may be due to the low level of  
low-carbon technology in China’s transportation 
industry [34].

The transportation service structure had a negative 
impact on province-level transport sector carbon 
emissions efficiency. The coefficient of TSS was –0.0047 
and passed the significance test at the 10% level. This 
is mainly due to the rapid growth of the proportion 
of highway comprehensive transportation service to 
the total comprehensive transportation service (from 
11.6% in 2004 to 31.6% in 2016). Meanwhile, compared 
to 2004, the freight kilometers of civil aviation 
transportation increased 12 times, and the proportion 
of passenger kilometers of civil aviation transportation 
increased from 10.59% in 2004 to 26.8% in 2016. 
However, compared to rail and waterway transportation, 
highway and civil aviation transportation have higher 
energy consumption intensities and relatively lower 
carbon emissions efficiencies [57]. Therefore, optimizing 
the transportation structure would be an important 
way to improve the transport sector carbon emissions 
efficiency. 

The transportation energy consumption structure 
was positively associated with province-level transport 
sector carbon emissions efficiency. Compared to 2004, 
in 2016 the proportion of coal consumption in China’s 
transport sector decreased 4.5 times, from 3.91% in 2004 
to 0.87% in 2016. The coefficient of TECS was 0.0130 
and passed the significance test at the 5% level. The 
improvement of the energy structure has an important 
inhibitory effect on carbon emissions in the transport 
sector [58]. Therefore, reducing coal consumption 
could be an effective way to improve carbon emissions 
efficiency in the transport sector.

Conclusions and Policy Implications

Geography is an important issue that cannot be 
neglected in the research of energy and the environment. 
However, there was little literature concerned with 
the spatial spillover effects on China’s transport sector 
carbon emissions. For that, this paper investigated the 
temporal-spatial pattern and influencing factors of 

carbon emissions efficiency in China’s transport sector 
by using the panel data covering the 30 provincial 
regions during the period 2004-2016. The empirical 
results are shown below.

The results indicated that carbon emissions efficiency 
in China’s transport sector was low during the research 
period, the improvement of the carbon emissions 
efficiency played an important role in reducing transport 
sector carbon emissions. Meanwhile, China’s provincial 
transport sector carbon emissions efficiency had an 
obvious difference, with the quartile graphs of transport 
carbon emissions efficiency indicating that the spatial 
distribution characteristics of transport sector carbon 
emissions efficiency can be described as “high in the 
east and low in the west”. The disparity of carbon 
emissions efficiency is closely related to the disparity 
of the provincial socio-economic development level. 
However, the simple descriptive statistical analysis is 
difficult to fully extract the different characteristics of 
carbon emissions efficiency, so we further employed the 
method of Moran I index to mine the spatial dependence 
of transport carbon emissions efficiency. The global 
Moran I index indicated that transport carbon emissions 
efficiency in China presented a significant positive 
spatial dependence. Furthermore, approximately 70% of 
the provinces belonged to the HH and LL agglomeration 
areas. Meanwhile, the provinces in quadrant I were 
mainly distributed in the eastern and central regions, 
whereas the provinces in quadrant III were mainly 
distributed in the western region. Combined with the 
space–time transition matrices, the results indicated that 
the spatial distribution of carbon emissions efficiency in 
China’s transport sector presented the characteristics of 
path-dependence effect to some extent.

Due to the existence of spatial autocorrelation 
among the provinces of the transport sector carbon 
emissions efficiency, the classical econometric model 
may lead to the estimation bias on regression results, 
so the spatial econometric models are more appropriate 
than the conventional estimation techniques. Through 
the related test procedure, we chose the spatial Durbin 
model with spatial and time-period fixed effects to 
analyze the driving factors of the transport sector 
carbon emissions efficiency. The regression results 
indicated that the per-capita GDP and transportation 
energy consumption structure had significantly positive 
effects on transport sector carbon emissions efficiency, 
whereas the urbanization, transportation intensity, 
transportation energy intensity, and transportation 
service structure had negative effects on transport sector 
carbon emissions efficiency.

Based on the relevant conclusions, some feasible 
policy recommendations to further improve the 
transport sector carbon emissions efficiency in 
China are proposed. Firstly, it is essential to take the 
remarkable regional disparity into consideration when 
formulating energy policy. The empirical results indicate 
that the transport sector carbon emissions efficiency 
presented an obvious difference at the provincial 
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level. Meanwhile, the results of space-time transition 
matrices indicate that it was difficult for most provinces 
to break away from the original agglomeration area, 
thereby there are some differences in the pressure of 
CO2 emissions reduction faced by China’s provincial 
transport sector. Therefore, it is rather important to 
formulate differentiated transportation carbon emissions 
reduction policies based on the economic development 
level, industrial structure, resource endowment, and 
technology level in different provinces. Secondly, the 
spatial spillover should be considered in policy-making 
toward transport sector carbon emissions abatement. 
The relevant results have identified the spatial spillover 
of China’s transport sector carbon emissions efficiency, 
which indicates that improving the transport sector 
carbon emissions efficiency in a province has positive 
externalities to the neighboring provinces. Therefore, 
the government should strengthen cooperation on 
energy-saving and carbon emissions reduction in 
the transportation industry. Thirdly, the strategy of 
urbanization development should be compatible with 
transportation development. It is a fact that China has 
become the world’s largest vehicle consumer. Private 
cars are the major contributor to carbon emissions in 
the transport sector [59]. Therefore, encouraging the 
development of public transportation, controlling the 
travel of private cars properly, and guiding private car 
travel to public transportation are practical approaches.  
The measures not only can reduce energy consumption  
in the process of urbanization, but can also alleviate 
traffic congestion to some extent. Fourthly, Not only 
should the technology updates be highlighted, but so  
too should the model shift of fuel consumption.  
The progress of low-carbon technologies has a 
significant positive effect on improving carbon 
emissions efficiency [48]. Since the main low-carbon 
technology used in China is at a lower level, the 
government should encourage the investment in R&D 
of the relevant low-carbon technologies in the transport 
sector. Meanwhile, although the proportion of coal 
consumption is decreasing, fossil energy consumption 
still plays a dominant role in the transport sector; 
clean energy still occupies a very small proportion, 
so some measures to promote the model shift of 
fuel consumption should be adopted. Finally, the 
optimization of the transportation service structure 
should be further highlighted. Compared to highway 
transportation, railway and waterway transportation  
are more environmentally friendly. A feasible approach 
to optimize the transportation service structure is 
to draw on the experience of the European Union’s 
Marco Polo program, which mainly aims to mitigate 
environmental pollution of the transportation system 
by facilitating the model shift of freight from highway 
to railway and waterway transportation. Therefore, 
the government should encourage the development of 
intermodal transport, especially for western and central 
provinces, such as Yunnan, Ningxia, Jiangxi, Anhui, 
Henan, and Sichuan (the provinces that have a higher 

value in transportation service structure). Overall, 
optimizing the transportation service structure has an 
important significance to the transport sector carbon 
emissions reduction.
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