
Introduction

Global warming caused by massive greenhouse 
gas emissions and its consequences have been serious 
environmental issues for every country in the world. 

China is the world’s top CO2 emitter [1-3], accounting 
for 30% of global emissions [4]. Consequently, China is 
playing an important role in global emissions reduction 
and climate change mitigation. The Chinese government 
has promised that its CO2 emissions will achieve its 
maximum CO2 emissions in 2030 [5] and that it will 
achieve a 40-45% reduction in its CO2 intensity per 
GDP by 2020 compared with its 2005 levels [6, 7].  
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Abstract

In China, CO2 emissions from industrial sectors on a larger scale than other end-use sectors. In order 
to reduce CO2 emissions, it is necessary to study the influencing factors and projection of industrial CO2 
emissions. Based on accounting for CO2 emissions from the industrial sectors, this paper carries out 
bivariate correlation analysis and linear regression analysis on 15 preselected influencing factors and 
industrial CO2 emissions, removing two factors that have failed the significance test. In order to obtain 
some potential commonalities among the influencing factors, the remaining 13 influencing factors are 
divided into four categories, and then factor analysis is performed on each category in order to obtain five 
latent factors. An extreme learning machine algorithm that uses genetic algorithms to optimize the input 
weights and bias thresholds – the genetic algorithm extreme learning machine (GA-ELM) algorithm – 
to predict industrial CO2 emissions, the empirical results show that the GA-ELM algorithm using five 
factors as inputs has a higher prediction accuracy and performance for industrial CO2 emissions than 
the extreme learning machine, back propagation neural network, and back propagation neural network 
optimized by the genetic algorithm. It also shows that the five influencing factors have a significant 
impact on industrial CO2 emissions. Finally, based on the analysis of five influencing factors, some 
policy recommendations are proposed for the CO2 emissions reduction path in the industrial sectors.
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At the 2015 Paris Climate Conference [8], China 
continued to firmly reiterate its promised actions 
regarding climate change [9]. According to the fifth 
assessment report (AR5), climate change 2014 by IPCC, 
energy consumption in industrial sectors accounts for 
19% of the terminal energy use, and the greenhouse gas 
contribution rate is 30% in 2010 in the world [10]. In 
China, the situation is even more serious [11], even if 
the proportion of total industrial energy consumption 
in China decreases year by year. As of 2014, the total 
industrial energy consumption still accounted for 69.4%. 
The current status of China’s carbon flow indicated that 
75.12% of total CO2 emissions flow mainly into several 
sectors, such as ferrous sectors, chemical industry and 
heat and the power production sector. These sectors are 
all basically industrial sectors [12].

 In this background, it is necessary to analyze the 
influencing factors of industrial CO2 emissions and to 
forecast industrial CO2 emissions and then accordingly 
propose feasible policy advice. Studies about industrial 
CO2 emissions have been developed over many years, 
and these studies can be classified into two aspects. 
The first aspect of studies is the influencing factors 
of industrial CO2 emissions. Osamu Akashi et al. 
developed a three-part simulation system to study 
industrial CO2 emissions depending on changes in both 
technology and industrial activity [13]. Jinlong MA  
et al. used the adaptive weighting divisia index 
approach to examine contributions to the changes in 
CO2 emissions from industrial energy consumption in 
China over the period 1980-1997, and concluded that the 
increases in industrial production and energy efficiency 
had great impact on CO2 emissions, and fuel mix and 
fuel quality were found to make only a small impact 
on CO2 emissions [14]. Through other researches, the 
factors that have an impact on carbon emissions also 
include industrial output [15, 16], population size, per 
capita industrial output value, industrial technology 
level  [17], industrial structure and energy structure  
et al. [18-20]. The second aspect of these studies is  
the CO2 emissions from industry-specific industries. 
Daniel Summerbell et al. studied CO2 emissions from 
cement plants and found that there exists significant 
opportunity to reduce the emissions from cement plants 
by operational means [21]. Wenqiang Sun et al. applied 
the logarithmic mean divisia index (LMDI) technique 
in the CO2 emissions analysis from the iron and steel 
industry in China, and put forward policy implications 
regarding the reduction of CO2 emissions [22]. Since 
the power generation industry is the largest sector of 
industrial CO2 emissions, there is more research on the 
CO2 emissions of the power industry. M. Karmellos 
measured the CO2 emissions of European Union 
countries’ power industries and analyzed the influencing 
factors [23]. Ming Meng et al. applied the scenario 
analysis method to CO2 emissions from China’s electric 
power [24, 25]. CO2 emissions from other sectors, 
including mining, manufacturing and so on, are all the 
study hotspots.

For predicting CO2 emissions, there are many 
prediction models. Tudor [26] attempted to forecast  
the evolution of carbon dioxide emissions in Bahrain 
during 2012-2021 by employing seven automated 
forecasting methods, including the exponential 
smoothing state space model (ETS), the Holt-Winters 
model, the BATS/TBATS model, ARIMA, the structural 
time series model (STS), the naive model, and the neural 
network time series forecasting method (NNAR), which 
arrived at the conclusion that Bahrain cannot meet its 
assumed target. In addition to the above, the STRIPAT 
model [27] and partial least squares [28-30] are also 
often used for carbon emissions predictions. However, in 
recent years, more and more people are using intelligent 
algorithms to predict carbon emissions. Their commonly 
used intelligent algorithms are a genetic algorithm and 
a back propagation neural network (GA-BPNN), back 
propagation neural network (BPNN) [31, 32], and least 
squares support vector machine (LSSVM) [33] et al. 

Although there is a lot of literature on the factors 
affecting industrial carbon dioxide emissions and carbon 
dioxide emissions in specific industrial sectors, only a 
handful of studies have focused on Chinese industry-
level carbon emissions performance analysis and  lack 
a comprehensive comparison of CO2 emissions forecasts 
for all industrial sectors in China. Although some 
commonly used intelligent algorithms have achieved 
good performance in practical applications, they often 
have certain defects such as overfitting, falling into 
local optimum, and poor generalization ability et al. The 
purpose of this study is to fill these gaps by predicting 
the CO2 emissions from Chinese industry using an 
extreme learning machine based on genetic algorithm 
optimization.

This paper first calculates the CO2 emissions 
of the industrial sectors and preselects 15 factors 
related to industrial CO2 emissions. Then, a bivariate 
correlation analysis and a linear regression analysis of 
the preselected factors and industrial CO2 emissions 
are carried out to remove two factors that have no 
significant test coefficient. In order to reduce the 
correlation between influencing factors and to obtain 
some potential commonalities among the influencing 
factors, the remaining influencing factors are divided 
into four categories, performing factor analysis for each 
category, and finally obtaining five factors. The values 
of these five factors in 1995-2010 are used as the input 
values of the algorithm, and the industrial CO2 emissions 
from 1995 to 2010 are used as output values to train 
the optimized extreme learning machine algorithm by 
the genetic algorithm (GA-ELM). The values of five 
factors in 2011-2015 are input into the trained GA-ELM 
algorithm to predict the industrial CO2 emissions from 
2011 to 2015. Finally, the forecast results and the actual 
values are compared and analyzed to verify the validity 
of the algorithm and the significant impact of the five 
factors on the industrial CO2 emissions.  

The remainder of the paper is structured as 
follows. The material and methods section introduces 
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the principle of GA-ELM algorithm. The empirical 
application section calculates the industrial CO2 
emissions and analyzes the preselect factors with SPSS, 
and uses the extracted five factors as the input of the 
GA-ELM algorithm to predict industrial CO2 emissions. 
The results and discussion sections analyzes the forecast 
results. The conclusions section concludes the paper and 
proposes some policy recommendations for reducing 
industrial CO2 emissions based on influencing factors.

Material and methods

Extreme learning machine

 The extreme learning machine (ELM) was 
proposed by Professor Huang Guangbin of Nanyang 
Institute of Technology in 2004. Its motivation was to 
overcome the problems of low learning efficiency and 
the complicated parameter settings of traditional neural 
network algorithms [34, 35]. ELM is a kind of machine-
learning algorithm designed for a feed-forward neural 
network. Its main features are that the hidden layer 
node parameters do not need to be adjusted and that 
the learning process only needs to calculate the output 
weights. The ELM algorithm is usually applied to a 
single-layer feed-forward neuron network (SLFN). Its 
basic principle is as follows:

For a single hidden-layer neural network, its 
structure is shown in Fig. 1. Supposing there are  
n arbitrary samples (Xj, tj), where

For a single hidden layer neural network with L, 
hidden nodes can be expressed as:
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i i imW w w w is the input weight of the ith hidden 
layer unit, bj is the bias threshold of the ith hidden layer 
unit, and βj is the output weight of the ith hidden layer 
unit. The goal of single hidden layer neural network 
learning is to minimize the output error and can be 
expressed as , that is, Wi, Xj, and bi exist

so that
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expressed as a matrix: H · β = T, where H is the output 
of hidden nodes, β is output weight, and T is expected 
output.
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descent-based algorithms can be used to solve such 
problems, but the basic gradient-based learning 
algorithm needs to adjust all parameters during the 
iteration. In the ELM algorithm, once the input weight  
W and the hidden layer bias threshold bi are randomly 
determined, the output matrix H of the hidden layer is 
uniquely determined. Training the hidden-layer neural 
network can be transformed into solving a linear system:  
H · β = T, and the output weight can be determined 
β̂   = H† · T, where H† is the Moore-Penrose generalized 
inverse matrix of matrix H.

ELM is essentially a linear-in-the-parameter 
model, and its learning process tends to converge at 
a global minimum [36]. The advantages of ELM in 
learning efficiency and generalization performance 
have been confirmed in many fields, but in practical 
applications the randomly determined initial weights 
and biased thresholds will have a greater impact on the  
performance of ELM, leading to instability in the 
prediction results.

Fig. 1. Single-layer feedforward neuron network.
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Genetic Algorithm

Genetic algorithm is a computational model that 
simulates the natural selection and genetic mechanism 
of Darwinian biological evolution. It is a method of 
searching for optimal solutions by simulating natural 
evolutionary processes. A genetic algorithm starts with 
a population that represents the potential solution set 
of a problem, while population consists of a certain 
number of coded individuals. After generating the initial 
population, according to the principle of survival of the 
fittest, generational evolution produces better and better 
approximate solutions. In each generation, individuals 
are selected according to the degree of fitness of the 
individual in the problem domain, and combined with 
the genetic operators of natural genetics to perform 
crossovers and mutations to produce a population 
representing the new solution set. This process will result 
in a population of natural evolution like the descendant 
population, and is more adaptive to the environment 
than the previous generation, the best individual in the 
last generation population is decoded and can be used as 
a problem to approximate the optimal solution.

Genetic algorithm, as a new global optimization 
search algorithm, has been widely used in various fields. 
It has achieved good results with simple features such as 
simplicity, versatility, robustness, suitability for parallel 
processing, high efficiency and practicability, and has 
gradually become one of the most important intelligent 
algorithms.

An Extreme Learning Machine Based on Genetic 
Algorithm Optimization

Since the genetic algorithm has good performance 
in search, in order to overcome the deficiency of 
the ELM algorithm, the genetic algorithm is used to 
optimize the initial values of input weights and hidden 
layer bias thresholds of the ELM algorithm to form a 
new algorithm, which is the genetic algorithm-extreme 
learning machine (GA-ELM) algorithm. The algorithm 
is used to predict carbon dioxide emissions from China’s 
industrial sector. The flow chart of the research idea in 
this paper is shown in Fig. 2. The first part is to screen 
the influencing factors of industrial CO2 emissions; the 
second part is to use the GA algorithm to optimize the 

Fig. 2. Flowchart of the research idea in this paper.



Influential Factor Analysis and Projection... 2263

initial values of input weights and hidden layer bias 
thresholds of the ELM algorithm; the third part uses the 
GA-ELM algorithm to predict industrial CO2 emissions 
in China.

Prediction Application of ELM and GA-ELM 
Algorithms

The application of ELM and GA-ELM algorithms 
in prediction is more extensive. For example, in the 
prediction of the viscosity of ionic liquids [37], through 
the error analysis predicted by the ELM algorithm, 
the ELM model is more suitable for predicting the 
viscosity of ionic liquids than other algorithms. The 
prediction of the monthly effective drought index [38], 
through the ELM model, improved the prediction of 
drought duration and severity, and found that ELM 
is a faster tool for predicting drought and its related 
characteristics. The prediction of water solubility of 
carbon dioxide [39], comparing the estimation and 
prediction results of the ELM model with genetic 
programming (GP) and artificial neural network (ANN) 
models, the ELM model can be used safely to develop 
new water-soluble carbon dioxide. For the refractive 
index of ionic liquids [40], the average absolute relative 
deviation of the results predicted by ELM is only 
0.295%. This reliable and accurate result highlights the 
potential of ELM algorithms in this field. The prediction 
of gas emission quantity [41], using the correlation 
data of a mine’s gas emission quantity, the example 
analysis of the model shows that the GA-ELM model 
has higher prediction accuracy and can predict the gas 
emission in the working face relatively accurately and 
efficiently. Solar radiation prediction  [42], using the 
optimized GA-ELM model, predicting the prediction 
of time-lapse solar radiation shows that compared with 
ELM and BP neural networks, the new method has 
higher prediction accuracy and can adapt to the needs 
of irradiation prediction under the condition of mutation 
of external meteorological conditions. For the prediction 
of wind power fluctuation range [43] we found that the 
GA-ELM prediction model can effectively track wind 
power variation and predict its fluctuation range. For 
the critical flow velocity prediction of slurry pipeline 
transportation [44], the average relative error value 
predicted by the GA-ELM model is 1.58%, while the 
BP neural network error is 12.95% and the SVM error 
is 3.19%, which  indicates that the ELM model is more 
accurate and efficient.

From the above practical application of ELM or GA-
ELM algorithms in different fields, it is not difficult to 
find that the ELM or GA-ELM algorithm has higher 
prediction accuracy than other intelligent algorithms. 
The ELM algorithm itself has the advantage of high 
learning efficiency, but its input weight matrix and 
hidden layer deviation are random. A GA algorithm 
has good global search ability, which can optimize 
ELM input weight matrix and hidden layer deviation 
randomness. The effect of the fitting is better, and the 

predicted error value is smaller. Therefore, this paper 
uses the GA-ELM algorithm to predict industrial carbon 
emissions.

Empirical Application

Pre-selection of Industrial CO2 Emissions 
Accounting and Influencing Factors 

Since there is no an indicator of CO2 emissions 
in the various statistical indicators of the Chinese 
government, we cannot directly obtain the CO2 
emissions in the Chinese industrial sectors. Therefore, 
CO2 emissions from the industrial sectors can only be 
calculated through the consumption of various energies 
and related conversion factors. According to existing 
research [45], when accounting for CO2 emissions, 
there are two situations: one is to use three sources of 
energy consumption for accounting, and another is to 
use nine sources of energy consumption for accounting. 
The use of three energy sources to account for CO2 
emissions often has large errors, because this method 
ignores secondary energy consumption, and using nine 
energy sources for accounting will greatly reduce these 
errors. Therefore, in order to objectively and truthfully 
reflect and accurately predict the CO2 emissions of the 
industrial sectors, this paper uses the consumption of 
nine energy sources to calculate the CO2 emissions of 
the industrial sectors. The formula for calculating CO2 
emissions is as follows: 

9

t
1=

= ∑ i i i
i

C Eα β
                    (2)

…where Ct is CO2 emissions; i represents energy type; α 
is the conversion coefficient of different kinds ofenergy 
into standard coal, which are shown in Table 1; β is the 
CO2 emissions conversion coefficient for different kinds 

Table 1. Conversion coefficients of different kinds of energy into 
standard coal.

Energy Unit Conversion coefficient

Coal million ton 0.7143 kgce/kg

Coke million ton 0.9714 kgce/kg

Crude oil million ton 1.4286 kgce/kg

Gasoline million ton 1.4714 kgce/kg

Kerosene million ton 1.4714 kgce/kg

Diesel oil million ton 1.4571 kgce/kg

Fuel million ton 1.4286 kgce/kg

Natural gas billion cubic meters 1.2721 kgce/m3

Power billion kWh 0.1229 kgce/kWh
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of energy, which are shown in Table 2; and E is the 
energy consumption for different kinds of energy.

Through the China Energy Statistical Yearbook 
and the China Statistical Yearbook of 1983-2017, the 
consumption of nine types of energy in the industrial 
sectors can be obtained, and the CO2 emissions of the 
industrial sectors from 1985 to 2015 can be calculated 
according to Formula (1). The result is shown in Fig. 3.

As can be seen from Fig. 3, overall, the CO2 
emissions from the industrial sectors have increased 
year by year. From the perspective of the growth rate 
and trends, the industrial CO2 emissions from 1985 to 
2015 can be divided into two phases. The first stage was 
1985 to 2000. While industrial CO2 emissions at this 
stage are also increasing year by year, the emissions and 
growth rates are relatively small. This was mainly due to 
the state of economic development in China at that time. 
From 1985 to 2000, China’s industry was still in the 
process of the reform of the socialist economic system. 
The vitality of the development of the industrial sector 
has not yet been fully released. However, at this stage, as 
China’s reforms in the economic and industrial sectors 

continue to increase, China’s industrial development 
under the planned economic system has gradually 
shifted to the development of industries under the 
socialist market economy. The industrial development 
model from semi-closed shifted to the open. Industrial 
enterprises from only state-owned and collectively-
owned ownership forms changed to the pattern of public 
ownership as the main body and multiple ownership 
common development. Therefore, the first phase of the 
CO2 emissions growth trend is relatively slow. 

It is worth mentioning that the Asian financial 
turmoil occurred in 1998, which had a certain impact on 
young Chinese industries, which led to the second phase 
of the decline in 1998-2000. After entering the new 
century, the vitality of China’s industrial reforms began 
to appear. At the same time, the Chinese government 
has further deepened the industrial economic system by 
reforming state-owned industries and encouraging non-
public ownership industries. In opening up to the outside 
world, China joined the World Trade Organization 
(WTO) in 2001, and in 2005 it initiated the reform of 
the RMB exchange rate formation mechanism, which 
has had a profound impact on China’s industrial 
development. Therefore, in the second phase, Chinese 
industry achieved rapid and steady development, 
and the corresponding CO2 emissions also showed 
the same growth trend. However, in recent years, 
as environmental pressures have increased, the use 
ratio of renewable clean energy has begun to increase 
rapidly. The use of fossil fuels has been limited to some 
extent. Moreover, China is engaged in a new round of 
deepening reform. As a result, CO2 emissions from the 
industrial sectors showed a downward trend at the end 
of the second phase.

There are many factors that affect the CO2 emissions 
in China’s industrial sectors. This paper pre-selects 15 
influencing factors for industrial CO2 emissions based 
on a comprehensive consideration of macroeconomics, 
population, industrial sector structure, energy 
consumption, energy consumption structure, and the 
availability of relevant data, including: industry GDP, 

Table 2. CO2 emissions conversion coefficients for various 
energies.

Energy Conversion coefficient (C(t/t))

Coal 0.747

Coke 0.855

Crude oil 0.585

Gasoline 0.553

Kerosene 0.571

Diesel oil 0.592

Fuel 0.618

Natural gas 0.448

Power 1.814

Fig. 3. CO2 emissions in Chinese industrial sectors (unit: megatons).
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total value of exports, energy industry investment 
in fixed assets, annual average employees of above-
designated size, industrial added value, the number 
of industry enterprises, primary energy production, 
the production of pig iron, the production of steel, the 
production of cement, coal consumption in industry, 
coal consumption in mining and quarrying, coal 
consumption in manufacturing, coal consumption in 
electric power, gas and water production and supply, and 
fossil energy consumption ratio in industry.

Analysis of Influencing Factors

Bivariate Correlation Analysis and Linear 
Regression Analysis

 Since the above 15 influencing factors are 
subjectively selected, there is a certain degree of 
randomness and subjectivity. In order to determine 
that the selected factors are indeed factors that affect 
industrial CO2 emissions, this paper will conduct a 
bivariate analysis of preselected factors and industrial 
CO2 emissions. The goal of bivariate analysis is to 
determine the correlation between two variables and 
measure their ability to predict or explain. The binary 
statistical analysis technique includes correlation 
analysis and regression analysis.

In this paper, we will first conduct the bivariate 
correlation analysis in SPSS; the results of the operation 
are shown in Table 3. According to the person coefficient 
and bilateral significance in Table 3, removing the 
factor of number of industrial enterprises, the other  

14 preselected factors all have a strong correlation with 
industrial CO2 emissions. The main reason that the 
correlation between number of industrial enterprises 
and industrial CO2 emissions is not significant is that 
the data on the number of industrial enterprises used is 
from the Chinese Statistical Yearbook, and the data after 
1997 from the statistical yearbook is only the number 
of enterprises above the designated size. That is, the 
statistical range before and after 1997 is inconsistent. 
In view of this, the factor of the number of industrial 
enterprises is removed from the pre-selected influencing 
factors.

Then, the remaining 14 influencing factors and 
industrial CO2 emissions are conducted in a linear 
regressed in SPSS, and the regression method selected 
is “Enter”. According to Table 4 and Table 5 of the 
operating results, the adjusted R2 of the regression 
equation is 0.995, which indicates that the equation fits 
well. The F-test is significant, indicating that the linear 
relationship between industrial CO2 emissions and 
the influencing factors of the entry equation are quite 
significant. However, at the same time, the factor of 
industrial coal consumption did not enter the regression 
equation. It can be seen from Table 6 that this factor 
and other factors have very strong multicollinearity. In 
fact, the sum of the coal consumption in mining and 
quarrying and the coal consumption in manufacturing 
and the coal consumption in electric power, gas and 
water production and supply is the consumption 
of coal in industry. Therefore, the factor of coal 
consumption in industry can be completely replaced 
by coal consumption in mining and quarrying and coal 

Table 3. Bivariate correlation analysis.

Factor Person coefficient Significance (bilateral)

Industry GDP 0.992** 0.000

Total Value of Exports 0.992** 0.000

Energy Industry Investment in Fixed Assets 0.986** 0.000

Annual Average Employees of above Designated Size 0.963** 0.000

Industrial added value 0.991** 0.000

Number of Industry Enterprises -0.221 0.231

Primary Energy Production 0.992** 0.000

Production of Pig Iron 0.992** 0.000

Production of Steel 0.994** 0.000

Production of Cement 0.996** 0.000

Coal Consumption in Industry 0.997** 0.000

Coal Consumption in Mining and Quarrying 0.961** 0.000

Coal Consumption in Manufacturing 0.977** 0.000

Coal Consumption in Electric Power, Gas and Water Production and Supply 0.987** 0.000

Fossil Energy Consumption Ratio in Industry -0.955** 0.000

Note: **indicates a significant correlation at the bilateral significance level of 0.01.
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consumption in manufacturing and coal consumption 
in electric power, gas and water production and supply. 
Therefore, this paper removes the factors of industrial 
coal consumption from the remaining 14 influencing 
factors.

Factor Analysis

There are many factors that affect carbon dioxide 
emissions in the industrial sector, but there may be 
correlations between many of the influencing factors. 
The presence of correlation will cause instability of 
the prediction model and some unpredictable results. 
Therefore, in order to reduce the correlation between 
factors and to obtain some potential common factors in 
the influencing factors, this paper uses factor analysis to 
analyze the remaining 13 factors. Factor analysis refers 
to statistical techniques for extracting commonalities 
from variable groups. It was originally proposed by 
British psychologist C.E. Spearman. Factor analysis can 

find hidden and representative factors in many variables. 
Combining variables of the same nature into one factor 
reduces the number of variables and also tests the 
hypothesis of relationships between variables.

In order to avoid factor analysis to unduly reduce 
the dimensions of selected factors, on the basis of  
the research and comprehensive consideration of 
the existing literature on the influencing factors of 
industrial carbon dioxide emissions, 13 influencing 
factors are divided into four categories, namely social 
development (including total value of exports, energy 
industry investment in fixed assets, annual average 
employees of above designated size, industrial added 
value); production structure (including primary energy 
production, production of pig iron, production of steel, 
production of cement); energy efficiency (including 
industrial GDP, coal consumption in mining and 
quarrying, coal consumption in manufacturing, coal 
consumption in electric power, gas and water production 
and supply); and energy consumption structure 

Table 4. Model summaryb.
Model R R-squared Adjusted R-squared Standard estimated error

1 0.999a 0.997 0.995 78.50863

a. Predictive variables (constants): Fossil Energy Consumption Ratio in Industry, Coal Consumption in Mining and Quarrying, 
Annual Average Employees of above Designated Size, Coal Consumption in Manufacturing, Production of Pig Iron, Energy Industry 
Investment in Fixed Assets, Total Value of Exports, Primary Energy Production, Coal Consumption in Electric Power, Gas and Water 
Production and Supply, Industrial added value, Production of Cement, Production of Steel, Industry GDP
b. Dependent variable: Carbon dioxide emissions

Table 5. ANOVAa

Model Quadratic sum df Mean square F Sig.

1
Regression 37307215.29 13 2869785.792 465.602 0.000b

Residual 104781.274 17 6163.604
Total 37411996.57 30

a. Dependent variable: Carbon dioxide emissions
b. Predictive variables (constants): Fossil Energy Consumption Ratio in Industry, Coal Consumption in Mining and Quarrying, 
Annual Average Employees of above Designated Size, Coal Consumption in Manufacturing, Production of Pig Iron, Energy Industry 
Investment in Fixed Assets, Total Value of Exports, Primary Energy Production, Coal Consumption in Electric Power, Gas and Water 
Production and Supply, Industrial added value, Production of Cement, Production of Steel, Industry GDP.

Table 6. Excluded variablesa

Model Beta in t Sig. Partial correla-
tion Collinearity statistics

Tolerance VIF Minimum toler-
ance

1 Coal Consumptionin Indus-
try .b . . . 0.000 . 0.000

a. Dependent variable: Carbon dioxide emissions
b. Predictive variables (constants): Fossil Energy Consumption Ratio in Industry, Coal Consumption in Mining and Quarrying, An-
nual Average Employees of above Designated Size, Coal Consumption in Manufacturing, Production of Pig Iron, Energy Industry 
Investment in Fixed Assets, Total Value of Exports, Primary Energy Production, Coal Consumption in Electric Power, Gas and 
Water Production and Supply, Industrial added value, Production of Cement, Production of Steel, Industry GDP.
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(including fossil energy consumption ratio in industry). 
Then factor analysis in these four categories. Since 
the energy consumption structure contains only one 
influencing factor, factor analysis cannot be performed, 
and therefore it is considered to be a factor in itself. For 
factor analysis in the other three types of influencing 
factors with SPSS, the results are shown in Tables 7-9. 
It is generally believed that the closer the KMO value 
is to 1, the more suitable for factor analysis, and the 
KMO value greater than 0.7 can be considered suitable 
for factor analysis. The KMO values in Table 7-9 are all 
greater than 0.7, so the three types of influencing factors 
are all suitable for factor analysis, moreover, the Bartlett 
tests in each table are significant.

Table 7 shows that two special factors are extracted 
in the social development category. According to the 
rotated component matrix, the first component has a 
rotating load squared of 56.077%, but the cumulative 
rotational load can reach 99.315% together with the 
second component. From the specific data in Table 7 
we can see that the first factor is the common factor of 
the total value of exports, energy industry investment 
in fixed assets and industrial added value. The second 
factor can reflect the main information of the influencing 
factors of annual average employees of above designated 

size. Therefore, the two factors in this category of social 
development are named economic scale and population 
scale respectively. There is only one factor for Table 8 
and Table 9, the principal component contribution rates 
are 99.315% and 97.08%, respectively, so the two special 
factors are named as production structure and energy 
efficiency in this paper.

In summary, the four types of influencing factors 
can be further extracted into five factors, namely 
economic scale, population size, production structure, 
energy efficiency, and energy consumption structure. 
The data for the first four factors can be calculated from 
the component matrix. These five factors will be used to 
predict China’s industrial carbon dioxide emissions.

Application of Projection Algorithms

In this paper, the extreme learning machine 
optimized by genetic algorithm are used to predict 
industrial CO2 emissions. Data for five factors are used 
as inputs, and the CO2 emissions of the industrial sectors 
are taken as output. The algorithm uses 1995-2010 data 
for training and predicts carbon dioxide emissions 
from the industrial sector in 2011-2015. In order to 
measure the predictive effect of the GA-ELM algorithm,  

Table 7. Factor analysis of social development.

Indicator Loading of F11 F12 Scoring coefficient of F11 F12 Index Value

Total Value of Exports 0.763 0.634 0.423 -0.098 KMO 0.763

Energy Industry Investment in 
Fixed Assets 0.811 0.577 1.137 -0.915 Bartlett’s test 294.552

Annual Average Employees of  
above Designated Size 0.587 0.809 -1.928 2.586 Sig. 0.000

Industrial added value 0.811 0.583 1.092 -0.862 Contribution rate 99.315%

Table 8. Factor analysis of production structure.

Indicator Loading of F2 Scoring coefficient of F2 Index Value

Primary Energy Production 0.997 0.25 KMO 0.752

Production of Pig Iron 0.999 0.251 Bartlett’s test 417.076

Production of Steel 0.999 0.251 Sig. 0.000

Production of Cement 0.997 0.25 Contribution rate 99.566

Table 9. Factor analysis of energy efficiency.

Indicator Loading of F3 Scoring coefficient of F3 Index Value

Industry GDP 0.994 0.256 KMO 0.803

Coal Consumption in Mining and Quarrying 0.983 0.253 Bartlett’s test 265.25

Coal Consumption in Manufacturing 0.989 0.255 Sig. 0.000

Coal Consumption in Electric Power, Gas and 
Water Production and Supply 0.974 0.251 Contribution rate 97.08%
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the extreme learning machine (ELM), back propagation 
neural network (BPNN), and backpropagation neural 
network optimized by the genetic algorithm (GA-
BPNN) are selected as comparisons. Table 10 shows 
some of the parameter settings of each algorithm. At 
the same time, the performance of each prediction 
algorithm is evaluated using mean absolute percentage 
error (MAPE), maximum absolute percentage error 
(MaxAPE), median absolute percentage error (MdAPE) 
and root mean square error (RMSE):
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…where n represents the number of the year, yi is the 
actual data, and ŷi is the forecasted data.

Results and Discussion

 The projection procedures of all the algorithms in 
this paper are all run on the Matalab R2016a version 
under Windows 10. The forecast results of the industrial 
CO2 emissions of each algorithm from 2011 to 2015 are 
shown in Fig. 4, which shows that the best fitting curve 
to the real-value curve is the prediction curve of the GA-
ELM algorithm. This model’s predictions of industrial 
CO2 emissions for 2011-2014 are almost the same as the 
real values; only for 2015 was the difference between 
the predicted value and the actual value slightly greater. 
There is a large difference between the forecast results 
of the ELM, BPNN and the GA-BPNN algorithms and 
the real values. Only the trend of the ELM algorithm’s 
predicted results curve and the real value curve are 
similar.

According to the data in Table 11, we can see that 
the values of the four indicators corresponding to the 
GA-ELM algorithm are the smallest among the four 
prediction algorithm indicators. The MAxAPE, MAPE, 
and RMSE values of GA-ELM are less than one-sixth, 

Table 10. Parameter settings of projection algorithms.

Algorithm Nodes in hidden 
layer Population size Maximal genetic 

algebra Training epochs Training goal Learning rate

GA-ELM 16 40 50

ELM 16

BPNN 18 2000 0.001 0.1

GA-BPNN 18 40 50 2000 0.001 0.1

Fig. 4. Projected results of industrial CO2 emissions of various predictive algorithms.
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one-eighth, and one-seventh of BPNN, respectively. By 
comparing the corresponding indicators of BPNN and 
GA-BPNN, we can see that – except for the value of 
MdAPE of GA-BPNN being higher than that of BPNN 
– the other indicators of GA-BPNN are all smaller than 
these indicators of BPNN, which shows that GA-BPNN 
has better prediction accuracy than BPNN, and that GA 
is effective for BPNN optimization.

It can be obtained by analyzing the above prediction 
results. The GA-ELM algorithm has high accuracy 
and performance in China’s industrial CO2 emissions 
forecasting. This not only indicates that the algorithm 
is suitable for such research, but also shows that 
the processing method of the influencing factors is 
reasonable. The five influencing factors have significant 
influence on China’s industrial CO2 emissions. These 
influencing factors are suitable for the input value of the 
algorithm selected in this paper. 

In today’s countries, we focus on carbon dioxide 
emissions and promote low-carbon energy. Influencing 
factors in the study of CO2 emissions are extremely 
important for governments and relevant agencies around 
the world to develop targeted strategies. In order to 
realize the energy-saving potential, it is necessary 
to formulate industrial policies and guidelines to 
implement higher environmental protection. This paper 
can reduce the carbon emissions generated by the 
industrial sector from the perspective of economic scale, 
population size, production structure, energy efficiency 
and energy consumption. Formulate corresponding 
policies and guidelines for various factors, such as 
adjusting economic structure, enhancing humanistic 
quality, optimizing production structure, improving 
energy efficiency, improving energy consumption 
structure, actively developing renewable energy and 
advanced nuclear technology, adjusting national 
economic structure, and formulating legislation and 
regulations, and establish energy-saving institutions to 
achieve maximum energy conservation and emission 
reduction.

Conclusions

This paper first selects the factors that affect the 
carbon emissions of the industrial sector, and selects 
the most critical factors affecting industrial carbon 
emissions. Secondly, using 1995-2010 as sample data, 

the GA-ELM algorithm is used to predict the carbon 
dioxide emissions of the industrial sector from 2011 
to 2015. The GA-ELM algorithm and other intelligent 
algorithms are used to predict the carbon emissions in 
2011-2015 and compare them with the actual carbon 
emissions. Finally, the following conclusions are drawn:
(1)	 Economic scale, population size, production 

structure, energy efficiency and energy consumption 
are important factors affecting industrial carbon 
emissions.

(2)	The GA-ELM algorithm has the habit of self-
organization, self-adaptation and self-learning. It can 
quickly search for optimal weights and thresholds, 
make the ELM network model more compact, 
overcome the randomness defects of ELM algorithm 
input weight and deviation threshold. Comparing the 
prediction results of the GA-ELM algorithm with 
the actual values in 2011-2015, and then using the 
ELM algorithm, the BPNN algorithm and the GA-
BPNN algorithm also make a comparison between 
the predicted value and the actual value in 2011-2015. 
We found that the GA-ELM algorithm has a higher 
degree of fit and the error is smaller.

(3)	The ELM and GA-ELM algorithms are widely used 
in forecasting. For example, for predicting ionic 
liquid viscosity [37], the monthly effective drought 
index [38], carbon dioxide water solubility [39], the 
ionic liquid refractive index [40], gas emissions (41),  
solar radiation [42], wind power fluctuation 
range [43], the critical flow rate of mud pipeline 
transportation [44] and so on. The GA-ELM 
algorithm can be widely used in different fields for 
prediction, which shows that this prediction model 
has obvious advantages.

(4)	Scholars around the world attach great importance 
to the issue of carbon dioxide emissions, and the 
introduction of this algorithm into the prediction 
of carbon emissions is an innovative attempt. In 
this paper, the prediction of carbon dioxide by this 
method has also achieved a good predictive effect, 
which has played an active role in the application of 
this algorithm in the forecasting field.

(5) Considering that the most critical factors affecting 
CO2 emissions in the industrial sector are economic 
size, population size, production structure, energy 
efficiency and energy consumption, it is necessary 
to reduce the carbon emissions generated by the 
industry from these aspects. 

Table 11. Errors of the fitting results of different algorithms.

Index GA-ELM ELM BPNN GA-BPNN

MaxAPE(%) 1.195 6.7345 7.7099 5.6481

MAPE(%) 0.47964 2.6899 4.0504 3.6943

MdAPE(%) 0.33369 2.5996 2.2948 3.8031

RMSE(megatons) 23.155 132.85 165.47 145.62
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Concrete measures are:
–– Guide funds to strengthen investment in low-carbon 

and high-efficiency departments to accelerate the 
withdrawal of overcapacity-type heavy industry 
products.

–– Follow the principle of product supply and demand 
balance, strictly review new reporting items, and 
refuse to repeat construction.

–– Break the price monopoly, clarify the mechanism 
of energy price formation, and promote price 
marketization. 

–– Accelerate the construction of enterprise automation 
and improve the mechanization and intelligence of 
industrial processes.

–– Optimize the industrial structure and effectively 
control the further expansion of high-energy-
consuming industries through taxation, credit, legal 
and other means.

–– Encourage mergers and restructuring of similar com-
panies and eliminate backward production capacity.

–– Implement structural reforms in supply.
–– Capture capacity reductions, destock, deleverage, 

reduce costs and reduce shortages.
–– Improve energy efficiency, transform traditional 

industries with advanced technologies.
–– Actively introduce foreign capital and advanced 

technologies.
–– Optimize business processes and manufacturing 

processes, and improve the scientific management of 
level managers.

–– Improve the energy consumption structure, increase 
the proportion of clean energy use.

–– Prioritize the use of clean solar energy, wind energy 
and nuclear energy.

–– Increase the electrification of various industrial 
sectors.

–– Develop and use clean energy in the industrial 
sectors to provide policy support and tax incentives.
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