
Introduction

Organic dyes, which include azo dyes or complex 
aromatic structure [1], are widely used in the textile 
industry [2], pulp and paper manufacturing, printing 
and leather treatment [3]. However, these industrial 
wastes are hazardous for living organisms, especially 
in aquatic forms [4]. Many of them are classified 
as carcinogenic and toxic [5]. In general, they are 
biologically non-degradable, and stable to heat, light 
and oxidizing agents [1, 6]. Due to the inert properties 
of dyes, traditional treatment technologies of industrial 
wastewater have been improved. Coagulation/
flocculation [7-9], membrane filtration [10, 11], 

electrochemical methods [12, 13], biodegradation [14], 
TiO2 photo-catalysis [15, 16], ion exchange [17, 18] and 
adsorption [19, 20] processes are widely used to remove 
dyes from wastewater. 

Because of the high removal efficiency of dye 
removal, adsorption is one of the most commonly used 
techniques to treat wastewater [21]. Adsorption gives 
some advantages to researchers and companies since 
the operation is cheap, simple and easy, with a wide 
field of suitable and available adsorbents allowing for 
adsorbent regeneration and reuse [22-25]. 

Durability, preservability as a long time and stability 
of nanopolymers have created the much-applied 
potential for using these structures in many areas. 
Activated carbon [26, 27], ‘low cost adsorbents’ such 
as agricultural solid wastes [28], biomass solid waste-
based activated carbon [29], inorganic materials like 
clay minerals [30], siliceous materials [31], bentonites 
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or zeolites [32, 33], biosorbents, microbial biomass [34-
36] and polymeric materials [20, 37] are widely used as 
adsorbents. Polymeric materials, especially nano-sized 
polymers, are widely used as adsorbents due to their 
size-dependent physical and chemical properties [38].

Textile dyes are classified due to their chromophore 
or chemical structures such as anthraquinone, ethane, 
azo, and phthalocyanine. The most common one is azo 
dye, which is used in the textile and paper industries. 
Azo dyes include azo bond (R-N = N-R’) and one 
or more aromatic rings. In general, azo dyes have 
mutagenic, toxic, and carcinogenic structures, thus 
these dyes not only affect human as carcinogens and 
mutagens but also affect aquatic environments. These 
dyes are stable and non-degradable by biological or 
chemical processes. Direct Blue dyes are classified into 
three class as mono-, di-, and tri-azo dyes [38]. Direct 
Blue 9 (DB9) is mainly used as dyestuff in textile 
industries, and the removal of these dyes is important. 
Various methods such as coagulation/flocculation, 
ion exchange, electrochemical treatment, chemical 
oxidation, biological treatment, and adsorption are used 
to remove azo dyes from wastewater [39]. 

This study focused on removing the toxic textile 
dye Direct Blue 9 (DB9) from aqueous solutions and 
representing the usability of poly(2-hydroxyethyl 
methacrylate) [poly(HEMA)] nano-sized polymers 
as an adsorbent. Poly(HEMA) was produced by the 
emulsion polymerization method and then characterized 
by infrared spectroscopy (IR) and scanning electron 
microscopy (SEM). Batch adsorption experiments were 
performed under various operating conditions such as 
pH, contact time and temperature. Adsorption isotherms 
and kinetic values were determined. Also, reusability of 
the polymer was discussed. 

Experimental  

Materials

Direct Blue 9 (DB9, synonym; Sirius Blue  
K-CFN, C.I. 24155), hydroxyethyl methacrylate 
(HEMA;≥99%), polyvinyl alcohol (PVA; MW:  
130 000) and ethylene glycol dimethacrylate (EGDMA; 
98%) were obtained from Aldrich (Steinheim, 
Germany). Sodium dodecyl sulfate (SDS;≥98.5%) was 
purchased from Sigma (Steinheim, Germany). All other 
chemicals were analytical grade. The chemical structure 
of DB9 is given in Fig. 1.

Synthesis of Poly(HEMA) Nanopolymers

Poly(HEMA) nanopolymers were synthesized by the 
previously given emulsion polymerization procedure 
[38]. First of all, in the first aqueous phase PVA, SDS 
and NaHCO3 were dissolved in distilled water. In the 
second aqueous phase, PVA and SDS were dissolved 
in distilled water in other erlenmayer. In the oil phase, 

HEMA was mixed with EGDMA and added to the 
first aqueous phase. The mixture was homogenized at  
30 000 rpm (ISOLAB Homogenizer, ‘Heavy Duty’) 
for 10 minutes. The mixture was added to the second 
aqueous phase, and NaHSO3 and (NH4)2S2O8 were 
added. The polymerization was carried out at 40ºC for 
6 h. At the end of the polymerization, to remove the 
unreacted monomers, the polymers were washed with 
ethanol and water several times. Additionally, polymers 
were washed with distilled water and stored in water. 

Characterization Studies

FT-IR analysis was performed on a Perkin Elmer 
Spectrum BX FTIR System. The morphology of  
the nanopolymers was determined by scanning  
electron microscope (SEM) (SEM2-Quanta 250FEG) 
in “Izmir Institute of Technology, Center for Materials 
Research”.

Batch Adsorption Experiments

Initially, experiments to comment on the effect  
of pH on dye adsorption capacity and different pH 
values were carried out. The tested initial pH values  
(3.0 to 8.0) were prepared with acetate (0.1 M 
NaCH3COO/CH3COOH) or phosphate (0.1 M NaH2PO4/
Na2HPO4) buffers. The dye concentration of these 
solutions was 30 mg/L. Suspensions were stirred at 
25ºC for 3 h in a heated incubator (125 rpm). 

To determine the optimum dye concentration, the 
suspensions were prepared by adding poly(HEMA) 
(1 mg) to 1 mL DB9 solutions (1.0 to 50.0 mg/L) at 
optimum pH. The suspensions were placed in a heated 
incubator at 25ºC under stirring at 125 rpm. The 
amount of dye adsorbed (qe) and percentage removal 
(% R) of DB9 were calculated using Eqs. (1) and (2), 
respectively:

                         (1)

          (2)

…where qe is the amount of dye in mg per gram 
of adsorbent, and C0 and Ce are initial and final 

Fig. 1. Chemical structure of DB9.
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concentrations of dye (mg/L), respectively. V is the 
volume of the dye solution (mL) and m is the mass of the 
adsorbent (g).

Adsorption Isotherms

The Langmuir sorption isotherm is applied to 
equilibrium sorption assuming monolayer sorption onto 
a surface with a limited number of identical binding 
sites. The Langmuir equation (Eq. 3) is written as  
[38]:

                        (3)

…where KL is Langmuir constant (L/mg), QL is the 
maximum adsorption at monolayer coverage (mg/g), 
qe is dye concentration at equilibrium onto adsorbent 
(mg/g) and Ce is dye concentration at equilibrium in 
solution (mg/L). 

The Freundlich sorption isotherm equation for 
heterogeneous surface energy systems is given by Eq. 
4 [38]:

              (4)

…where qe is dye concentration at equilibrium onto 
adsorbent (mg/g) and Ce is dye concentration at 
equilibrium in solution (mg/L). KF and n are Freundlich 
constants, determined from the plot of ln qe versus 
ln Ce. The parameters KF and 1/n correlate with sorption 
capacity and the sorption intensity of the system.  
The magnitude of the term (1/n) gives evidence to 
the availability of the sorbent/adsorbate systems [40].

The Sips sorption isotherm equation was given 
in Eq. 5. This equation was derived from the limiting 
behavior of Langmuir and Freundlich isotherms [41]. 
  

     (5)

…where qe is dye concentration at equilibrium 
onto adsorbent (mg/g) and Ce is dye concentration 
at equilibrium in solution (mg/L). Ks is Sips constant 
(L/mg) and Qmax is maximum adsorption capacity 
(mg/g).

Recyclability of the Adsorbent

The recyclability of the adsorbent was performed 
by repeated adsorption/desorption cycles using the 
same adsorbent in the same dye solution at five times. 
As a desorption agent sodium acetate buffer was used.  
A constant dosage of polymer (1 mg) was placed in  
5 mL dye solution (50 mg/L) and kept in contact  
for 3 h. For each cycle, the adsorption capacity was 
calculated.

Results and Discussion

Characterization of the Poly(HEMA)

The FTIR spectra of before and after adsorption 
from a range of 600-4000 cm-1 is given in Fig. 2. The 
bands observed at about 3320 cm-1 could be assigned 
O-H stretching vibration. The bands at 2949 cm-1 shifts 
to 2955 cm-1 representing C-H stretching of CH3. The 
strong band of C=O and C-O stretching vibration peaks 
are observed at 1716 and 1240 cm-1, respectively. 

To determine the surface texture and morphology 
of the adsorbent, scanning electron microscopy (SEM) 
images were taken before and after adsorption of 
DB9. The results obviously show that the polymers are 
spherical and in nano-size with smooth surface. As 
seen in Fig. 3, the adsorbent has homogeneity, which is 
supposed to be the active site for DB9 binding. SEM 
images also revealed that the surface of polymeric 
adsorbent is flattened after DB9 adsorption.

Effect of pH on Dye Adsorption

The textile dyes have different aromatic rings and 
functional groups (such as nitro, azo or metal) [1, 42]. 
The pH of a dye solution is an important effecting 
factor for adsorption [36, 43]. The ionization of the 
adsorptive molecule and adsorbent can effectively 

Fig. 2. FT-IR spectrum of poly(HEMA) a) before and b) after 
adsorption of DB9.
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change by the variation of the pH solution, hence the 
dye adsorption is dependent on the solution pH [44, 45]. 
Fig. 4 shows the effect of pH on adsorption of dye onto 
the polymer. The maximum adsorption and removal of 
dye were observed at pH 6.0. The adsorption capacities 
of poly(HEMA) increased with pH until the pH reached 
6.0, and then the adsorption capacities decreased with 
increasing pH. The maximum adsorption capacity was 
determined at pH 6.0. However, the ionizable groups of 
dye and poly(HEMA) (hydroxyl groups) are responsible 
from the electrostatic interactions and hydrogen bonds 
between dye and polymer. 

Effect of Initial Dye concentration and Contact 
Time on Dye Adsorption

To determine the optimum dye concentration, the 
DB9 solutions ranging from 1.0 to 50.0 mg/L were 
studied with an amount of 1 mg poly(HEMA) and 1 mL 
dye solution at optimum pH at 298 K. With an increase 
in the initial DB9 concentration from 1.0 to 50.0 mg/L, 
the adsorption capacity (qe) and percentage removal 
(%R) at equilibrium increased from 4.07 mg/g to 
22.54 mg/g, and 37.37% to 98.86% at 298 K, 
respectively. The results were given in Fig. 5.

The effect of contact time on the adsorption 
capacities of dye onto poly(HEMA) and removal 
percentage at 277, 298 and 318 K are shown in Fig. 6a) 
and Fig. 6b), respectively. The adsorbed amounts of 
dyes increased with an increase in both contact time 
and temperature. Adsorption process was completed 
within 90 min and no remarkable changes were 
observed until 180 min. Lots of free adsorbent sites 
are available for adsorption and thus dye molecules can 
affectively adsorb onto these sites, rapidly increasing 
the temperature. 82.30%, 94.07% and 98.15%  
DB9 removal takes place at 277, 298 and 318 K in 1 
80 min, respectively. The adsorption capacities of the 
poly(HEMA) are 12.98, 14.84 and 15.49 mg/g at 277, 
298 and 318 K, respectively.

Effect of Adsorbent Dosage 
and Agitation Rate

To determine the effect of adsorbent dosage for 
adsorption capacity and percentage removal of DB9 
from an aqueous solution, the different adsorbent 
values ranging from 0.5 mg to 8 mg were used in  
the adsorption process. The initial concentration of DB9 
was 25 mg/L and the contact time was 180 minutes at 

Fig. 3. SEM images of poly(HEMA) a) before and b) after adsorption of DB9.

Fig. 4. Effect of pH for adsorption capacity (qe) and percentage 
removal (% R) of DB9 onto poly(HEMA).

Fig. 5. Effect of initial DB9 concentration for adsorption capacity 
(qe) and percentage removal (% R) of DB9 onto poly(HEMA).
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298 K. The results were given in Fig. 7. With increasing 
the amount of adsorbent from 0.5 mg to 8 mg, qe and 
percentage R increased from 3.85 mg/g to 28.63 mg/g, 
and from 86.43% to 99.70%, respectively. Increase 
in the percentage R and qe with adsorbent dosage can 
be based on increased adsorbent surface area and 
adsorption sites. 

To determine the effect of agitation speed for 
adsorption of DB9 in the range of 75-150 rpm, 
agitation rates were investigated during the adsorption  
process. The adsorbent dosage was 1 mg, the total 
initial DB9 concentration 25 mg/L, and the contact 
time was 180 minutes at 298 K. The results are given 

in Fig. 8. The maximum removal of DB9 occurred at  
125 rpm. Agitation of solution helps for better 
interaction between binding sites of both adsorbent 
and dye molecules, so these molecules penetrate to 
deeper layers of the adsorbent. When the agitation rate 
exceeded the optimum speed, the interaction between 
adsorbent and dye molecules decreased [46]. 

Adsorption Isotherms

The adsorption capacity and other parameters 
were evaluated using Langmuir, Freundlich and Sips 
isotherm models. The adsorption capacity (qe) was 
determined as 16.24 mg/g (Table 1). The high value of 
correlation coefficient (0.987) point at the practicality 
of Langmuir isotherm which supposes uniform activity 
distribution and a monolayer coverage on the sorbent 
surface. RL values also support the adsorption of dye 
onto poly(HEMA) (Table 1).

The equilibrium data were also fitted to the 
Freundlich isotherm model. The parameters KF and n 
are 0.226 and 1.392, respectively. 1/n gives an indication 
of the suitability of the sorbent/adsorbate systems [47]. 

Adsorption Thermodynamics

Thermodynamic parameters such as free energy 
change (∆G), enthalpy changes (∆H) and entropy 
changes (∆S) were calculated using the Van’t Hoff 
equation at various temperatures [48] (Eq. 6):
  

                (6)

…where KL is the Langmuir equilibrium constant, T 
is the absolute temperature (K) and R is the universal 
gas constant (8.314 J/mol K). ∆H0 and ∆S0 can be 
determined from the slope and intercept of the plot of ln 
KL versus 1/T. The ∆G0 of the adsorption was calculated 
using Eq. 7:

                (7)

Fig. 6. Effect of contact time and temperature onto a) adsorption 
capacity (qe) and b) percentage removal (% R) for adsorption of 
DB9 onto poly(HEMA).

Fig. 7. Effect of adsorbent dosage for adsorption capacity (qe) 
and percentage removal (% R) of DB9 onto poly(HEMA).

 
Fig. 8. Effect of agitation rate for adsorption capacity (qe) and 
percentage removal (% R) of DB9 onto poly(HEMA).
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The data are listed in Table 2. The positive ∆H0 

depicted that the dye adsorption on polymeric adsorbent 
was endothermic. The negative ∆G0 indicates that the 
adsorption process occurs spontaneously. Besides the 
positive value of entropy change, (∆S0) defines the 
affinity of adsorbent for the dye. 

Adsorption Kinetics

Adsorption kinetics is one of the important 
parameters for investigating the mechanism of 
adsorption [49]. In this study, pseudo first-order, pseudo 
second-order, and intraparticle diffusion kinetic models 
were used to clarify the adsorption kinetics. 

The pseudo first- and second-order kinetic models 
are expressed at Eq. 8 and Eq. 9, respectively:

             (8)

                          (9)

…where qe is the amount of dye adsorbed by polymer 
at equilibrium condition (mg/g), qt is the amount of dye 
adsorbed by polymer at time t (min), and k1 (1/min) 
and k2 (g/mg min) are the equilibrium rate constants 
for pseudo first- and second-order kinetic models, 
respectively. For the pseudo first-order kinetic model, k1 
and qe are obtained from the slope and intercept of the 

plot of ln(qe-qt) versus t, respectively [50]. For the pseudo 
second-order kinetic model, k2 and qe are determined 
from the slope and intercept of the plot of t/qt versus t, 
respectively [51, 52].

The intraparticle diffusion model explains that the 
adsorption process occurs in several steps involving 
the transport of solute molecules from bulk aqueous 
phase to the surface of the adsorbent particles, which 
is followed by diffusion of the molecules into the 
interior of the solid pores [43, 51]. For most adsorption 
processes, the amount of adsorption is commensurate to 
t1/2 rather than with the contact time. This model can be 
expressed at Eq. 10:

                         (10)

…where qt is the adsorption capacity at time t (min), t1/2 

is the half-life time in second and kid is the intraparticle 
diffusion rate constant (mg/g min1/2) at different initial 
dye concentrations. kid can be calculated from the 
slope of the plot. The adsorption kinetic models and 
parameters are given in Table 3.

According to the results, the best-fit kinetic model 
can be chosen dependent upon the linear regression 
correlation coefficient (R2) values. Furthermore, qe 
values are closed to experimental qe values in the 
pseudo second-order kinetic model. Usually for most 
adsorption systems, the pseudo second-order kinetic 
model is better and well represented [51]. For removing 
textile dyes from aqueous solutions a great number of 
adsorbents such as ash, polymeric particles or microbial 
biomass can be used effectively. Adsorption capacities 
of various adsorbents for  different kinds of dyes are 
given in Table 4.

Recyclability of the Adsorbent

One of the important parameters in adsorption-based 
processes is desorption and reusability of the adsorbent. 

Table 1. Adsorption isotherm models for DB9 adsorption onto poly(HEMA).

 Table 2. Thermodynamic parameters for DB9 adsorption onto 
poly(HEMA).

Table 3. Adsorption kinetic models and parameters for removal of DB9 onto poly(HEMA). 

Langmuir Isotherm Model Freundlich Isotherm Model Sips Isotherm Model

Temperature 
(K)

KL x 102 (L/
mg) QL (mg/g) R2 KF (L/

mg) n R2 KS x 102 
(L/mg)

Qmax 
(mg/g) R2

298 4.68 16.24 0.987 0.226 1.392 0.928 11.54 0.575 0.954

T (K) ∆Gº (kJ/mol) ∆Hº (kJ/mol) ∆Sº (J/mol.K)

277 -1.716

2.276 14.412298 -2.018

318 -2.307

Parameters
Temperature 

(K)

Experimental
qe (mg/g)

Pseudo-first order 
kinetic model

Pseudo-second order 
kinetic model

Intraparticle diffusion 
model

k1 x 102 
(1/min) qe (mg/g) R2 k2 x 102 

((g/mg)/min) qe (mg/g) R2 kid R2

277 12.983 2.62 2.188 0.9865 7.01 11.87 0.9981 0.68 0.8908

298 14.841 4.67 3.0436 0.9671 5.68 15.24 0.9922 1.02 0.8522

318 15.486 3.65 3.0243 0.9547 5.19 18.59 0.9663 1.09 0.8315
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It is required that the desorption agent does not damage 
the adsorbent or affect adsorption capacity. In this 
study, the recyclability experiment of DB9 was carried 
out. Sodium acetate buffer was used as a desorption 
agent in the recyclability studies. The DB9 adsorbed 
polymers were shaken at room temperature for 3 h. It 
was found that during a 5 adsorption-desorption cycle 
the adsorption capacity of the nanopolymer decreased 
only 5.5%. 

Conclusions

In this study, poly(HEMA) nanopolymers were 
produced, characterized and investigated regarding 
their abilities to remove textile dye Direct Blue 9 (DB9) 
in aqueous solution for the first time. The optimum 
pH and temperature for adsorption of DB9 from 
aqueous solution were determined as 6.0 and 318 K, 
respectively. All experiments were achieved at pH 6.0. 
Increasing the temperature from 277 K to 318 K, the 
maximum adsorption capacity was also increased from 
12.98 mg/g to 15.49 mg/g and percentage removal of 
DB9 from 82.30% to 98.15%, respectively. Results 
obtained indicate that the adsorption process is fast 
and spontaneous within the first 90 min. Isotherm, 
thermodynamic and kinetic studies were performed 
to clarify the nature of the adsorption process. The 
experimental data supports the pseudo second-
order model. The adsorption process is fitted to the 
Langmuir isotherm model. In addition, the mean 
values of thermodynamic parameters of standard 
free energy, standard enthalpy (∆H0= 2.276 kJ mol−1) 
and standard entropy (∆S0= 14.412 J mol−1K−1) of the 
adsorption mechanism were determined. In conclusion, 
poly(HEMA) was examined as an adsorbent for the 

adsorption of a textile dye, Direct Blue 9, in aqueous 
solutions at the first time and reported the suitability of 
the poly(HEMA) as an adsorbent.
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