Introduction

Water pollution due to rapid industrialisation and urbanisation is a real threat. Wastewater discharged by the textile industry contains toxic compounds and is thus a major global problem [1]. The release of dyes into water is harmful to human health and natural ecosystems due to their toxic, carcinogenic, mutagenic and teratogenic effects [2]. Methylene blue (MB) is one of the most commonly used dyes in the textile and paper industries [3]. MB can move through effluent during production and affect the quality of water due to its high water solubility [4]. Thus, MB must be removed from aqueous solution for the protection of the environment and human health. Various approaches have been adopted for wastewater treatment, including filtration [5], nonthermal plasma [6], electrocatalytic oxidation [7], Fenton-like oxidation [8], photodegradation [9, 10] and ultrasonic degradation [11]. However, these processes...
are either inefficient or expensive. Thus, increased attention is being paid to combination processes such as electrocoagulation (EC) and adsorption [12-14].

EC is attracting significant attention as a highly efficient technology for wastewater treatment [14]. The process is characterised by the in situ electrogeneration of coagulants. According to the EC mechanism, coagulants are generated via electrolytic oxidation of a soluble anode, which is usually aluminium or iron [15]. In the case of EC with Al, the reactions occurring at the anode are as follows:

\[
\text{Al(s)} \rightarrow \text{Al}^{3+} \text{(aq)} + 3e^- \quad (1)
\]

\[
2\text{H}_2\text{O(l)} \rightarrow \text{O}_2(g) + 4\text{H}^+ \text{(aq)} + 4e^- \quad (2)
\]

\[
\text{Al}^{3+} \text{(aq)} + 3\text{H}_2\text{O(l)} \rightarrow \text{Al(OH)}_3 \text{(aq)} + 3\text{H}^+ \text{(aq)} \quad (3)
\]

\[
n \text{Al(OH)}_3 \text{(aq)} \rightarrow \text{Al}_n \text{(OH)}_{3n} \text{(aq)} \quad (4)
\]

The reaction at the cathode is written as:

\[
2\text{H}_2\text{O(l)} + 2e^- \rightarrow \text{H}_2(g) + 2\text{OH}^- \text{(aq)} \quad (5)
\]

Al3+ ion generation occurs at the anode surface, whereas hydrogen gas transpires at the cathode surface. Flocs of Al(III) hydroxides and polyhydroxy species formed during coagulation, and the organic pollutants are removed from the aqueous phase via charge neutralisation, adsorption and sweep flocculation [16]. The flocs can then be separated by sedimentation or/and flotation [12].

The advantages of EC include ease of operation, minimum requirements for chemical use, low sludge production, short operation time and high pollutant removal efficiency [17, 18]. However, Avsar et al. found ease in forming an impermeable oxide film on the cathode surface, leading to increased energy consumption and decreased efficiency [19]. A possibility to improve EC progress has been suggested by Vivek and Ganesan [20]. In their study, granular active carbon/EC coupling technique was proven to be more efficient and faster compared with conventional EC in wastewater treatment. Similar to active carbon, hazelnut shell (HNS) is also a potential adsorbent with well-developed porosity and large internal specific area. As an effective wastewater treatment method, HNS adsorption has been reported in various studies, such as removal of dyes and heavy metal ions from aqueous solution [2, 21-24]. Moreover, HNS is an agricultural waste present in large amounts in northern China. HNS can also be used for MB removal from wastewater by an EC/HNS adsorption coupling system. To the best of our knowledge, a few studies have focused on MB removal from aqueous solution using the EC/HNS adsorption coupling method.

The effect of current density, reaction time and adsorbent dosage on MB removal efficiency was investigated in this work to determine the optimum operational parameters in the wastewater treatment system because most previous studies were based on a one-factor-at-a-time method [12, 14, 20, 25]. In the current study, response surface methodology (RSM) was used to evaluate the effects of two or more independent variables on the dependent variable to achieve the optimum condition for the EC/HNS adsorption coupling process.

Experimental

Materials

HNS was collected from Hebei Province, China. The agricultural residues (HNS) were boiled in deionised water for 1 h and then washed with deionised water three to five times. The samples were treated under a nitrogen flow rate of 100 cm3/min at 300\textdegree C for 30 min. Afterwards, the dried slices were ground and sieved, and a particle size fraction of 0.4-3.0 mm was then used. The quality testing indices of HNS were described in Table 1 based on the National Standard of China for Nut Shell Activated Carbon Testing (GB/T 7702-1997). The specific surface areas were calculated from the N\textsubscript{2} isotherm data by the Brunauer-Emmett-Teller equation. Pore distributions were measured by N\textsubscript{2} isotherm data using nonlocal density functional theory. The physical properties and chemical composition of the HNS before and after MB uptake were investigated under the adsorption conditions (initial MB concentration: 50 mg/L, HNS dosage: 10 g/L, pH: 7). The samples were dried at room temperature and coated with Au under vacuum in an argon atmosphere for the
SEM-EDX studies (SU8010, Hitachi, Tokyo, Japan). The FTIR spectrum of the HNS was calculated in the range of 4000 cm\(^{-1}\) to 400 cm\(^{-1}\) using a Perkin Elmer Model spectrum 400 FTIR/FTNIR spectrometer with deuterated triglycine sulfate detector and KBr beam splitter.

A cationic dye MB (C\(_{16}H_{18}ClN_3S\), MW = 319.90 g/mol) was purchased from Labest Bio–Technology Co., Ltd (Beijing, China). The chemical structure is presented in Fig. 1. The EC/HNS adsorption coupled process was carried out in a batch model. A total of 1000 cm\(^3\) of 50 mg/L MB solution was placed in the experimental cell in each run. A weight of 1 g NaCl (purity ≥ 99.5%, Keephway Co., Ltd, Beijing, China) was dissolved in dye solutions (1000 cm\(^3\)) to adjust the solution conductivity.

Experimental Procedure

The EC reactor comprised a parallel-plate EC cell provided with two facing electrodes. The experimental setup used in this study is shown in Fig. 2. The effective area of each electrode plate was 90 cm\(^2\). The anode and cathode were positioned vertically and fixed at 1 cm away from each other. The electrodes were aluminium (Al, anode) and stainless steel (SS, cathode) connected to a digital direct current power supply (WKY-505, East Co., Ltd, Guangdong, China) with a voltage and an electrical current range of 0-50 V and 0-5 A. The electrodes were rubbed with fine-grained emery paper and washed with 1 N H\(_2\)SO\(_4\) and distilled water before each run. All the runs were performed at room temperature of 20±1°C. At the end of the experiments, samples were filtrated using Whatman 0.45 \(\mu \text{m}\) filters and then analysed.

Analytical Method

The MB concentration was determined by spectrophotometry (UV-1800 UV/VIS spectrophotometer, Shimadzu Co., Ltd, Kyoto, Japan). The concentration was determined using the initial calibration curve, which was recorded after spectrophotometric measurement of the solution absorbance for MB standard concentration at the specific wavelength (665 nm) corresponding to the maximum absorption of dye. The MB removal efficiency \((Y, \%)\) was calculated from the following equation:

\[
Y = \frac{(C_0 - C_t)}{C_0} \times 100\% \quad (6)
\]

...where \(C_0\) (mg/L) is the concentration of MB before EC/HNS process and \(C_t\) (mg/L) is the concentration of MB after \(t\) min of EC/HNS process.

RSM Experimental Design and Statistical Analysis

The Box-Behnken design (BBD), a standard RSM, was selected for the optimization of the factors, which made sense for MB removal efficiency. In this design, three factors were the dosage of HNS \((X_1)\), reaction time \((X_2)\) and current density \((X_3)\), respectively (Table 2). All factors were controlled at three levels. The experimental design consists of 15 experiments with 3 centre points (to allow estimation of pure error). All the experiments were performed in triplicate, and the MB removal efficiency was considered as the response. A non-linear regression method was used to fit the second-order model in the form of quadratic polynomial equation:

\[
Y = \beta_0 + \sum_{i=1}^{3} \beta_i x_i + \sum_{i=1}^{3} \beta_{ii} x_i^2 + \sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{ij} x_i x_j + \epsilon \quad (7)
\]

... where \(Y\) is the response; \(\beta_0\) is a constant coefficient; \(\epsilon\) is the error; and \(\beta_i\), \(\beta_{ii}\) and \(\beta_{ij}\) are interaction coefficients of linear, quadratic and second-order terms, respectively. \(x_i\) and \(x_j\) are independent variables which determine \(Y\). The subscripts \(i\) and \(j\) are the integer variables. The quality of the fit and the significance of the model were checked with the coefficient of determination \((R^2)\) and Fisher’s \(F\)-test, which were performed by analysis of variance (ANOVA) with 95% confidence level. After fitting the response surface model, a numerical optimization technique (Derringer’s desired function methodology) was introduced to evaluate the optimal operating conditions. All statistical analyses were performed using Design Expert 8.0 software (Stat Ease Inc., Minneapolis, USA).
Results and Discussion

Characterization of HNS

The FTIR spectra of HNS were taken before and after MB adsorption to ascertain the interaction between the HNS surface and dye molecules (Fig. 3).

From Fig. 3a), the strong vibration and broadband at approximately 3500-3000 cm\(^{-1}\) is characteristic of –OH stretching vibrations, thereby showing that HNS surface has numerous alcoholic and phenolic –OH groups. Bands appearing at 2934, 1739, 1634, 1424, 1051 and 897 cm\(^{-1}\) were assigned to C–H stretching of alkane, C=O stretching of carboxylic acid or ester, COO\(^{-}\) anion stretching, CH\(_2\) bending, C–O stretching of ester or ether and N–H deformation of amines, respectively [26]. Fig. 3b) reveals that a few bands were shifted, and a few new bands appeared after MB adsorption. The bands at 3420, 2934, 1739, 1634, 1424, 1051 and 897 cm\(^{-1}\) were shifted to 3417, 2919, 1734, 1601, 1421, 1037 and 885 cm\(^{-1}\), respectively, after MB adsorption. The bands at 1490, 1387 and 1332 cm\(^{-1}\) can be attributed to >S=O groups of sulfonamides and thioester [27]. FTIR analysis showed that OH, C–H, C=C, C=O and carbonyl groups on the HNS surface are involved in the adsorption of MB.

The SEM image of HNS before adsorption (Fig. 4a) shows that the surface of HNS is irregular and porous. After adsorption, the agricultural residues have a rough surface because they are partially covered by MB molecules (Fig. 4b). Elemental analysis was conducted with the use of EDX to determine the composition of HNS. The EDX analysis of unadsorbed HNS (Fig. 4c) indicates that Si was evident at peak position.
After MB adsorption, the EDX (Fig. 4d) showed the presence of S due to the trapped dye molecules containing sulfonic groups, thereby confirming the adsorption phenomenon.

Statistical Analysis and Regression Model

A total of 15 designed batch runs of experimental conditions, including 3 central points, were derived from BBD. The experiments were conducted in triplicate to obtain different combinations of the process parameters using statistically designed experiments. The various combinations of experimental conditions with their responses are presented in Table 3.

The ANOVA test for the MB removal model (Table 4) showed that the model's F value was 209.88, thereby implying that the model was significant. The probability of a large F value due to the uncontrollable noise factors was observed to be less ($<$0.01%). A p value less than 0.05 indicated that the model terms $X_i, X_j, X_k, X_iX_j, X_i^2, X_j^2$ and X_k^2 were significant.

The ANOVA test for the MB removal model (Table 4) showed that the model's F value was 209.88, thereby implying that the model was significant. The probability of a large F value due to the uncontrollable noise factors was observed to be less ($<$0.01%). A p value less than 0.05 indicated that the model terms $X_i, X_j, X_k, X_iX_j, X_i^2, X_j^2$ and X_k^2 were significant.

Interactive Effect of the Process Variables

2D response surface contour plots were derived based on the mathematical regression model to obtain new insights into the interaction effect between the independent variables on MB removal efficiency. Fig. 6a) describes the interaction between the dosage and reaction time with a current density of 2.5 mA/cm². At 4 g/L, the removal efficiency increased by 38.23% (from 54.1% to 92.33%) and then decreased by 2.13% (from 92.33% to 90.2%) when the time increased from 10 min to 20 min; whereas at 6 g/L, the
removal efficiency increased by 35.85% (from 60.5% to 96.35%) and then decreased by 2.65% (from 96.35% to 93.7%) when the reaction time increased from 10 min to 20 min. This finding can be attributed to the increasing sorption surface and binding sites in the adsorbent to the MB adsorption by increasing the dose. In the study conducted by Yang et al., cellulose nanocrystal from Carex meyeriana Kunth was used to remove MB from aqueous solutions [28]. Removal efficiency showed an increasing trend from 90.85%±2.34% to 98.76%±2.21%, with an increasing adsorbent dosage from 15 mg to 30 mg. However, when the dosage was achieved at a certain value, the number of adsorption sites on the adsorbent was larger than the number of MB, thereby preventing further increases in removal efficiency. The enhancement of dosage augments the diffusional path length and decreases the surface area by agglomeration of sorbent particles. Moreover, abundant sites of the adsorbent may be blocked due to high dosage [29].

The interaction between dosage and current density at a reaction time of 15 min is illustrated in Fig. 6b). The plot shows that the removal efficiency increased by 13.45% (from 76.5% to 89.95%) and then decreased by 0.95% (from 89.95% to 89%) at the dosage of 4 g/L, whereas that at dosage of 6 g/L increased by 12.12% (from 82.2% to 94.32%) and then decreased by 1.12% (from 94.32% to 93.2%) when the current density increased from 2 mA/cm² to 3 mA/cm². The MB removal efficiency also increased as a function of current density. According to Faraday’s Law, the amount of monomeric and polymeric species of Al grows by increasing the current density. The high

![Fig. 5. Normal probability plot of the internally studentized residuals a) and predicted vs. actual values plot b) in the response surface model.](image)

Table 4. ANOVA for response function and variables selected to fit a model.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F value</th>
<th>p-value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3500.85</td>
<td>9</td>
<td>388.98</td>
<td>209.88</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>X_1</td>
<td>49.01</td>
<td>1</td>
<td>49.01</td>
<td>26.44</td>
<td>0.0036</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>2197.84</td>
<td>1</td>
<td>2197.84</td>
<td>1185.89</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>345.85</td>
<td>1</td>
<td>345.85</td>
<td>186.61</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>X_1X_2</td>
<td>2.10</td>
<td>1</td>
<td>2.10</td>
<td>1.13</td>
<td>0.3355</td>
<td></td>
</tr>
<tr>
<td>X_1X_3</td>
<td>0.56</td>
<td>1</td>
<td>0.56</td>
<td>0.30</td>
<td>0.6054</td>
<td></td>
</tr>
<tr>
<td>X_2X_3</td>
<td>30.80</td>
<td>1</td>
<td>30.80</td>
<td>16.62</td>
<td>0.0096</td>
<td></td>
</tr>
<tr>
<td>X_1^2</td>
<td>13.04</td>
<td>1</td>
<td>13.04</td>
<td>7.04</td>
<td>0.0453</td>
<td></td>
</tr>
<tr>
<td>X_2^2</td>
<td>834.00</td>
<td>1</td>
<td>834.00</td>
<td>450.00</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>X_3^2</td>
<td>72.43</td>
<td>1</td>
<td>72.43</td>
<td>39.08</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>9.27</td>
<td>5</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>8.42</td>
<td>3</td>
<td>2.81</td>
<td>6.63</td>
<td>0.1339</td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>0.85</td>
<td>2</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>3510.12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0.9974$, $R_{adj}^2 = 0.9926$
amounts of generated coagulant can enhance MB removal efficiency. Using aluminium as an electrode material results in the formation of passive oxide film, which inhibits the EC process. This condition is the potential reason for such a slight decline in the MB removal percentage when the current density exceeds a certain value. A similar phenomenon is reported by Zhu et al. [30].

Fig. 6c) illustrates the combined effects of reaction time and current density when the dosage was at zero (5 g/L). At a current density of 2 mA/cm2, the removal efficiency increased (from 46.2% to 87.21%) when the reaction time increased from 10 min to 17.9 min and then decreased (from 87.21% to 83.4%) until 20 min; at a current density of 3 mA/cm2, the removal efficiency increased (from 66.3% to 96.73%) when the reaction time increased from 10 min to 17.9 min and then decreased (from 96.73% to 92.4%) until 20 min. This result may be attributed to the abundantly available unsaturated sites on the surface of the adsorbent at the beginning of the reaction time. The adsorption became slow with a further increase in time due to the decrease in the number of active surface area [31].

Optimization and Model Validation

The desirable point prediction function in the experimental design was applied to identify the optimum conditions to maximise MB removal efficiency within the studied experimental ranges. At the laboratory scale, the maximum removal efficiency of 99.45% was obtained at a dosage of 6 g/L, reaction time of 17.75 min and current density of 2.6 mA/cm2. Experiments were operated under the optimum conditions and the five other predicted conditions to test the validity of the model. MB removal results are described in Table 5. The actual results are closely related with the predicted data with a low percentage of error (0.88, −1.35, 1.10, −0.82, −1.63 and 0.75), thereby indicating the suitability of the developed model.

Economic and Technical Analysis

The calculated cost of current, voltage and reaction time was considered in the assessment of the described EC/HNS coupled system. In this study, current density and reaction time at the optimum operating conditions were 2.6 mA/cm2 and 17.75 min, respectively. For this current density, current and voltage values were 0.468 A and 7.5 V, respectively. Based on these values, the energy consumption (ENC) can be estimated by the following equation:

$$\text{ENC} = \frac{(UIt)}{v}$$

...where U, I, t and v are the voltage (V), current (A), reaction time (h) and effluent volume (m3), for the EC process. Based on the China market in 2018, the electricity cost was $0.049/kwh. The cost of EC was estimated as $2.88/m^3$ for MB water treatment.

Table 6 lists the performances of the EC/HNS coupling system under optimized conditions and the former EC technologies. Considering its high removal efficiency and short reaction time, EC/HNS is a potential technique in the cleaning of MB wastewater.
Conclusions

In this work, MB was removed from aqueous solution by EC using aluminium (anode) and stainless steel (cathode) coupled with HNS adsorption. Optimisation of removal efficiency was performed using response surface method based on a three-variable, three-level Box-Behnken design. Regression analysis revealed the good fit of the experimental data to a second-order polynomial model with an R^2 value of 0.9534 and an F value of 209.88. The ANOVA results showed that the effects of HNS dosage, reaction time, current density and combined effect of reaction time and current density were all significant to MB removal efficiency. The maximum removal efficiency of 99.45% was obtained under the following optimal parameters: adsorbent dosage of 6 g/L, current density of 2.6 mA/cm² and reaction time of 17.75 min. ANOVA results showed that reaction time possessed a low p value (<0.05) and a high F value (16.71), thereby implying that reaction time is the most significant factor affecting MB removal efficiency. The findings of this study showed that MB can be efficiently removed from aqueous solutions using EC/HNS technology. Future research on optimizing the proposed approach should be conducted on a large scale that considers energy consumption.

Acknowledgements

This work is supported in part by grants from the National Science and Technology Major Project of China (2016ZX05025–003).

Conflict of Interest

The authors declare no conflict of interest.
References

31. ZHU M.J., YAO J., QIN Z.H., LIAN L.N., ZHANG C. Response surface methodology approach for the

