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Abstract

With severe haze pollution continuing to frequently occur in many regions of China in recent 
years, increasing research effort has been made to study the source and control of haze pollution 
using socio-economic factors. Based on the urban panel data of 21 cities in Guangdong Province, 
South China, from 2005 to 2016, this paper analyzes the spatial and temporal evolution trend, spatial 
autocorrelation and influencing factors of Guangdong’s haze pollution through spatial econometric 
methods with inverse distance weight. First, the results show that the haze pollution of 21 cities in 
Guangdong Province has strong spatial autocorrelation and spatial clustering phenomenon. Aggregation 
areas of heavy air pollution are located in the Pearl River Delta region centered on Guangzhou, Foshan, 
Zhongshan and Dongguan. Those cities should be targeted as priority haze-pollution-reduction areas. 
Secondly, significant spatial dependence and spatial spillover effects of haze pollution in Guangdong 
are demonstrated by the spatial econometric models. Joint prevention and control of haze pollution 
between cities are therefore important and necessary. Thirdly, the direct and indirect effects of energy 
consumption on haze pollution are positive and significant at the 1% level. Meanwhile, population, 
foreign direct investments (FDI) and the ratio of the secondary industry (e.g., manufacturing and 
construction industries) relative to the service industry also play important roles in haze pollution, and 
all of them have positive effects on air pollution. However, the environmental Kuznets curve (EKC) 
hypothesis is not supported by the economy-emission data of Guangdong. Economic growth and car 
density are not significant factors in deciding the level of haze pollution. To effectively improve the local 
air quality, the government is recommending the introduction of policies for adjusting the structures of 
energy, economy and FDI, promoting the research, development and application of clean technologies, 
and enhancing the awareness of energy conservation among residents and enterprises.
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Introduction

Haze pollution is mainly composed of PM2.5 
(particulate matter with an aerodynamic diameter 
less than 2.5 micrometers) and PM10 [1]. It generally 
originates from two sources: the first is directly 
produced by energy combustion, industrial process and 
dust; the second is produced by its precursors, such as 
SO2, NOx, CO, and VOCs through physicochemical 
reaction processes. Hazy weather seriously endangers 
the health of people and causes immeasurable economic 
losses. According to the World Health Organization 
(WHO), the annual economic loss caused by premature 
human death due to air pollution accounts for about 
1.2% to 2% of global GDP [2]. However, the data show 
that China’s air pollution situation may be even worse 
than the global average [3]. At the end of 2016, a record-
breaking “cross-year haze pollution” of 200 hours 
occurred in the Beijing-Tianjin-Hebei region, as well 
as in neighboring Shandong and Henan Provinces [4]. 
Clearly, the problem of air pollution has now become 
a major obstacle for the sustainable development of 
China’s economy. The economically prosperous Pearl 
River Delta region in Guangdong Province has also 
been suffering from serious air pollution in recent 
years. Given the policy importance of the haze pollution 
issue, it is imperative to understand why some regions 
in Guangdong have more severe PM2.5 concentrations 
than others.

In current literature, there are four major approaches 
to study the origins of haze pollution. The first one 
mainly analyzes the physical and chemical processes 
of the source and formation of haze pollution [5–7]. 
This type of research focuses on the contributions of 
emissions and weather conditions to regional haze and 
the secondary pollution caused by weather conditions, 
but often ignores the effects of economic and social 
factors. The second one adopts the input-output model 
and uses the structural decomposition analysis to 
examine the driving factors behind the smog pollutions 
in China [8]. However, this type of research is relatively 
lagging and discontinuous, and only focuses on a few 
socioeconomic factors due to the limitation of input-
output tables. The third one constructs a computable 
general equilibrium (CGE) model to analyze the 
effects of energy structure and technology on haze 
pollution and simulate the outcomes of different 
policy combination [9]. Similarly, it is also based on 
input-output tables and must be supported with high-
quality data. The inaccuracy of its parameters and 
the strong assumptions of the model often make the 
conclusion questionable. The fourth one employs a 
typical econometric method. Since this method is 
capable of studying the influence of various economic 
and social factors on haze pollution, it is widely used 
in numerous studies – especially those dealing with 
panel data. According to empirical studies, the main 
human factors affecting the degree of smog pollution 
include economic growth rate [10], urban scale [11], the 

proportion of industry [12], high coal consumption ratio 
in the energy structure [13], urbanization rate and the 
number of motor vehicles [14]. Most of these studies 
using traditional time series or panel models ignore 
the spatial correlation. However, haze pollution is not a 
local problem [15]. Under the influence of atmospheric 
transfer and the connection of economic activity 
between different cities, smog pollution has a strong 
spatial correlation [16, 17]. It is necessary to take spatial 
characteristics into consideration. In the view of spatial 
effects, the relationship between air pollution and 
foreign direct investment [18], environmental regulation 
[19], industrial transfer [20], energy consumption [21], 
CO2 emissions reduction activities [22] and economic 
growth [17, 23] have also recently been verified by the 
province data of China. For example, Liu and Feng 
(2019) show that industrial transfer will intensify haze 
pollution in the transferred-in areas [20]. Tang et al. 
(2018) have revealed that energy consumption also has a 
significant and positive effect on PM10 pollution in China 
during 2004-2014 [21]. Liu and Lin (2019) find that an 
inverted N relationship exists between environmental 
pollution and economic development [24].

To sum up, on the one hand previous literature has 
analyzed the spatial distribution conditions, regional 
characteristics, and their influencing factors of haze 
pollution at the provincial level of China. However, there 
is little literature at the city level. Since there are more 
than 20 provinces with an area of more than 150,000 
square kilometers in China, studying haze pollution at 
the provincial level is overgeneralized and lacks the data 
accuracy to reflect the actual cause of haze pollution 
in specific cities, which are the major administrative 
units in controlling air pollution in China. Therefore, 
studying the spillover effect of air pollution at the city 
level is more helpful for providing customized clean-
air policy advice for local governments. On the other 
hand, many studies have investigated the sources, 
compositions, formation process, and influences of haze 
pollution in China, but a systematic analysis for socio-
economic influence factors of haze pollution has not 
been reported clearly. Moreover, those studies use data 
of province level and construct a spatial weight matrix 
with the simplest 0-1 adjacency matrix. In Guangdong 
Province, this is inappropriate because, for example, 
Guangzhou and Shenzhen have a strong connection on 
the economy, population, transportation and industry 
and are very close to each other, but they have no 
common boundary or vertex in the map. 

As a result, this paper has four main advantages 
over the existing literature. Firstly, this study proposes 
a comprehensive and systematic mechanism model 
to understand the influence of energy, economic 
and social factors on haze pollution (see Fig. 1). This 
means that when discussing the socio-economic factors 
affecting smog pollution, it is necessary to take into 
account the spatial spillover effect of smog pollution 
in order to obtain a better understanding of the source 
and formation process of haze pollution. This new 
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knowledge is important for the government to make 
corresponding treatment measures to effectively reduce 
the level of air pollution. Secondly, this paper is the first 
study that uses panel data of 21 cities’ annual averaged 
PM2.5 concentrations to explore the relationship between 
energy consumption and haze pollution in Guangdong. 
The utilization of urban data has made it more accurate 
to capture spatial spillover effect than most previous 
studies using provincial data. Thirdly, we extend the 
STIRPAT model and employ spatial econometric models 
with inverse distance weight to investigate the effect of 
energy consumption on haze pollution in Guangdong. 
It takes the spatial term into consideration and studies 
the spillover effects of factors on haze pollution, which 
is different from ordinary panel models. Finally, in 
order to reduce the bias and risk of results caused by 
missing variables, we include a series of variables such 

as economic development, population, FDI, civil vehicle 
density and industrial structure into the spatial model.

The purpose of this article is to:
1. Propose an integrated space framework of the 

influencing process of energy and economic and 
social factors on haze pollution.

2. Construct inverse distance weight and use exploratory 
spatial data analysis (ESDA) to estimate the spatial 
autocorrelation of smog pollution in Guangdong at 
the city level.

3. Using spatial econometric models such as the spatial 
lag model (SLM) and the spatial error model (SEM) 
to study the influencing factors of smog pollution 
in Guangdong and decompose the coefficient 
estimation of explanatory variables into direct 
effects and indirect effects by using the method of 
partial differentiation. 

Fig. 1. Mechanism model demonstrating the influence of energy, economic and social factors on haze pollution.

Fig. 2. Geographical location of Guangdong province and 21 cities.
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Materials and Methods

Study Area

Guangdong province is located on the southern coast 
of mainland China, covering an area of approximately 
179,800 km2 and having the largest population in 
China (Fig. 2). It borders with Fujian, Jiangxi and 
Hunan Provinces and Guangxi Zhuang Autonomous 
Region from east to west; it is adjacent to Hong Kong 
and Macao. Since 1989, Guangdong has topped the 
total GDP rankings among all the provinces of China.  
By 2017, Guangdong had a resident population of  
112.69 million. There were eight cities with a population 
density of more than 1,000 people per square kilometer 
in Guangdong in 2017, and six of the cities are in the 
Pearl River Delta region (Fig. 2). With the process of 
rapid urbanization and industrialization, the Pearl River 
Delta region has encountered severe air pollution issues 
of high-frequency acid rain, high-concentration ozone 
and particulate matters and continual smog weather.

Data Sources and Descriptive Statistics 
for Variables

This study employs balanced panel data from 21 
cities in Guangdong from 2005 to 2016 as a sample, 
and obtains the data of GDP per capita, FDI, industrial 
structure, car numbers, population and city area 
from the Guangdong Statistical Yearbook, which is 
accessible on the website of the Statistics Bureau of 
Guangdong Province [25]. The annual average PM2.5 
of each city during 2005-2016 in Guangdong is derived 
from the data set published by the Social Economic 
Data and Application Center (SEDAC) at Columbia 
University [26]. These data are consistent with local 
PM2.5 monitoring data of Guangdong. The definitions 
and summaries of the variables involved are shown in  
Table 1.

Spatial Association with Exploratory Spatial Data 
Analysis (ESDA)

ESDA, a method of describing spatial autocorrelation,  
is employed to detect the spatial properties of a 

phenomenon [27]. It contains global spatial correlation 
and local spatial correlation. The global spatial 
association is generally tested using the global Moran 
index. Moran (1950) proposed Moran’s I test for the 
association of spatial econometric models [28]. It is 
defined as follows:

           (1)

…where , , yi is the 
PM2.5 value of the region i, n is the total number of 
regions, and wij represents the spatial weight matrix. 

The local indicator of spatial association (LISA) is 
used to measure the degree of spatial aggregation of 
haze pollution among cities. The formula for calculating 
the local Moran’s I index is as follows:

                  (2)

In formula (2), Ii is the local Moran’s I index of 
the city i, and the other variables have the same 
meaning as the global Moran’s I index formula. If Ii > 0, 
a high-value city is surrounded by a high-value 
area (“high-high”) or a low-value city is surrounded 
by a low-value area (“low-low”); if Ii > 0, it means 
that a high-value city is surrounded by a low-value 
area (“high-low”), or a low-value city is surrounded  
by a high-value area (“low-high”). A Moran scatter plot 
can be drawn by Stata 14.1 software. The scatter plot 
has four quadrants, corresponding to the four cases 
above.

The main difference between the spatial panel model 
and the traditional model is that a spatial equation with 
weight is constructed. In this study, the spatial weight 
matrix is based on the inverse of distance, generated 
by ArcMap 10.2. The distance is calculated with the 
Euclidean distance method, and the neighborhood 
search threshold is 1.2317 degrees. At the same time, it 
is standardized. The spatial weight matrix expresses the 
spatial distribution of observation variables in different 
regions. It is defined as follows:

Variable Unit definition Obs Mean Std. Dev. Min Max

PM25 ug/m3 PM2.5 252 30.826 6.578 18.413 48.811

ECP tce/10000 persons Energy consumption  per capita 252 2.663 1.377 0.419 5.687

GDPP 10000 yuan per capita GDP per capita 252 3.825 2.921 0.742 13.710

POPU million Population 252 4.883 2.676 1.416 14.044

INDUS 1 Secondary Industry / Service industry 252 1.116 0.328 0.385 2.094

FDI % FDI / GDP 252 2.768 2.312 0.102 10.870

CARDEN Civil car per km2 Civil car number / area 252 129.210 251.409 2.136 1591.589

Table 1. Descriptive statistics for variables.
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                     (3)

Extended STIRPAT Model and Spatial 
Econometric Model

According to IPAT identity put forward by Ehrlich 
and Holdren (1971) [29], population increase plays 
an important role in the increase of environmental 
pressure. Based on the IPAT identity, Dietz and Rosa 
(1994) [30] constructed a random model, named the 
STIRPAT model, which has the following form:

                 (4)

…where I is environmental pressure (Impact), P 
represents population number (Population), A means 
affluence degree (Affluence), T denotes the technology, 
i and t are the city and year respectively. “a” is the 
constant item. “b, c, and d” represent the exponents 
of population, affluence, and technology, and ε is the 
error term. Haze pollution (PM25) is used to express the 
environmental pressure in different cities. Following 
Wen et al. (2015) [31] and others, this paper extends and 
modifies the STIRPAT model by using six influencing 
factors, including per capita energy consumption (ECP), 
per capita GDP (GDPP), industrial structure (INDUS), 
the ratio of FDI to GDP (FDI), population number 
(POPU) and car density (CARDEN).

    (5)

The Kuznets curve was first proposed by the 
economist Simon Kuznets in 1955 when studying the 
relationship between per capita income and income 
distribution fairness (Kuznets, 1955) [32]. Later, during 
the early 1990s, Grossman and Krueger innovatively 
applied the Kuznets curve to the field of environmental 
quality, and suggested that the relationship between per 
capita income and environmental quality demonstrates a 
form of an inverted U-shaped curve and a turning point 
at a per capita income of $8000 [33]. Some scholars also 
test the EKC of environmental pollutants and economic 
growth with the provincial data of China [34, 35] and 
America [36]. When the logarithmization treatment is 
made on both sides of 208 Equation (5) and the EKC 
hypothesis is contained, the model can be expanded and 
modified as follows:

(5)

In Equation (5), spatial autocorrelation of haze 
pollution among cities are ignored, which may cause 
invalid outcomes of ordinary panel models. Based on 
the extended STIRPAT model and the different impact 
modes of spatial terms, this paper constructs two spatial 
econometric models, namely the spatial lag model 
(SLM) and spatial error model (SEM). The SLM mainly 
discusses whether there is a spatial autocorrelation of 
haze pollution or spillover effect in each city as follows:

     
(6)

…where  denotes spatial lag 
variable, ρ means the spatial autoregressive coefficient,  
wij is the spatial weight matrix of size 21×21, μi  
represents the individual effect of city i, and εit is the 
error term. 

In the SEM, the spatial dependent effect mainly 
exists in the error term, which is used to reflect the 
differences of the interaction among variables in 
different cities with different geographical locations 
through the following formula.

        
(7)

…where γt is time effect, wij represents the spatial weight 
of error term, λ is the spatial error coefficient and vij is 
the random error vector of a normal distribution.

Results and Discussion

Global Spatial Correlation of Haze Pollution

Table 2 shows that the global Moran’s index for 
21 cities in Guangdong is positive, fluctuating in the 
range of 0.685-0.816. It shows an increasing trend from 
2005 to 2008. Although it decreases to 0.752 in 2009, it 
starts to increase again from 2009 to 2011, with a slow 
decrease from 2012 to 2016. The value of Z is larger 
than 2.58 and the value of p is less than 0.01. This means 
that there is a significant spatial positive autocorrelation 
of haze pollution in 21 cities from 2005 to 2016. In other 
words, haze pollution in Guangdong is not distributed 
randomly and there may be agglomeration in highly 
polluted areas. 

Figs 3a), 3b) and 3c) present Moran scatter plots of 
haze pollution of 21 cities in Guangdong in 2005, 2010, 
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and 2015, respectively, indicating that most regions are 
located in the first quadrant (“high-high” type) and 
the third quadrant (“low-low” type). So the number of 
regions located in the first and third quadrants account 
for 80.95%, 85.71%, and 76.19% of the total number 
of regions, respectively, in 2005, 2010 and 2015. This 
also suggests that most cities of Guangdong show 
similar spatial aggregation characteristics with their 
neighboring cities. In other words, heavy haze-polluted 
regions tend to be adjacent to heavy haze-polluted 
regions and vice versa.

In order to show the regions with strong 
autocorrelation in local space clearly, the LISA 
significance map is shown in Fig. 4. In 2005 (see 
Fig. 4a), 4 cities (Guangzhou, Foshan, Dongguan 
and Zhongshan) showed “high-high” aggregation 
characteristics. In 2010 (see Fig. 4b), 5 cities exhibited 
the “high-high” feature, including Zhaoqing and the 
previous four cities. In 2015 (see Fig. 4c), there were still 
four “high-high” cities, which were the same as in 2005. 
In comparison, Meizhou, Chaozhou, Jieyang, Shantou 

and Shanwei were “low-low” cities. They are the cities 
with low haze pollution together with its surrounding 
cities, which were less economically developed cities 
in the east area of Guangdong. The haze pollution is 
concentrated in the Pearl River Delta region, which 
has a developed economy, dense population, high 
industrialization and urbanization, especially in 
Guangzhou, Foshan, Dongguan and Zhongshan. Over 
12 years, the high-high type and low-low type are 
almost unchanged. Therefore, we conclude that the 
spatial cluster effects of haze pollution in Guangdong 
are obvious and persistent. 

Spatial Autocorrelation Test 
and Model Selection

In order to choose a better model to test the 
relationship between energy consumption and haze 
pollution, we make a comparison between SLM and 
SEM. Anselin (1996) [37] came up with a spatial 
regression model decision rule by analyzing the values 

Table 2. Global Moran’s I of haze pollution in 21 cities of Guangdong province.

Years Moran’s I E(I) Variance Z value P value

2005 0.685 -0.050 0.023 4.842 0.000

2006 0.712 -0.050 0.023 4.988 0.000

2007 0.780 -0.050 0.024 5.392 0.000

2008 0.800 -0.050 0.024 5.542 0.000

2009 0.752 -0.050 0.023 5.234 0.000

2010 0.776 -0.050 0.024 5.383 0.000

2011 0.816 -0.050 0.024 5.647 0.000

2012 0.798 -0.050 0.023 5.550 0.000

2013 0.784 -0.050 0.023 5.454 0.000

2014 0.731 -0.050 0.023 5.118 0.000

2015 0.705 -0.050 0.023 4.972 0.000

2016 0.693 -0.050 0.023 4.883 0.000

Fig. 3. The Moran scatter plot of haze pollution in Guangdong province.
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of Lagrange multiplier (lag) and Lagrange multiplier 
(error). LM-lag and LM-error are used to test the 
SLM and the SEM respectively. If only one of them is 
significant, then we can choose the corresponding model 
directly. If both are significant, the values of Robust 
LM-lag and Robust LM-error need to be observed. If 
the Robust LM-lag value is more significant than the 

Robust LM-error value, the suitable model is SLM. 
Conversely, if the Robust LM-error value is more 
significant than the Robust LM-lag value, the SEM 
model is selected. The testing results of the spatial 
correlation are shown in Table 3.

Table 3 shows that both results of LM-lag and 
LM-error are significant at the 0.01 significance level. 
We further compare Robust LM values to judge 
which of the models is more appropriate. The Robust 
Lagrange multiplier (lag) value is significant at the 
0.01 significance level. However, the Robust Lagrange 
multiplier (error) value is not significant at the 0.05 
significance level. As for Robust LM-lag and Robust 
LM-error, the former is more significant than the latter. 
It suggests that the model under the condition of SLM 
is the optimal model. Hence, we choose SLM over SEM 
to analyze the effect of energy consumption on haze 
pollution in Guangdong.

Comparative Analysis of the Results 
of Three-Panel Models

Based on the Lagrange multiplier values of OLS, 
we can select a more suitable model from the SLM 
and SEM. The least square method is always used to 
estimate general panel data. However, it may lead to 
partial or invalid regression results because of not 
considering the spatial autocorrelation. In this study, 
the panel data of 21 cities in Guangdong from 2005 to 
2016 are selected for empirical analysis. The data are 
analyzed by using the traditional panel model with 
random-effects method first, according to the estimation 
results of the Hausman test, in model 1 in Table 4. Then 
we use Stata 14.1 software to analyze the space-fixed 
effect, time-fixed effect, and time-space-fixed effect 
of SLM and SEM, respectively. However, from the 
results of these models, the robustness of fit of time-
fixed effect is the highest, which is the most suitable 
model, so we only list the results of the time fixed effect 
model in this paper, which is the Model 2 and Model 
3 in Table 4. Therefore, SLM and SEM models with 
time fixed-effects are used to estimate the parameters 
of factors. By comparing the spatial estimation results 
of SLM and SEM in Table 4, the log likelihood (Log-L) 
and R2 values in SLM are more significant than SEM, 
and based on the Hausman test, the time-fixed effect of 
SLM is an optimal choice which is applied to explain 
the effect of energy consumption on haze pollution in 
Guangdong.

Model 1 does not contain the spatial characteristic, 
and only per capita energy consumption, FDI and 
population have a positive impact on haze pollution 

Fig. 4. LISA cluster maps of haze pollution in Guangdong 
province.

LM-Lag LM-Error Robust LM-Lag Robust LM-Error

169.481***  (0.000) 162.101***  (0.000) 10.298***  (0.001) 2.918*  (0.088)

Note: P values in the parentheses, ***, **and * denote a significance of 1%, 5% and 10%.

Table 3. Spatial autocorrelation test of haze pollution in Guangdong.
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significantly. In the SEM, model 2 shows that 
increasing per capita energy consumption, population, 
car density and higher portion of the secondary 
industry (e.g., manufacturing and food industries) 
relative to the service industry would lead to increasing 
haze pollution.  However, higher per capita GDP are 
corresponded by less haze pollution. In the SLM, 
model 3 shows that per capita energy consumption, 
the portion of the secondary industry relative to the 
service industry, FDI and population are all positively 
correlated with haze pollution. The results of model 
2 and model 3 are basically consistent, but there is a 
large difference between them and model 1, especially 
about the effect of the portion of the secondary industry 
relative to the service industry. From the condition of 
SLM and SEM, both λ and ρ are greater than 0 and they 
are all significant at the 0.01 level. This denotes that the 
regional haze pollution has obvious spatial “spillover 
effect”. Spatial factors play an important role in the 
regional haze pollution and they cannot be ignored. 
Due to the natural geographical reasons, such as wind 
direction and closeness in location, the haze pollution 
in one area will be affected by neighboring areas. In 
addition, socio-economic factors such as economic 
connection and population flows between cities will 
further deepen the spatial correlation of haze pollution 
among areas. It can be seen that trans-regional pollutant 
transport and industrial transfer are important reasons 
for the formation of haze pollution, and it is difficult to 
fundamentally solve regional haze pollution problems.

Spillover Effect Analysis of Factors

Based on the spatial correlation LM test, SLM is 
chosen, and the Hausman test shows that the fixed effect 

of SLM is better than SLM with random effect. LeSage 
and Pace (2014) [38] points out that the coefficients 
directly obtained from spatial econometric models are 
biased when using the point estimation method to test 
whether the spatial variables have spillover effects. The 
coefficients of the explanatory variables do not represent 
the true partial regression coefficients, and they propose 
that the coefficient estimation of explanatory variables 
need to be decomposed into direct effects and indirect 
effects by using the method of partial differentiation. 
According to the method and the SLM results, we 
obtain the direct and indirect effects of explanatory 
variables and control variables on the haze pollution, as 
shown in Table 5. Some useful conclusions are obtained 
as follows.

Firstly, the coefficient of the direct effect of per 
capita energy consumption is 0.100 at 1% significance 

Table 5. Direct and indirect effects of various variables on haze 
pollution in SLM.

Variables Ordinary Panel Model SEM SLM

lnECP 0.216***  (2.66) 0.077***  (-3.83) 0.075***  (-3.87 )

lnGDPP -0.134  (-1.56) -0.096**  (-2.11) 0.004  (-0.1)

lnGDPP2 -0.021  (-1.39) -0.007  (-0.56) -0.011  (-1.04)

lnINDUS 0.052  (1.34) 0.040***  (-2.71) 0.053***  (-2.77 )

lnFDI 0.072***  (5.51) 0.013  (-1.35) 0.015**  (-2.19 )

lnPOPU 0.143**  (2.12) 0.075***  (-7.19) 0.090***  (-7.19 )

lnCARDEN -0.026  (-0.80) 0.034***  (-3.88) 0.001  (-0.16 )

Constant 3.247***  (31.18) -- --

λ/ρ -- 0.868***  (-36.3) 0.762***  (-21.03)

N 252 252 252

R2 0.46 0.109 0.481

Log likelihood -- 255.405 257.373

Note: Figures in parentheses are t-statistics, ***, **and * denote a significance of 1%, 5% and 10%, respectively.

Table 4. The Results of the three panel models.

Variables Direct Indirect Total

lnECP 0.100*** 0.219*** 0.319***

lnGDPP 0.002 -0.002 0.000

lnGDPP2 -0.013 -0.028 -0.041

lnINDUS 0.071*** 0.156** 0.227**

lnFDI 0.020** 0.045** 0.065**

lnPOPU 0.121*** 0.266*** 0.387***

lnCARDEN 0.001 0.004 0.006

Note: ***, **and * denote a significance of 1%, 5% and 
10%, respectively.
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level, which indicates that per capita energy 
consumption promotes haze pollution significantly. 
Our result is consistent with others’ conclusion about 
the relationship between environmental pollutants and 
energy consumption [39, 40]. Moreover, it is notable 
that its indirect effect is also positive in this study, 
which shows that the increase of per capita energy 
consumption in the city has a spillover effect. In other 
words, an increase in per capita energy consumption of 
each city will not only promote local haze pollution, but 
also promote haze pollution in other neighboring cities. 
This is an important cause of air haze pollution in the 
overall area.

Secondly, both direct and indirect effects of FDI 
and the portion of the secondary industry relative 
to the service industry in increasing haze pollution 
are significant. Guangdong is still in the process of 
rapid urbanization and industrialization. Industrial 
development consumes large amounts of fossil fuel 
and electricity. Non-fossil energy consumption in 
Guangdong has seen a continuous increase in recent 
years, but it only accounts for 25.6% of the total 
energy consumption in 2017. Most of the electricity 
in Guangdong is still generated from fossil fuels, 
especially coal and oil, which may emit large quantities 
of air pollutants. The direct, indirect and total effects 
of FDI are 0.02, 0.045 and 0.065 respectively at 5% 
significance level. This denotes that FDI has a positive 
effect on haze pollution in Guangdong, which provides 
support for pollution haven hypothesis (PHH), which 
posits that production within polluting industries will 
shift to locations with lax environmental regulation 
[41]. The impact of foreign direct investment on the 
environment is related to the FDI structure [42]. 
Because of strict environmental standards in developed 
countries, many multinational corporations build 
pollution-intensive factories in developing countries, 
where the environmental regulations are laxer. This 
could effectively reduce the environmental cost while 
producing cheaper, more competitive products in the 
international market. In 2017, the amount of foreign 
capital utilized by Guangdong reached about $23 
billion, accounting for 17.48% of the total foreign capital 
being spent in China. In addition, the competition for 
attracting FDI in Guangdong is very intense between 
local city governments under the incentive mechanism, 
with GDP as an important achievement. Hence, adjacent 
cities without competitive advantage attracted more 
foreign investments with high pollution industries to 
increase GDP.

Finally, the direct, indirect and total effects 
of population number are 0.121, 0.266 and 0.387 
respectively at 1% significance level. This concludes 
that population agglomeration deteriorates air quality 
directly and significantly. The more people there are, 
the more energy is consumed. And the spillover effect 
of population also exists. The possible explanation for 
this phenomenon is that there is intense competition 
between neighboring cities for attracting labor 

population inflows. The city directly adopts subsidies 
such as housing and wages to compete for human 
resources. More people come to the city, causing more 
energy consumption and then more haze pollution. 
Hence, addressing smog pollution in densely populated 
cities such as Guangzhou, Dongguan and Foshan is 
critical and urgent for public health. In this study,  the 
effects of per capita GDP and EKC hypothesis are not 
supported. The impact of car density on haze pollution 
is positive but not significant in Guangdong. 

Conclusions

Using the exploratory spatial data analysis method 
and spatial econometric models, this study analyzes the 
effect of energy consumption, industrial structure, FDI, 
car density, economic growth and population on haze 
pollution in Guangdong during 2005-2016. The main 
conclusions are as follows:

(1) There is a significant positive spatial 
autocorrelation of haze pollution in 21 cities from 
2005 to 2016, which indicates that the haze pollution 
in Guangdong does not follow a random distribution. 
There may be an agglomeration in the highly polluted 
areas and low pollution areas also gather together. 
Spatial cluster effects of haze pollution in Guangdong 
are obvious and stable, which “high-high” aggregation 
areas are located in the Pearl River Delta region centered 
on Guangzhou, Foshan, Zhongshan and Dongguan. 

(2) This study uses spatial econometric models to 
further verify the spatial dependence of haze pollution 
in Guangdong. Our results show that the direct and 
indirect effects of energy consumption are positive and 
significant at the 1% level. 

(3) We find FDI and the ratio of the secondary 
industry relative to the service industry also do play 
important roles in haze pollution, and both of them have 
positive direct and indirect effects on air pollution. And 
the PPH is supported in Guangdong. At the same time, 
economic growth and car density are not significant 
factors. 

Our results can help the Guangdong government 
understand the spatial autocorrelation of haze 
pollution in its 21 cities and its relationship with those 
influencing factors. Therefore, our findings may have 
important policy implications. Firstly, it is urgent for  
the governments of Guangzhou, Dongguan, Zhongshan 
and Foshan to take a positive attitude towards the  
work of haze pollution reduction. Those four cities 
should be set up as the priority haze-pollution-reduction 
areas. 

Secondly, joint efforts of cities to prevent and 
control haze pollution is very important and necessary, 
because of the existence of spatial spillover effects of 
haze pollution in Guangdong. It is vital to clarify the 
main functions and positioning of different cities in 
Guangdong-Hong Kong-Marco Greater Bay Area, avoid 
the vicious competition of industry development and 
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population inflow, and strengthen the coordination and 
planning linkage between urban areas. 

Thirdly, actively introducing green and environ-
mentally friendly foreign direct investment, 
accelerating industrial transformation and technological 
upgrading, strengthening environmental regulation, 
optimizing energy structure, and enhancing residents’ 
environmental awareness and actions are essential for 
smog pollution control in Guangdong.
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