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Abstract

The optimal management of hydropower resources is highly dependent on accurate and reliable 
hydrological runoff forecasting. The development of a suitable runoff-forecasting model is a challenging 
task due to the complex and nonlinear nature of runoff. To meet the challenge, this study proposed a 
three-stage novel hybrid model namely IVG (ICEEMDAN-VMD-GRU), by coupling gated recurrent unit 
(GRU) with a two-stage signal decomposition methodology, combining improved complete ensemble 
empirical decomposition with additive noise (ICEEMDAN) and variational mode decomposition 
(VMD), to forecast the monthly runoff of SWAT river, Pakistan. ICEEMDAN decomposed the runoff 
time series into subcomponents, and VMD performed further decomposition of the high-frequency 
component obtained by ICEEMDAN decomposition. Afterward, the GRU network was employed to the 
decomposed subcomponents for forecasting purposes. The performance of the IVG model was compared 
with other hybrid models including, ICEEMDAN-VMD-SVM (support vector machine), ICEEMDAN-
GRU, VMD-GRU, ICEEMDAN-SVM, VMD-SVM; and standalone models including GRU and SVM 
by utilizing statistical indices. Experimental results proved that the IVG model outperformed other 
models in terms of accuracy and error reduction, which indicates the feasibility of the IVG model to 
analyze the nonlinear features of runoff time series and for runoff forecasting with applicability for 
future planning and management of water resources.
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Introduction

Natural runoff is the primary source of water and 
plays a vital role in irrigation, conservation of the 
environment, and socioeconomic growth [1]. Optimum 
distribution and utilization of water resources are 
getting more focus due to the insecurity of hydro 
resources [2]. Reliable and accurate forecasting of 
runoff and weather are important factors in decision 
making regarding reservoir management and operation, 
allocation of water supply, and drought and flood 
management [3-5]. However, devising an efficient model 
for runoff and rainfall forecasting poses a challenge, 
since the runoff and rainfall depend on nonlinear 
factors including precipitation, uneven flow, topography, 
anthropic activities, and evaporation [6, 7]. Owing 
to its importance, hydrological forecasting is now a 
popular study area, and researchers have applied many 
forecasting techniques to predict runoff forecasting 
in the past decades [8]. There are two types of runoff 
forecasting models: process-driven and data-driven. 
Process-driven models focus on the physical processes 
of the hydrological cycle and employ empirical 
formulas. This approach requires a correct description 
of the hydrological process [8, 9]. Forecasting is done 
through data-driven models with the aid of intelligent 
algorithms and mathematical methods by exploiting 
statistical properties of unknown hydrological black-
box in watersheds or river catchments [8]. The data-
driven approach uses historical runoff data and 
climate factors for future forecasting of runoff data. 
The data-driven approaches are gaining popularity for 
accurate forecasting due to their rapid growth, fewer 
information requirements compared to the process-
driven models, and the increasing computational power 
[10]. SVM, fussy (rule-based) systems, artificial neural 
network (ANN), and model trees (MT) are the most 
commonly used data-driven approaches for hydrological 
forecasting [11].  

Deep learning based machine learning (ML) 
is a particular area of interest nowadays in runoff 
forecasting with various models being used for runoff 
modeling. Compared to the statistical models, ML 
models are applicable and overcome the constraints for 
the non-stationary and non-linear runoff time series, 
with better accuracy and performance  [12, 13]. ML 
models such as SVM and ANN represent the latest area 
of research for forecasting runoff time series [14]. The 
study in [15-17] provides a comprehensive review of 
ML models for runoff forecasting and modeling.

Hydrological systems have been widely studied by 
employing artificial intelligence techniques [18]. The 
robustness and the efficiency of the SVM algorithm, 
allow the applicability of SVM for runoff forecasting 
studies. Furthermore, the promising results and the 
excellent simplification ability of SVM for runoff 
forecasting, make this technique superior compared 
to the other ML models [19-22]. Moreover, recurrent 
neural networks (RNNs) have a long history in the 

field of hydrology with applications for rainfall-
runoff modeling since the 1990s [23, 24]. The study 
conducted in 2004 compared RNN with ANN for 
monthly streamflow forecasting and analyzed that RNN 
outperformed feed-forward ANN. Long short term 
memory (LSTM) overcomes the issue associated with 
traditional RNN of learning long-term dependencies 
within hydrological catchments, which may play a 
significant role in the hydrological processes [25]. Gated 
recurrent unit (GRU) like LSTM is also a variant of 
RNN and allows GRU to discard useless information 
and maintain useful information in dynamic sequence 
data, with additional benefits of retaining all advantages 
of RNN [26].  

The standalone models sometimes omit useful 
information when applied alone, therefore, the hybrid 
models have been proposed to apply for the forecasting 
of the hydrological time series [27]. These hybrid models 
have the ability to deal with the intricate problems more 
efficiently [28]. To overcome the inadequacies of the 
data-driven models and for more reliable and accurate 
forecasting, hybrid data-driven models combine the 
decomposition techniques with artificial intelligence 
techniques [29, 30]. 

Hybrid ML models improve the accuracy of 
forecasting with efficient data management [31, 32]. 
Furthermore, these models also provide the benefits 
of automated and well-timed management and 
performance assessment of the ensemble algorithms 
[33]. The study in [34]  and [35], overviews the hybrid 
ML models for runoff-rainfall forecasting.

Multilevel periods exist in the hydrological times 
series, which exhibit changes in the time domain. 
Numerous decomposition techniques have been 
introduced to separate the different time scales 
having non-linear and non-stationary variables in the 
hydrological times series that also provide support for 
runoff forecasting and system analysis [36-38]. The 
data gathered at regular intervals constitute a time 
series, while the time series analysis is performed by 
employing statistical methods [39]. 

The decomposition methods for time series are 
feasible to improve the working of ML models used for 
rainfall-runoff and runoff modeling. The ML models 
forecast the sub-components obtained through the 
decomposition of the observed time series, and thereby 
improve the forecasting results [12]. Wavelet transform 
(WT), Empirical Mode Decomposition (EMD), 
Ensemble Empirical Mode Decomposition (EEMD) are 
widely used for decomposition of hydrological runoff 
time series. But they face problems like producing some 
false harmonic signals as in the case of WT [40], mode 
mixing of intrinsic mode functions (IMFs) and the 
orthogonality effect faced by EMD [41, 42], complexity 
and residual noise issue of EEMD [43]. Therefore, 
CEEMDAN was proposed, which is superior to EEMD 
and resolves many issues, as suffered by EEMD. 
However, CEEMDAN also fails to remove the residual 
noise present in the modes, and the early decomposition 
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stages have some spurious modes with delay in the 
appearance of signal information [44]. 

Improved CEEMDAN is an advanced version of 
CEEMDAN and obtains IMFs having less residual 
noise with more physical importance [45]. ICEEMDAN 
utilizes the observed signal for IMF sifting to get rid of 
the issues faced by EMD and its variants [46]. Despite 
having good results for signal decomposition [46], the 
ICEEMDAN does not find appreciable implementations 
for runoff forecasting.

Unlike EMD based techniques, VMD decomposes 
the observed time series into sub-components 
and updates them [47]. VMD has an outstanding 
performance in frequency search and separation, with 
robust noise and sampling properties [48]. The VMD 
is comparatively a new technique for hydrological 
application [12], and relatively a few studies exist 
regarding the application of VMD for runoff forecasting.  

Therefore, this study proposes a three-stage hybrid 
model IVG based on ICEEMDAN, VMD and GRU, 
and its applicability to forecast the monthly runoff 
at Swat River, Pakistan. Pakistan is an agricultural 
country with an economy that is based on the surface 
water [49]. The accurate runoff forecasting is important 
since the difference between the water requirement 
and the precipitation adversely affects crop production 
[50]. Natural disasters, including floods and droughts, 
are serious threats for Pakistan [51]. The economic 
development of the country suffers from major floods, 
which the country experiences almost every three 
years [52]. The devastating flood of 2010 in the country 
forecast the occurrence of more extreme events in 
the future [53]. Consequently, the accurate drought 
forecasting is essential to lessen the adverse effects of 
droughts [54].

The above facts highlight the significance, and need 
for accurate runoff forecasting for Pakistan, therefore, 
this study considers the runoff forecasting with the 
main objectives as given below:

Owing to the importance of runoff for Pakistan, this 
study considers the runoff forecasting with the main 
objectives as given below: 

(1)  The development of ML and signal decomposition 
based hybrid model by taking into account the 
monthly hydrological runoff data of the Swat River; 

(2)  Applicability of the hybrid model for the runoff 
forecasting; and 

(3)  Verifying the performance and accuracy of the 
proposed model by comparing results with the 
similar models developed to forecast the monthly 
runoff.
The rest of the paper is arranged as follows. Section 

2 describes the modeling techniques and the proposed 
approach. The results and discussion are presented 
in section 3, while section 4 concludes this study. 
This study will be useful for forecasting and planning 
purposes and will provide new directions in the field of 
hydrology.

Materials and Methods  

Proposed Hybrid Modelling

The non-stationary and nonlinear characteristics of 
runoff [55, 56] lead to the undesirable performance of 
many forecasting models and poor generalization, and 
also affects the accurate knowledge of data variations 
[57]. Therefore, this paper proposes a three-stage hybrid 
model to analyze the dynamic behavior of hydrological 
time series for accurate runoff forecasting, by coupling 
a ML model with the signal decomposition techniques. 

The main steps can be explained as given below: 
Step 1: This step applies the Pearson correlation 

coefficient method to the observed runoff data to 
determine the appropriate input variable. 

Step 2: The observed runoff time series is 
decomposed through ICEEMDAN technique into 
subcomponents (IMFs) having a different frequency.

Step 3: The VMD decomposes the high pass 
component (IMF1) generated by ICEEMDAN into the 
subcomponents.

Step 4: GRU network was applied to construct a 
forecasting model by taking the observed runoff series, 

Fig. 1. The basic model of GRU. 



Sibtain M., et al.372

its selected lagged values with strong correlations, 
and subcomponents produced by the decomposition 
techniques. The basic model of GRU is given in Fig. 1 
[58].

Step 5: This step reconstructs the predicted results 
of step 4 for final forecasting. 

Step 6: Finally, the statistical performance metrics 
(root mean square error (RMSE), mean absolute error 
(MAE), Nash-Sutcliffe efficiency coefficient (NSE),  
and the coefficient of determination (R2) evaluate the 
results in the training and testing periods.

Fig. 2. A flowchart of the proposed hybrid IVG model.

Fig. 3. The location of Swat river catchment in Pakistan.
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The flow diagram representing the main steps of the 
proposed methodology is given in Fig. 2.

Case Study

This study considers the runoff data of Swat river 
catchment located within longitude 70°59’ east to 72°47’ 

east and latitude of 34°00’ north to 35°56’ north in the 
northern region of Khyber-Pakhtunkhwa Province, 
Pakistan [59]. The Swat river is a perennial river with 
origin from Hindukush mountains and streams up 
to Madyan through the Kalam valley and lower areas 
of Swat valley up to Chakdara. The river discharges 
into the Kabul River and has a total span of 240 km. 

Fig. 4. The monthly runoff of Swat River at Kalam.

Fig. 5. Decomposition of the runoff time series using ICEEMDAN.

Table 1. The correlation coefficient between the input signal and the IMFs of ICEEMDAN.

IMF/Residual IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 Residual

Correlation coefficient 0.344 0.948 0.847 0.097 0.073 0.080 0.054 0.020 0.017
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The swat river serves for power generation, irrigation, 
and the natural habitat of birds and fishes. A huge 
hydropower potential exists in the Swat river basin, 
and the plans include the construction of numerous 
hydropower projects in the future [60]. These facts 
signify the importance of the Swat River for the future 
economic growth of the country [59]. The catchment 
area of the SWAT River is mostly rocky, with altitudes 
stretching from 360 m to 4,500 m approximately, from 
south to north. The location of the Swat River catchment 
in Pakistan is shown in Fig. 3.

Data Selection

The runoff data for the forecasting purpose was 
collected from Water and Power Development Authority 
(WAPDA), Pakistan. The monthly runoff data of the 
Swat River from 1961 to 2015, as shown in Fig. 4, was 
taken at Kalam hydrological station in the Swat river 
catchment. 

Results and Discussion

Decomposition Results

ICEEMDAN technique is applied to decompose 
the runoff series into the eight independent IMFs and 
the Residual (Fig. 5). The de-noising of the observed 
runoff series is not necessary due to the good anti-
noise properties of the CEEMDAN technique [43].  
The IMF1 has a maximum amplitude, and the highest 

Fig. 6. VMD of IMF1 (obtained after ICEEMDAN).

Fig. 7. The auto-correlation function a) and the partial 
autocorrelation function b).
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frequency, whereas, all the other IMFs (IMF2~IMF8) 
and the Residual (r) show a gradual reduction in the 
amplitude and frequency with an increase in the 
wavelength.

VMD performs a secondary decomposition of IMF1 
due to the presence of high oscillatory contents in 
IMF1. The mode determination of the VMD technique 
requires careful consideration. The study in [6] utilizes 
a trial and error method to select mode, whereas the 
study in [61] employs correlation analysis for the mode 
determination in ensemble decomposition techniques. 
The present study also utilizes the Pearson correlation 
coefficient analysis of the intrinsic modes including the 
Residual produced by ICEEMDAN technique and the 
observed runoff series as provided in Table 1.

The IMF2 shows a strong correlation with the 
observed runoff series; therefore, based upon [61], 
the obtained value of mode determination is 9. The 
decomposition results of IMF1, obtained by employing 
VMD, are shown in Fig. 6. 

VMD decomposed the IMF1 into nine modes from 
VDF1-VDF9, as shown in Fig. 6. Compared to the other 
decomposition techniques, VMD generates smoother 

intrinsic modes [62], which is also evident from the 
decomposition result of IMF1.  

Input Selection and Model Development

Seven other models were also developed to 
compare the effectiveness of the proposed IVG model, 
including ICEEMDAN-VMD-SVM, ICEEMDAN-
GRU, VMD-GRU, GRU, ICEEMDAN-SVM, VMD-
SVM, and SVM. Pearson’s correlation coefficient was 
applied to determine a suitable dataset and correlation 
between the variables. Pearson’s correlation coefficient 
can deal with large datasets and has low complexity 
and strong generality, making it feasible for feature 
selection of the input dataset [63]. This method utilizes 
correlation indicators to determine the appropriate 
inputs and filters the inputs having scores greater than 
the threshold [64]. An autocorrelation function (ACF) 
and partial autocorrelation function (PACF) with twelve 
lags applied to the observed runoff series are shown in 
Fig. 7. 

This study considers a threshold value of 0.5 for 
the correlation coefficient, and the runoff time series 

Table 2. Inputs selection for different models.

Model Inputs

GRU/SVM Xt, Xt-1, Xt-11, Xt-12

ICEEMDAN-GRU/ICEEMDAN-SVM Xt-1, Xt-11, Xt-12, IMF1-IMF8, r

VMD-GRU/VMD-SVM Xt-1, Xt-11, Xt-12, VF1-VF9

IVG/ICEEMDAN-VMD-SVM Xt-1, Xt-11, Xt-12, IMF2-IMF8, r, VDF1-VDF9

Technique/Model Parameters and hyperparameters

ICEEMDAN

Standard deviation of noise (Nstd): 0.2;
Number of realizations allowed (NR): 500;

Signal to noise ratio flag (SNRFlag): 2;
Maximum number of sifting iterations allowed (MaxIter): 5000.

VMD

Moderate bandwidth constraint (Alpha): 2000;
Number of modes (K): 9;
Noise tolerance (tau): 0;

Initialization of omegas (init): 1;
Tolerance of convergence (tol): 1e-7.

SVR-based models

Kernel: Radial basis function (RBF);
Regularization parameter (C): C ∈ [1.0, 2.0, 5.0, 8.0, 10.0, 15.0];

Sigma (σ): σ ∈ [0.1, 0.05, 1, 2, 2.5, 3.5];
Epsilon : (ε) ∈ ε [0.001, 0.01, 0.03, 0.05, 0.1, 0.15].

GRU-based models

Input layer: One;
Size of first and second hidden layer: (64, 32), (128, 64);

Number of training epochs: (50, 200);
Learning rate (lr): lr ∈ 10–3;

Optimizer: RMSprop;
Dropout rate: 0.2;

Batch size: (30, 50);
Output layer: One.

Table 3. Parameters and hyperparameters selection.
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having values greater than 0.5 were selected as input 
features of the forecasting model. As per Fig. 5 a), since 
the autocorrelation coefficient values at first, eleventh, 
and twelfth lag show values greater than 0.5, therefore, 
these values are selected as three lagged inputs for the 
input dataset. The other inputs include modes produced 
by ICEEMDAN and VMD. The detailed inputs for all 
models to predict a 1-month-ahead runoff (Xt+1) are 
provided in Table 2.

Where Xt, Xt-1, Xt-11, and Xt-12 represent the runoff at 
the current time, first lag, eleventh lag, and twelfth lag, 
respectively, while IMF1-IMF8 and r represent IMFs 
and Residual produced by ICEEMDAN decomposition 
respectively. VF1-VF9 denotes intrinsic modes of 
VMD produced by the direct decomposition of runoff 
series; whereas, VDF1-VDF9 represent intrinsic 
modes of VMD produced by the decomposition of 
high-frequency component (IMF1) of ICEEMDAN 
decomposition. The first two models in Table 2 are 
the single forecasting models that are constructed 
using the observed runoff series, and the three lagged 
runoff series as inputs. The second two models are 
hybrid models based on ICEEMDAN technique and 
ML models with three lagged inputs and decomposed 
subseries by ICEEMDAN technique as their inputs. 
Similarly, the third two models are hybrid models based 
on VMD technique and ML models with three lagged 
inputs and decomposed subseries by VMD technique as 
their inputs. Finally, the last two models of Table 2 are 
the three-stage hybrid models with three lagged runoff 
series and decomposed subseries by ICEEMDAN and 
VMD techniques as their inputs. 

The dataset for input to ML models is divided into 
training (approximately 80% of the whole dataset) 
and testing datasets (approximately 20% of the whole 
dataset). Neural networks require input features to be 
normalized to match the comparative significance of the 

inputs, and this study performs the task of normalization 
by employing the minmax scalar technique as given by 
Equation 20 [65]. Moreover, the normalized values are 
also used as an input to the decomposition techniques.

Fig. 8. Performance evaluation of models using statistical indices: a) RMSE, b) NSE, c) MAE.

Fig. 9. Comparative analysis of models using performance 
indices. a) Training Period, b) Testing period.
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Models Structure, Parameters 
and Hyperparameters 

This study was performed by utilizing a 64-bit 
Windows 10 operating system, on a 3.70 GHz, Intel 
(R) Core i7-10510U CPU, with 16 GB RAM. The 
analysis was carried out in Matlab R2015a software, 
and PyCharm environment employing Python 3.6 
programing language relying on Pandas and Numpy 
packages. The accurate determination of model 
parameters is important for hydrological forecasting 
to make a model behave closer to the real world [66]. 
Tensorflow based ML models are also used by many 
researchers [67]. Therefore, ML models were developed 
with Keras using Google Tensorflow backend. The 

detail of parameters and hyperparameters selection 
by the decomposition techniques and ML models is 
provided in Table 3. 

The parameters of ICEEMDAN and VMD 
techniques are the same for all hybrid models. The 
RBF was taken as a kernel for SVR-based models, 
while the three parameters including the regularization 
parameter, epsilon and sigma were determined  
through the grid search approach by employing a ten-
fold cross-validation. The RMSprop optimizer performs 
better in recurrent neural networks [68], therefore  
this study considers RMSprop as an optimizer for the 
GRU-based models, while the other hyperparameters  
of the GRU were selected after different trials and 
errors.

Fig. 10. Scatter plots of the observed and forecasted runoff during the training period.
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Forecasting Outcomes and Relative Analysis

The input datasets as per Table 2 were applied 
to the models for training and testing of data. The 
effectiveness of the IVG model was evaluated by 
comparing the results of the IVG model with the other 
seven models during the training and testing periods. 

Fig. 8 and Fig. 9 shows the result of one month 
ahead forecasting by all models in the course of the 
training and testing periods by utilizing the statistical 
indexes. The highest error in terms of RMSE and MAE 
was recorded for SVM with values of 23.649 m3/s,
13.185 m3/s, and 13 m3/s, 16.036 m3/s, respectively 
during the training and testing periods. In terms of NSE, 
the IVG model shows the most accurate results during 
the training and testing period with values of 0.999 and 
0.981, respectively, compared to all the other models.

As per the modeling results, the IVG model shows 
the lowest error values compared to the other hybrid 
and standalone models. Similarly, the VMD-based 
hybrid forecasting models reveal better performance 
for reducing errors than the ICEEMDAN-based hybrid 
forecasting models, which shows the effectiveness 
of the VMD technique in processing the runoff time 
series. Furthermore, the GRU model shows better error 
reduction results than the SVM-based models, which 
highlights the superiority of the GRU network over the 
SVM algorithm for runoff forecasting. The comparative 
analysis of models utilizing RMSE, NSE, MAE, and R2 
also presents the lowest error values for the IVG model 
during training and testing periods while the SVM 
model shows the poorest results, as shown in Fig. 9. 

To elaborate on the superior performance of the 
IVG model for the runoff forecasting, a comparison 
of correlation between the observed and forecasted 

Fig. 11. Scatter plots of the observed and forecasted runoff during the testing period.
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runoff for different models is provided in Fig. 10 and 
Fig. 11 using scatterplots. The analysis shows a stronger 
correlation between the observed and predicted monthly 
runoff in the case of the IVG hybrid model than the 
other models. Moreover, the other hybrid approaches 
also performed well in capturing the low and high 
runoff values than the standalone models. The observed 
and forecasted runoff during the training period shows 
more degree of agreement then the testing period. 

The observed and the predicted runoffs for 
standalone models show lower correlation values than 

the hybrid models. However, in the case of hybrid 
combination, the performance of the standalone SVM 
and GRU models was significantly improved, which 
reflects the significance of the hybrid combinations.

The scatterplots of Fig. 10 and Fig. 11 reveals a 
closer linear agreement line near to the perfect line (1:1) 
for the IVG model compared to the other hybrid and 
standalone models. Moreover, the VMD-GRU hybrid 
model agrees more with the observed and forecasted 
runoff than the ICEEMDAN-VMD-SVM hybrid model 
during the testing period. The results of scatterplots 

Fig. 12. Comparison of the observed and forecasted runoff during model training period using IVG and other models.

Fig. 13. Comparison of the observed and forecasted runoff during model testing period using IVG and other models.
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reveal the suitability of ICEEMDAN, VMD and GRU 
for runoff forecasting, and feasibility of ICEEMDAN 
and VMD techniques in preprocessing the runoff data 
and forecasting monthly runoff. 

Fig. 12 and Fig. 13 provide the comparison curves of 
the actual and forecasted runoff for all models during 
the model training and testing periods. The behavior 
of the IVG model is better and stable than all the other 
models, which indicates the superior aptness of the 
IVG model to study the nonlinear features of the runoff 
series. 

The IVG model can mimic the runoff well than the 
other models in both training and testing phases, and 
overall the hybrid approaches perform better than the 
standalone models. The boxplots in Fig. 14 and Fig. 15 
visually calculate the performance of models during 
the training and testing periods. Using quartiles, the 
boxplot shows the spread of observed and forecasted 
runoff with whiskers showing the changeability outside 
of the 25th and 75th percentiles.  

The minimum value of runoff for the observed data 
is 11.012 m3/s during the training period, while the 
IVG model has a minimum runoff value of 10.506 m3/s 
that is closer to the observed runoff value than shown 
by all the other models. For example, the ICEEMDAN-
VMD-SVM and VMD-GRU models minimum runoff 
values are 7.234 m3/s and 4.553 m3/s, respectively. 
Likewise, the maximum runoff value of the IVG model 
during the training period is 372.459 m3/s, which 
again shows a closer value to the observed runoff 
value of 369.107m3/s, while ICEEMDAN-VMD-SVM 
and VMD-GRU models show the runoff values of  
341.682 m3/s and 338.258 m3/s, respectively. 

The range of runoff shown by the IVG model 
during the testing period is 304.901 m3/s, which is near 
to the observed runoff range of 299.536 m3/s, while 
the ICEEMDAN-VMD-SVM model shows a range of 
287.404 m3/s. Furthermore, the SVM-based forecasting 
models show more skewness and dispersion than the 
GRU-based forecasting models. Moreover, the training 

Fig. 14. Boxplots of the observed and forecasted runoff by different models.
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period provides more adroit forecasting than the testing 
period. The SVM and GRU standalone models reveal 
the poor performance compared to hybrid models in 
forecasting the monthly runoff by undervaluing the 
bulk of high runoff data. 

The performance of the three-stage ICEEMDAN-
VMD-SVM model is also better compared to the two-
stage hybrid models (ICEEMDAN-SVM, VMD-SVM). 
However, the performance of the ICEEMDAN-VMD-
SVM model in terms of accuracy and error reduction 
is inferior to the VMD-SVM hybrid model. The results 
reveal that the ML and decomposition-based ensemble 
models are superior to the individual ML models 
since the complex input signal is decomposed into 
simple-to-study sub-components by the decomposition 
approaches, which are promising to analyze and 
forecast.

All the hybrid models performed well in all 
simulations, although the runoff forecasting is a 
complex task. The results prove the findings of [69-
71], according to which, it is practically difficult for 
a standalone model to forecast precisely the complex 
hydrological runoff process, due to the effects of the 
external factors. The superior results of the IVG model 
prove the viability of the IVG model, for the runoff 
forecasting and can provide a feasible reference, for 
the applicability of the IVG model to forecast similar 
tasks. The IVG model can identify the complicated 
nonlinear relation between the observed and the 
forecasted runoff data with the best performance and 
accuracy. However, despite the excellent performance 
of the hybrid decomposition-based GRU and SVM 
models for monthly runoff forecasting, it is necessary 
to address several limitations, to demonstrate the future 
possibilities for further study. One of the drawbacks is 
that the performance of the models is highly dependent 
on the reliability of the hydrological data, parameter 
selection by ML models, and the mode selection  
by VMD. Moreover, the two-stage decomposition 
approach (ICEEMDAN-VMD) produces many IMFs, 
due to which the implementation of these models, is 
a time-consuming task. Consequently, the advanced 
techniques are necessary for accurate hydrological 
runoff studies to deal with the limitations of the 
existing models. The authors expect that this study 
will provide new directions to study the runoff series 
forecasting, and will be beneficial for technical and 
scientific communities. 

Conclusions

This study developed a three-stage hybrid model 
for the runoff forecasting of Swat river, Pakistan, by 
an ensemble of the ICEEMDAN-VMD decomposition 
techniques with the GRU algorithm. Seven other models 
were also developed for performance comparison by 
utilizing four statistical performance indices. The 
following can be concluded, from this study based on 

the results of the forecasting accuracy and the error 
reduction, regarding the runoff time series forecasting:
 – Three-stage hybrid models (IVG, ICEEMDAN-

VMD-SVM) combining a two-stage signal 
decomposition approach (ICEEMDAN-VMD) with 
ML models (GRU, SVM) perform better compared 
to the two-stage hybrid (ICEEMDAN-GRU, 
VMD-GRU, ICEEMDAN-SVM, VMD-SVM) and 
standalone models (GRU and SVM) in the training 
period. Moreover, the three-stage hybrid models also 
outperform in the testing period, except the VMD-
GRU model, which shows better results than the 
ICEEMDAN-VMD-SVM model.  

 – IVG model outperforms all the other models in the 
training and testing periods, which validates the 
applicability of the proposed model for the runoff 
forecasting.

 – Both the GRU and SVM techniques are feasible for 
the runoff forecasting, while the GRU is superior to 
the SVM algorithm.

 – Two-stage hybrid models coupling ML models with 
single-stage signal decomposition techniques show 
better performance than the standalone models.

 – Both VMD and ICEEMDAN decomposition 
techniques are applicable for the decomposition of 
runoff time series, and VMD performs better than 
the ICEEMDAN technique.

 – Limitations: The challenge of the availability 
of accurate runoff data, the sensitivity of 
decomposition and ML models to the parameters and 
hyperparameters selection, and lack of the physical 
relations in the case of the data-driven models add 
complexity, in the modeling of data-driven models 
for the runoff forecasting.   
Significance and future study: The superior 

forecasting results by the IVG model indicate the 
suitability of the IVG model for the runoff forecasting. 
The hybrid models combining decomposition and ML 
models highlight the suitability of ICEEMDAN and 
VMD techniques to handle the trends and noises, and 
the ML models are feasible for forecasting purposes. 
Therefore, this study will be helpful to forecast runoff 
in any river catchment, including the one with higher-
order trends and noises. Further development in the 
runoff forecasting is vital considering the societal, 
ecological, and financial advantages of the accurate 
runoff forecasting. Consequently, the future study will 
consider novel deep learning methodologies to study the 
nonlinear relations between temperature, runoff, and 
precipitation.
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