
Introduction

Ecosystem services (ES) are broadly defined as the 
benefits obtained directly or indirectly by humans from 
ecosystems and are often distinguished as provisioning, 
regulating, cultural, and supporting services [1]. 
Ecosystem services support human wellbeing in many 
ways, providing essential sources of nutrition and  

materials, regulating and maintaining global systems 
and enhancing our quality of life [1-3]. In recent years, 
more and more scholars have paid attention to the theme 
of ecological service value. As the population expands 
and energy demands increase, terrestrial ecosystems 
face increasing effects of human activity [4, 5]. Human 
activities, especially land use and land cover change, 
impact and even alter the provision of ecosystem 
services [1, 6, 7]. Conflicts between ecosystems and 
human activities can make the ecological environment 
vulnerable, leading to a series of ecological degradation 
problems, such as soil erosion, land degradation, 
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desertification and even desertification [8]. The 
rapid development of urbanization and the resulting 
population aggregation and land use change are 
considered to be one of the main reasons for the decline 
of regional ecosystem services [9, 10].

Although the utilization of ecosystem services 
knowledge in decision-making is increasingly being 
promoted by academics and policy makers, its actual 
uptake in land use management remains largely 
undetermined [11-13]. Many studies have analyzed the 
relationship between landscape characteristics or land 
use and ecosystem services [14-17]. When we explore 
the landscape features that underpin ecosystem services, 
it is difficult to link ecosystem services to specific 
causal factors because there is still a lack of clarity of 
which variables contribute to the supply of ecosystem 
services [18-20]. Socioeconomic factors affected the 
ecosystem services supply by impacting the quantity 
and quality of ecological facilities and ecological 
management measures, meanwhile, socioeconomic 
factors impacted ecosystem services demand [21]. Thus, 
identification of best-practice management directives 
in the face of climate change is challenging and 
requires consideration of socioeconomic aspects [22]. 
It is necessary to explore various influencing factors 
and influencing mechanisms of the value of ecological 
services, including socioeconomic factors reflecting 
human activities. Thus, identifying the drivers of 
change provides an opportunity to make the link 
between ecosystem services, policy making and land 
management.

In addition, current studies have paid more 
attention to the quantification of ecosystem services, 
while lacked the exploration of the driving forces of 
ecosystem services change [23]. Qualitative analysis 
of ecosystem driving forces is very common, but 
quantitative analysis is relatively few. Quantitative 
research often used traditional statistical analysis, 
RDA (redundancy analysis) [24], LMDI (logarithmic 
mean divisiona Index) [25] and other methods, which 
are essentially global methods. Social-ecological 
systems are complex, dynamic systems with strong 
interdependencies between their ecological components 
and the social actors that depend upon and shape them 
[26]. Therefore, the multi-collinearity between social-
economic factors need to be considered. One of the 
new methods for achieving higher accuracy in spatial 
analysis is the GWR method, which is highly effective 
when a spatial correlation exists between independent 
variables [27]. The study found that the bandwidth 
sensitivity of different kernel functions was different, 
and the change of bandwidth had a great influence on 
the result [28]. Therefore, the difference between GWR 
can be reflected by the kernel function and bandwidth. 
Fixed and adaptive kernel functions are two general 
ways to construct a bandwidth, where an adaptive 
function adjusts the window catchments for the density 
of data locations and a fixed function does not [29, 30].

This paper took 167 districts and counties in 
Beijing-Tianjin-Hebei region as research objects, and 
18 socioeconomic factors were selected, as well as 
four ecosystem service value indicators. PCA was 
used to eliminate the multi-collinearity of independent 
variables, so the global model of PCA-OLS was 
established. Then a local model of a PCA-GWR was 
established by using GWR method. Therefore, the 
socioeconomic impact mechanism of the ecosystem 
services value was systematically explored.

Material and Methods

Data and Processing

The socioeconomic data came from Beijing 
Statistical Yearbook, Tianjin Statistical Yearbook, 
Hebei Economic Yearbook, Beijing Regional Statistical 
Yearbook, Hebei Rural Statistical Yearbook and 
New Hebei 50 Years., as well as Tangshan Statistical 
Yearbook, Handan Statistical Yearbook, Chuzhou 
Statistical Yearbook, Qinhuangdao Statistical 
Yearbook, Xingtai Statistical Yearbook, Chengde 
Statistical Yearbook, Baoding Economic Statistics 
Yearbook, Langfang Economic Statistics Yearbook, 
Hengshui Statistical Yearbook, Zhangjiakou Economic 
Yearbook and Shijiazhuang Statistical Yearbook. The 
socioeconomic factors in the region were shown in 
Table 1. 

Ecosystem services value included Z1 (total 
ecosystem services value), Z2 (ecosystem services value 
per unit area), Z3 (ecosystem services value per capita), 
and Z4 (ecosystem services value per GDP),which were 
derived from author’s previous research results [31]. 
Because the area of each research unit was different, 
the socioeconomic factors cannot scientifically 
reflect the difference in human activity intensity. The 
socioeconomic data per unit area can be used to reflect 
this difference. The post-process socioeconomic factor 
was Yi’. In the spss22, a preliminary regression analysis 
were carried out with four dependent variables and the 
processed socioeconomic factors, and the regression 
coefficient R2 for Z2 was 66.4%, and severe multi-
collinearity existed between socioeconomic variables. 
The regression coefficients were not significant, and the 
Pearson coefficient between Z2 and Y13’, Y3’, Y5’, Y6’, 
Y7’, Y14’, Y1’ were large. PCA was used to eliminate 
the multicollinearity of the above variables (without 
rotation), and then the extracted principal components 
were used to create the global and local model. 

Principal Component Analysis

PCA is a statistical technique that finds a set of 
orthogonal low-dimensional basis functions to represent 
an ensemble of high-dimensional data describing an 
undesirably complex system [32-34]. PCA used the 
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idea of ​​dimensionality reduction to transform multiple 
variables into a few independent variables that were 
linearly combined with the original variables, so that the 
information of the original variables can be extracted 
mostly.

K1 is the principal component index formed by 
the first linear combination of the original variables, 
namely K1 = a11X1 + a21X2 +…+ ap1Xp. According 
to the mathematical knowledge, the information of the 
principal component can be measured by the variance, 
and the magnitude of the variance represented the 
size of the information. In actual operation, the first 
principal component K1 contained the largest amount of 
information. If K1 did not reflect the information of the 
original variables, the second principal component K2 
needed to be selected. In order to effectively reflect the 
original information, K2 and K1 were independent from 
each other, that was, Cov (K1, K2) = 0, so K2 was the 
comprehensive variable with the largest variance except 
K1, called the second principal component. Extracting 
K1, K2……, Km in order, which were the first, second, 
..., m-th principal component of the original variables.

    (1)

According to the above analysis, the main work of 
PCA was to determine the expression of Ki  
(i = 1,2,……,m）that was to determine the combination 
coefficient aij of the original variables; the second is the 
principal component load p (Zk, Xi) =  (i = 
1,2,……, p; k = 1,2,……,m) that calculates the degree 
of correlation between the principal component and the 
original variable Xj. 

Geographically Weighted Regression

Based on the regression of spatial coefficient 
of variation, GWR model was proposed using the 
idea of local smoothness [35, 36]. GWR was an 
extension of the least-squares regression, that was, the 
geographic location information on the sample points 
was introduced in the regression parameters, and the 
formula was:

     (2)

...where yi was the dependent variable of point i, xik 
was the explanatory variable of point i, and (ui, vi) is 
the geographical position information of the point i,  
βi0(ui, vi), βik(ui, vi) was the constant term of point i and 
k-th independent variable coefficient, respectively, and 
εi was an independent and identically distributed error 
term, usually obeying the distribution of N(0, σ2) .

Create a spatial data file, which included the number 
of each unit, the longitude Xi of the centroid, the 
latitude Yi of the centroid, the standardized independent 
variable K1, K2, K3, and the standardized Z2. The data 
file was imported into the GWR 4.0. The Gaussian 
GWR model was established as follows:

 (3)

...where Xi and Yi were the projection coordinates of the 
centroid of unit i, and K1i, K2i and K3i were the first, 
second and third principal component scores of unit i, 
respectively.

Table 1. The indicators of socio-economic factors in the region.

Factors Meaning Factors Meaning

Y1 Year-end total population/10000 persons Y10 Total retail sales of consumer goods/10000 yuan

Y2 Urban population/10000 persons Y11 General public budget revenue/
10000 yuan

Y3 Rural population/10000 persons Y12 General public budget expenditure/10000 yuan

Y4 Persons employed in various units/person Y13 Total grain output/ton

Y5 Number of ruralemployees/person Y14 Total meat output/ton

Y6 Agriculture,forestry, animal husbandry and fishery/
person Y15 Industrial enterprises above designated size/unit

Y7 Primary industry/10000 yuan Y16  Gross output value of industry above designated 
size/10000 yuan

Y8 Secondary industry/10000 yuan Y17 Investment of urban fixed assets/
10000 yuan

Y9 Tertiary industry/10000 yuan Y18 Investment in non-urban fixed assets/10000 yuan

Note: Y1-Y3 are population factors, Y4-Y6 are employment factors, Y7-Y9 are economic factors, Y10 is commercial factor, 
Y11,Y12 are financial factors, Y13, Y14 are agricultural factors, Y15,Y16 are industrial factors, Y17,Y18 represent fixed asset 
investment.



Zhu Z., et al.980

In GWR model, there are three methods for 
estimating the bandwidth parameters of the weight 
function: nearest neighbor bandwidth parameter method, 
CV (cross validation) and AIC (Akaike information 
criterion) [37]. Compared with CV, AIC was easier to 
avoid over-fitting problems, so AIC method was used 
more in the actual modeling process. Adaptive core and 
golden section search method were used to fit model, 
and the local coefficients were estimated by the nearest 
48 units, the minimum AICc (AIC for small sample 
deviation correction) was 157.306.

Results and Discussion

The Global Mechanism of Socioeconomic Factors

Output of PCA-OLS Model

At the 0.05 significance level, the KMO (Kaiser-
Meyer-Olkin) and Bartlett’s Test was close to 1, the 
original hypothesis that the correlation coefficient 

matrix was a unit matrix was rejected, indicating that 
there was a correlation between variables, so it was 
suitable for factor analysis. The extraction of each 
factor by the common factor variance was greater than 
0.8, indicating that the commonality of the variables 
was high, and the information about the variables can 
be extracted mostly, and the results of the PCA were 
effective. After extracting three principal components, 
the cumulative square sum of the extracted loads was 
89.26%, and the extraction effect was ideal.

The gravel diagram of principal components was 
shown in Fig. 1. Except for the first three factors, the 
slope of the other factors was smaller, and the first three 
factors were the main components. 

The component matrix and eigenvector were shown 
as Table 2. The feature vector can be obtained, that was 
the component matrix was divided by the corresponding 
eigenvalue. Three eigenvectors were defined because 
there are three factors.

According to the eigenvector matrix, the calculation 
formulas of the three principal components can be 
written.  Population, employment and economy played 
a balanced role in K1, which comprehensively reflected 
the situation of the primary industry, so it can be 
called the primary industry comprehensive factor; Y1 
played a greater role in K2, so it can be called the total 
population factor; Y7, Y1, Y6, Y14 played a similar role 
in K3, and it also reflected the primary industry in a 
more comprehensive way. However, compared with the 
information on K1, K3 was called the primary industry 
simplification factor.

The results of the PCA-GWR showed that, K1  
was selected in the model, and the adjusted R square 
was 0.552, and the regression fit was better. In the 
analysis of variance table, F = 205.192>F0.05(m,n-m-1) 
= F0.05(1,165) = 3.92, that was, the regression equation 
was significant at the 0.05 significance level, and the 
established OLS model was statistically significant.  
In the collinear diagnosis, the tolerance of K1 was 
greater than 0.1, and the VIF (Variance Inflation 
Factors) was less than 10, and K1 did not have multiple 

Fig. 1. Rock fragments of PCA based on socio-economic factors.

Table 2. Component Matrix and Eigenvector.

Component Matrix a Eigenvector

Component

1 2 3 1 2 3

Y1’ 0.428 0.793 0.406 0.201 0.776 0.499

Y3’ 0.948 0.113 -0.151 0.445 0.111 -0.186

Y5’ 0.942 0.197 -0.118 0.442 0.193 -0.145

Y6’ 0.841 0.096 -0.351 0.395 0.094 -0.431

Y7’ 0.761 -0.28 0.432 0.357 -0.274 0.531

Y13’ 0.88 -0.163 -0.212 0.413 -0.159 -0.26

Y14’ 0.717 -0.498 0.324 0.336 -0.488 0.398

Extraction Method: Principal Component Analysis.   a. 3 components extracted.
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collinearity. From this, PCA-OLS equation can be 
established.                                 

Analysis of the Global Impact Mechanism

Socioeconomic related to the primary industry had 
a negative impact on Z2, such as Y13’, Y3’, Y5’, Y6’, 
Y7’, Y14’; and factors related to the secondary industry, 
tertiary industry, fiscal revenue, such as Y2 ‘, Y4’, Y8’, 
Y9’, Y15’, Y16’, Y17’, Y18’, Y10’, Y11’, Y12’, had less 
effect on the Z2. The goodness of fit test based on 
PCA-OLS was not ideal. After eliminating the multi-
collinearity, it can explain the variation of Z2 by 
55.4%. Considering the influence of DOF, 55.2% of the 
variance can be explained. And socioeconomic factors 
can only affect or change the ecosystem services value 
in the region to a certain extent.

There were some spatial and temporal heterogeneity 
in socioeconomic factors, the global model of PCA-
OLS cannot deal with an imbalance problem well, and 
it was necessary to further establish a local model of 
socioeconomic factors.

The Local Impact Mechanism of Socioeconomic 
Factors

Testing the Fitting Effect of PCA-GWR 

The analysis of variance and the variability test 
results were shown in Table 3 and Table 4.

The test results showed that the GWR model 
improved the effect of the global model, the GWR 
model solved the problem of spatial non-stationarity, 
and the fitting effect of the GWR model was better than 
the global model of OLS.

According to geographical variability tests of 
local coefficients, the standard deviation of principal 
component variables were all negative values, indicating 
that three principal component variables had spatial 
non-stationary. The fitting results of PCA-OLS and 
PCA-GWR model were shown in Table 5.

From the comparison of evaluation index, the 
difference of the AIC and AICc between the two 
models was much larger than 3, which were 202.8346 
and 190.2718, respectively, the PCA-GWR was better 
than the PCA-OLS model. From the CV value, the 
PCA-GWR model was also smaller, further indicating 
that the results of the local model were better. The 
R-square and the adjusted R-square of the local model 
were 0.3452 and 0.3291 higher than the global model, 
respectively. The local model had a great explanatory 
power for the variation, and the results were very 
satisfactory. The local model solved the problem of 
spatial non-stationarity of Z2 and three principal 
component factors.

Statistical Analysis of Local Coefficients

The local model can obtain the local coefficients  
of each unit. Descriptive statistics for local coefficients 

Table 3. Analysis of variance by geographic weighted regression.

Source SS DF MS F

Global Residuals 73.649 163

GWR Improvement 57.296 31.776 1.803

GWR Residuals 16.352 131.224 0.125 14.46992

Table 4. Geographical variability tests of local coefficients.

Variable F DOF for F test DIFF of Criterion

Intercept 16.67097 5.094 138.755 -65.1794

K1 15.17711 5.067 138.755 -59.1609

K2 2.754103 5.238 138.755 -1.56227

K3 3.210676 4.896 138.755 -3.9089

Note: positive value of diff-Criterion (AICc, AIC, BIC/MDL or CV) suggests no spatial variability in terms of model selection 
criteria.       F test: in case of no spatial variability, the F statistics follows the F distribution of DOF for F test. 

Table 5. The fitting results of OLS and GWR model. 

Model AIC AICc BIC/MDL CV R
square

Adjusted
R square

PCA-OLS 347.20493 347.5776 362.794899 0.507451 0.556332 0.545378

PCA-GWR 144.37031 157.30581 235.555173 0.439754 0.901492 0.874429
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of the three principal components were shown in  
Table 6.

By observing the inclusion relationship between 
the upper and lower quartiles of the local coefficient 
and the ±1 standard deviation of global coefficients, 
this paper analyzed whether the distribution of the 
principal components had spatial non-stationarity. The 
upper and lower quartile range of K1’s local coefficients 
were [-0.42792, -0.14623], the standard deviation range 
of global coefficients were [-0.373739, -0.324789]; The 
upper and lower quartile range of K2’s local coefficients 
were [-0.12855, 0.042961], the standard deviation range 

of global coefficients were [-0.066678, 0.035526]; The 
upper and lower quartile range of K3’s local coefficients 
and the standard deviation of global coefficients 
were [-0.05911, 0.109685] and [-0.012063, 0.116263], 
respectively. The range of ±1 standard deviation of 
the global coefficients cannot contain the range of the 
upper and lower quartiles of the local coefficients, the 
local coefficients of K1, K2 and K3 all had spatial non-
stationarity to some extent.

The distribution of local coefficients revealed the 
difference in the effects of principal components. In the 
whole region, there was a negative correlation between 

Fig. 2. Local regression coefficients distribution. 

Variable Mean STD Min Lwr Quartile Median Upr Quartile Max

Intercept -0.18311 0.315514 -0.70708 -0.51014 -0.10328 0.082729 0.45852

K1 -0.3217 0.222124 -0.74189 -0.42792 -0.27356 -0.14623 -0.01777

K2 -0.02905 0.156493 -0.392118 -0.12855 -0.05004 0.042961 0.380216

K3 0.023199 0.171733 -0.541195 -0.05911 0.013717 0.109685 0.535023

Table 6. Summary statistics for local coefficients. 
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K1 and Z2, and the negative effect of the first principal 
component was very significant; the negative correlation 
between K2 and Z2 was dominant, the negative effect 
of K2 was more obvious, but weaker than K1; while 
K3 had a positive and negative effect . The units with 
negative coefficients of K1 and K2 were 167 and 115, 
accounting for 100.00% and 68.86%, respectively; the 
units with positive and negative coefficients of K3 
were 93 (accounting for 55.69%) and 74 (accounting for 
44.31%), the absolute values of positive and negative 
coefficients were very close, so in the whole region, Z2 
was affected by the positive and negative effects of K3. 

Spatial Distribution of Local Regression Coefficients

Visualization analysis of local coefficients of three 
components in ArcGIS 10.2, the distribution of local 
coefficients were showed as Fig. 2.

The most significant negative effect of K1 was 
located in Chengde, Qinhuangdao and Tangshan in 
the north, especially in the northeast, while most of 
the southeastern part of the region had less negative 
effects; The negative effect of K1 was gradually 
weakened from the northeastern to the northwest and 
then to the southwest of the region. The negative effect 
of K2 was mainly located in a small part of Chengde 
and Tangshan in the northeast, in the northwest of the 
region, such as Zhangjiakou, Beijing and Baoding, there 
was a positive effect; the positive effect of K2 gradually 
weakened from the Midwest to the south and then to 
northeast. The effect of K3 was more complicated: 
the regions with more positive effects were located 
in Chengde, Beijing, Baoding, and parts of Cangzhou 
and Qinhuangdao, the areas with negative effects were 
located in Zhangjiakou, Tangshan and Langfang, the 
positive and negative effects of the northern part of 
the region were more obvious, but the effects were 
relatively scattered. It was more obvious that the spatial 
heterogeneity of the interaction between K2 and K3 on 
Z2, in addition to the complexity of the socioeconomic 
factors, and the information extracted by PCA had 
a declining explanatory power for the dependent 
variables.

Discussion

Selection of Socioeconomic Factors

Previous studies had focused on the impact of 
socioeconomic factors on the ecosystem services 
value. Some scholars have confirmed the impact of 
urbanization on the ecosystem services value [38-40], 
Urbanization indicators focus more on the internal 
situation of the city. Even in the highly urbanized 
Beijing-Tianjin-Hebei region, the proportion of non-
urban construction areas is still very large, and it is 
obviously unscientific to ignore the relevant factors of 
the primary industry. Some scholars choose individual 
factors to study the interaction between socioeconomic 

factors and ecosystem services value [41, 42]. In these 
studies, the choice of socioeconomic factors was 
arbitrary. It was assumed that there was a relationship 
between the selected factors and ecosystem services 
value. In this paper, the socioeconomic factors were 
very comprehensive, including population, employment, 
economy, commerce, finance, agriculture, industry, and 
fixed asset investment. Seven factors were selected by 
correlation analysis, and then the PCA method was used 
to extract the main information about these factors. This 
not only avoided the arbitrariness of factor selection, but 
also eliminated the multi-collinearity between social-
economic factors. The data used to be relatively easy to 
obtain from the statistical yearbook, which made these 
methods higher operability and suitability.

Improvement of GWR Model

GWR is an exploratory technique for examining 
process non-stationarity in data relationships, which can 
reflect the local differences of social-economic impact 
mechanism in different research units, and it is not 
possible for the global model. But a standard GWR may 
underestimate localized spatial heterogeneity where 
it is strongly present, hyper-local GWR can provide 
an alternative, complementary and more nuanced 
interpretation of localized regression [43]. GWR model 
cannot exclude multi-collinearity among factors, 
Bayesian method can solve this problem [44], thus the 
mechanism of seven factors can be analyzed at the same 
time, and the scalability of the model can be enhanced. 
Limited by the least squares criterion, the parameter 
estimation of GWR will produce outliers, and the local 
linear geographic weighted regression can automatically 
reduce the influence of outliers [45]. The general GWR 
model does not consider the time characteristics, so 
it needs to be improved in application. Some scholars 
put forward Geographically and temporally weighted 
regression（GTWR）model [46], which is closer to the 
real situation, and the regression results are better than 
standard GWR[47]. Thus, an improved method can be 
implemented at low administrative levels to get detailed 
differences of the impact mechanism with ecosystem 
services value.

Conclusions

This paper comprehensively used PAC, OLS and 
GWR to explore the global and local impact mechanism 
of socioeconomic on ecosystem services value in 
Beijing-Tianjin-Hebei region. The results suggested 
that, the factors related to the primary industry were the 
main socioeconomic factors, while the socioeconomic 
factors such as the secondary industry, the tertiary 
industry, and fiscal revenue and so on, had little effect 
on it. Socioeconomic factors can affect or change 
the value of ecosystem services to a certain extent. 
The comprehensive factor of primary industry had 
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a negative effect, and the negative effect of the total 
population factor was weaker than the comprehensive 
factor, meanwhile, the effect of the simplification factor 
of the primary industry was positive or negative. The 
local PCA-GWR model better solved the spatial non-
stationarity of independent and dependent variables, 
and it was superior to the global models of OLS and 
PCA-OLS. A standard GWR model can be further 
improved to reflect the local differences of the impact 
mechanism in more detail.
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