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Abstract

Environmental hazards have motivated the development of a novel perspective of urban 
environmental quality as a planning strategy prerequisite for the integration of greenery resources in 
urban infrastructures. The accurate genotype stress response presents a condition for urban adaptation of 
plants. The goal of this review paper is to present phytoremediation at molecular levels via genes related 
to transport, accumulation and sequestration/detoxification of heavy metals from the environment. The 
overexpression/alteration of the native plant-specific gene(s) and transgenic plants whose metal-uptake 
proteins and metal-efflux proteins enable efficient metal uptake and transport, give rise to transgenic 
approaches. In a line with this, overexpression/alteration of a gene(s) encoding for phytochelatins and 
glutathione increase the sequestration of toxic HMs in the vacuoles. Since tolerance to high levels of 
metals by hyperaccumulators is under genetic control, many studies used genetic approaches to define 
the genetic determinants of these hyperaccumulators. Many plant species, particularly members of 
the Brassicaceae family are known heavy metal hyperaccumulators. This paper examines molecular 
aspects of hyperaccumulator plant species from genera Brassica, Noccea, Alyssum and Arabidopsis 
in phytoremediation of heavy metal polluted environments, and provides an overview of potential 
transferable genes that could improve metal tolerance and/or accumulation, as the major targets for 
phytoremediation. Therefore, plant species identified to have the potential to grow and remediate the 
heavy metal polluted urban environments require greater attention. 

  
Keywords: heavy metals, environmental pollution, hyperaccumulator genes, Brassicaceae for urban 
settings

*e-mail: magdalenanikolic3@gmail.com

DOI: 10.15244/pjoes/122770 ONLINE PUBLICATION DATE: 2020-09-08  



Nikolić M., Tomašević V.524

Introduction

One of the major global and recurrent environmental 
issues is the pollution of soil and water with heavy 
metals (HMs), with negative effects on ecosystems 
and public health, and subsequent economic losses.  
Considering that around 75% of periodic table elements 
are metals, a growth in their use increases the amount 
of metallic substances in the environment [23]. 
Minerals weathering, erosion, and volcanic activity are 
the most important natural sources of these metals in 
the environment. There are many more anthropogenic 
sources of heavy metals: industrial discharges, 
industrial mining, smelting, electroplating, agricultural 
use of organic and chemical fertilizers, biosolids and 
pesticides; emissions from incinerators of municipal 
waste, car exhausts; atmospheric deposition; sludge 
dumping, etc. Elemental pollutants such as arsenic (As), 
copper (Cu), cadmium (Cd), mercury (Hg), nickel (Ni), 
zinc (Zn), and lead (Pb) are toxic elements that cannot 
be converted by any biochemical reaction, and therefore 
persist in the ecosystem [39]. The ubiquitously present 
pollutants found at waste sites are metals and other 
inorganic contaminants. However, their remediation is 
one of the most technically challenging, because metals 
cannot be degraded, unlike organic contaminants [49]. 
Certain plant species have the genetic potential to 
remove, degrade, metabolize, or immobilize a wide 
range of contaminants from soil and water. The ability 
to tolerate high concentration of toxic heavy metals 
is related to specific genes related to phytochelatins 
and glutathione pathway for vacuolar heavy metal 
sequestration, and antioxidant defense system [2]. These 
plants belong to more than 50 families, 25% of which 
are from family Brassicaceae [22].

The Implication of Brassicaceae 
in the Remediation of Urban Environments

Urban soils are known recipients of large amounts 
of heavy metals from a variety of anthropogenic 
sources, including industrial wastes, vehicle emissions, 
coal-burning waste, and other activities. Heavy 
metals in public areas (such as gardens and parks) are 
particularly hazardous because of human exposure to 
significant pollution levels [57]. Plants belonging to the 
Brassicaceae family are suitable for phytoremediation 
because of considerable growth rate and high biomass 
[51]. For instance, Arabidopsis halleri and Arabidopsis 
arenosa are more tolerant of heavy metals compared to 
Arabidopsis thaliana, therefore this plant gives insight 
in processes that take place during heavy metal toxicity 
[67]. Species whose roots contain more than 100 mg 
Cd x kg-1, 1,000 mg Ni and Cu x kg-1, or more than 
10,000 mg Zn and Mn x kg-1 (dry weight) when grown 
in metal-rich soils are hyperaccumulator plant species 
[1]. Furthermore, genetic modification/manipulation 
can greatly increase this potential. These transgenic 

strategies involve genes encoding for specific metal 
uptake and transport proteins. Invoking enhancement 
of adaptive capacity in the adaptability of transgenic 
varieties, phytoremediation will be greatly improved [2]. 
Best-known examples of hyperaccumulator species in 
the Brassicaceae family are Noccea caerulescens subsp.
virens (Jord.) Kerguélen I, Alyssum (Alyssum murale 
Waldst. & Kit.; Alyssum lesbiacum (Candargy) Rech.f. 
and Arabidopsis (Arabidopsis halleri (L.) (O’Kane & 
Al-Shehbaz) [syn. Cardaminopsis halleri (L.) Hayek], 
Arabidopsis thaliana (L.) Heynh). [21] Coronopus 
didymus (L.) Sm. [65, 66] Barbarea arcuata (Opiz ex 
J.Presl & C.Presl) Rchb rorippa palustris  (L.) besser, 
Brassica campestris  (L.) [19], Brassica rapa  (L.) [87].

Specific Genes in Similar Species Involved 
in Heavy Metal Tolerance and Accumulation

Uptake by Metal Transporters in the Plasma 
Membranes 

Plants possess two classes of heavy metal 
transporter proteins categorized into metal-uptake 
proteins and metal-efflux proteins. Metal-uptake 
proteins can transport essential heavy metals into the 
cytoplasm. Metal-efflux proteins catalyze the efflux of 
toxic heavy metals from the cytoplasm, or move these 
metals into the vacuole, helping plant detoxification 
[36]. These proteins include cation diffusion facilitator 
(CDF) family, heavy metal CPx-ATPases, Nramp 
(natural resistance-associated macrophage protein) 
family and ZIP (Zinc-regulated transporter iron-
regulated transporter Proteins) family [29]. Enhanced 
metal uptake from the roots and translocation to the 
shoots in hyperaccumulators is a tightly controlled 
process mediated by membrane transport proteins. 
N. caerulescens contains at least three different 
expressed genes: ZTP1 that is highly similar to the 
Arabidopsis ZAT-Zn gene, and ZNT1 and ZNT2 that 
resemble the Arabidopsis AtZIP4 gene, especially 
ZNT1 with 90% cDNA and 87% amino acid overlap 
[44]. In Zrt this sequence is HDHDHD and in Irt1, 
this motif is GHGHGH. These histidine-rich motifs 
are part of the putative cytoplasmic domain, which 
may define a putative metal binding site for the 
transporter [52]. According to Salome (2019), lime-
induced chlorosis/ iron-deficient plants showed limited 
expression of Fe+2 IRT1 transporter to roots. Also, the 
potential for cobalt and cadmium uptake was observed 
[60]. Compared to the wild type, overexpression of 
NcZNT1 in transgenic Arabidopsis plants indicated 
increased Zn and Cd tolerance and accumulation, 
when compared to non-transformed wild-type plants. 
Also, Zn deficiency activation of NcZNT1and AtZIP4 
promoters in A.thaliana reviled the usual cis-regulatory 
sequences in both promoters associated with gene 
regulation. Furthermore, both AtZIP4 and NcZNT1 
promoters were involved in the Zn deficiency response. 
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However, under low zinc regimes, the activity of the N. 
caerulescens NcZNT1 promoter expression was higher 
[45]. As reported by Teng et al. (2019) N. caerulescens 
Ni exposure activated NcIRT1 expression to higher 
Fe accumulation, at the same time, Fe deficiency 
increased Ni accumulation. Increased Zn uptake is 
driven by overexpression of members of the ZIP family 
of transporters. Additionally, this research showed that 
Ni exposure triggers the Zn transporter gene NcZIP10, 
and the Fe transporter gene NcIRT1, indicating their 
role in Ni uptake [73]. Also, A. thaliana Ni exposure 
led to increased Fe accumulation in plants by the Fe(II) 
transporter gene IRT1 activation [73]. Some heavy 
metal transporter cDNAs are very likely involved in 
both root metal uptake and metal partitioning between 
the root and shoot tissues in A. halleri (e.g., ZIP6), and 
N. caerulescens (e.g., ZIP4). Other candidate genes, 
HMA2, and HMA4 encode for a plasma membrane 
protein of P-type ATPase family (HMAs) involved in 
hyperaccumulation and hypertolerance to Zn and Cd 
in A. halleri [8, 71]. The AtHMA4/ NcHMA4 highly 
expressed in roots and shoots of both A. halleri and 
N. caerulescens evidence the role of HMA4 in xylem 
metal loading in roots, in metal exclusion from metal-
sensitive tissues (root tip, cambium), and metal 
distribution within leaves [30]. Brassica rapa (L) is 
another candidate plant with high Cd accumulation 
potential. The heavy metal ATPase gene BrHMA3 was 
identified as a gene that encodes a tonoplast-localized 
Cd transporter, with the role in the Cd root to shoot 
translocation [55, 87, 88].

Transport in plants is also mediated by the 
NRAMP (natural resistance-associated macrophage 
protein) family transporters. In Arabidopsis six of 
seven NRAMP proteins are divided into two groups. 
AtNRAMP1 and AtNRAMP6 belong to the first group, 
and AtNRAMP2 through 5 comprise the second group 
[61]. While AtNRAMP1 acts as a physiological Mg 
transporter, the AtNRAMP3, and AtNRAMP4 mediate 
the remobilization of Fe from the vacuolar store [60]. 
Besides, AtNRAMP3 functions as Fe, Mn, Cd, and Zn 
transporter between the vacuole and the cytosol, and its 
function is linked with Fe. While under Fe sufficient 
conditions, overexpression of AtNRAMP3 does not 
change metal content; under Fe starving condition 
overexpression of AtNRAMP3 reduces Zn and Mg in 
the cell [29]. AtNRAMP4 is responsible for Fe, Mn Cd 
and Zn transport, while AtNRAMP6 transports Cd and 
regulates the distribution of Fe and Mn within the cell 
[13]. Many members of ATPase and NRAMPs were 
identified in both A. halleri and A. thaliana. Similarly, 
N. caerulescens NcNRAMP3 and NcNRAMP4 can 
transport various metal cations, including Fe, Mn, Cd, 
Ni, and Zn [61].

While the ZIP, P-type ATPases (HMAs), and 
NRAMPs influx protein families are responsible for 
uptake of metals such as Zn and Cd from the soil, 
transport into the cells and distribution throughout the 
plant, the efflux CDF proteins are involved in metal 

vacuolar sequestration [32]. Within the Arabidopsis 
genome, 12 nucleotide sequences encode members of 
the CDF transporter family [84]. The ZAT/ZTP1/MTP1 
gene belonging to the CDF family of cation transporters 
identified in N. caerulescens bears sequence homology 
to the A. thaliana transporter AtMTP1 (At2g46800) 
[41]. A. halleri AtMTP1 gene highly expressed in 
leaves and roots [19] encodes a vacuolar membrane 
Zn transporter, responsible for metal sequestration in 
leaf vacuoles [42]. However, differential expression 
of MTP1 genes variations in A. halleri, and different 
Zn tolerance levels when expressed in yeast, indicate 
different evolutionary fates for different copies of MTP1 
genes [20, 63] Also, it was found that up-regulation of  
Fe-deficiency response genes, such as AtMTP3, 
contributes to metal homeostasis in non-accumulator A. 
thaliana [5]. ZTP1 shares high sequence homology with 
NgMTP isolated from the Ni hyperaccumulator, Noccea 
goesingense. Like NcZTP1 and AtMTP1, NgMTP1 is 
located in vacuolar membrane [46]. In nonaccumulator  
A. thaliana, AtMTP1, PtdMTP1, AtMTP3, and NgMTP1 
genes were involved in increased Zn accumulation [31]. 
The source is not in the list of reference. Transgenic 
Arabidopsis thaliana (SULTR3 quintuple mutant) 
shows increased sulfur uptake via sulfate transporter 
SULTR3 subfamily encoded by the Sultr gene. Placed 
into chloroplast membrane, SULTR 3 transporter 
increased sulfate influx into the chloroplast for more 
than than 50% [6, 11]. Also, Arabidopsis basic helix-
loop-helix transcription factors FIT, AtbHLH38, and 
AtbHLH39 are involved in plant Cd-Fe interactions [81]. 
Furthermore, there is a link between over co-expression 
of FIT with AtbHLH38 or AtbHLH39 and triggering 
HMA3, MTP3, IREG2, IRT2, NAS1, and NAS2 which 
has a role in vacuole HM sequestration as well in the 
synthesis of NA [81].

Tolerance to heavy metals, especially Mg and Ni, 
plays a crucial role in plant adaptation to serpentine 
soils. The well-known role of Ca is not only in growth 
and metabolic regulation but also Ca regulate the 
function of membrane protein transport systems and 
gene expression. Detoxification system is also based 
on a Ca role in glutathione and phytochelatin synthesis, 
thereby prevention metal ions entering the cell [26]. 
Therefore, genes involved in Arabidopsis and Alyssum 
Ca: Mg and Ca: Ni homeostasis are key factors 
associated with the toxic concentration of essential 
metals [72, 86]. A vacuolar membrane transporter, 
cation/proton antiporters, and calcium exchanger 
1 CAX1 is Ca2+/H+ antiporter that reduces cytosolic 
calcium and enhances Mg and Ni tolerance. According 
to Ghasemi et al. (2018), the enhanced concentration 
of calcium in the cytosol was related to increasing Ni 
and Mg tolerance. Additionally, A. thaliana mutation of 
CAX 1 causes increase Cd sensitivity and decreased Ni 
tolerance. Taking into consideration that in serpentine 
soil Ca is very low compared to Mg and Ni, without 
a minimum cytosolic Ca concentration, Ni tolerance 
trough Ni detoxifying mechanisms would be successful 
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in Alyssum inflatum [24, 25].  Furthermore, the Alyssum 
inflatum and Alyssum lanceolatum genetic structure 
indicate HM tolerance in Alyssum, thus, identifying 
candidate genes such as CAX1 was essential for 
understanding plant adaptation to serpentine soil [53]. 

Chelation and Sequestration

Chelation and sequestration of heavy metals by 
particular ligands happen both at cellular and sub-
cellular levels, in leaf epidermal cells and/or in cell 
walls and vacuoles from hyperaccumulator plants [2, 
90]. By binding the PCs in complexes with heavy metals 
and sequestering the complexes inside their cells, plants 
avoid metal toxicity [2, 83]. Plants also produce a range 
of ligands for Cd, Cu, Ni, and Zn. The ligands include 
carboxylic acids, such as citric, malic, etc., and amino 
acids, such as histidine (His) [90]. 

Nitrogen Donor Ligands

Nicotianamine (NA) is a nonproteinogenic 
amino acid that forms strong complexes with most 
transition metal ions, and its role seems to be 
metal hyperaccumulation, both in A. halleri and in 
N.caerulescens [5]. Enzyme NA synthase (NAS) is 
involved in chelation of many transition metal ions [9]. 
Consider to be one of the major ligands, NA is involved 
in hyperaccumulation of Zn, Cd, and Ni [15] as well as 
iron (Fe), copper (Cu), and manganese (Mn) [33, 64].

Moreover, the expression of NAS1 and NAS2 
(nicotianamine synthases) genes is Cd up-regulated, 
because of high concentrations of metal-chelator 
nicotianamine (NA), indicating NA involvement in 
Cd-tolerance [5]. Higuchi et al. (1999) purified NAS 
protein and isolated, cloned, and characterized NAS1, 
NAS2, NAS3, NAS4, NAS5-1, NAS5-2, and NAS6 
genes encoding HvNAS and HvNAS-like proteins from 
Fe-deficient barley (Hordeum vulgare L. cv 
Ehimehadaka no. 1) roots [34]. To identify the gene 
encoding NAS in Arabidopsis thaliana, Suzuki et 
al. (1999) used the nucleotide sequence of the NAS 
gene from barley (HvNAS).  Searching A. thaliana 
databases, they found several ESTs and three genomic 
sequences highly homologous to HvNAS. The authors 
isolated the NAS orthologues in A. thaliana AtNAS 
(AtNAS1, AtNAS 2, and AtNAS 3). The expression of 
AtNASl was detected in both shoots and roots of A. 
thaliana, AtNAS3 expression was only detected in the 
shoots, while AtNAS2 expression was not detected in 
any organs [70]. Increase NA synthesis in A.thaliana 
roots was Zn, and Cd hyperaccumulation indicator 
[16]. However, decreased synthesis of NA has the 
opposite effect on Ni accumulation. Investigating, Zn 
tolerance of A.halleri wild type and AhNAS2-RNAi 
interference plants, Cornu et al. (2015) showed a 
strong relation between increase NA synthesis in both 
plants exposed to elevated Zn concentration. Also, it 
was shown that A.halleri NAS genes are involved in 

the adaptation of AhNAS2-RNAi transgenic plants. 
Zinc-induced Facilitator 1 (ZIF1) is an important Zn 
related protein placed in the vacuolar membrane of 
A.thaliana. However, this protein family is highly tight 
to NA when it comes to Zn root to shoot translocation. 
Thus, ZIF is not able to transport Zn–NA complexes 
or Zn alone, but with coexpression of ZIF1 and a NAS 
gene [13]. Furthermore, there is one more membrane-
localized protein family, yellow strip-like (YSL) gene 
family related to Fe(II)–NA yeast transporter [17]. 
Brassica juncea BjYSL7 encodes for this group of 
transporters, that has been involved not only in Fe but 
also in Cd and Ni root to shoot translocation. Moreover, 
with a 90% sequence identity with N. caerulescens 
NcYSL7 and A.thaliana AtYSL7 [78]. YSL members 
in Arabidopsis, AtYSL1 and AtYSL3 predominantly 
mediate Fe(II)–NA and Fe(III)–citrate, AtYSL2 besides 
transporting Fe(II)–NA transport Cu–NA in yeast 
AtYSL4 and AtYSL6 are reported to localize in the 
vacuole membrane and chloroplast envelope in response 
to the detoxification of excessive metals in plant cells 
although there is no transport capacity for Fe(II)–NA 
in the yeast [10, 15, 18]. Additionaly, Chen et al. (2018) 
have cloned the YSL1 gene from M. sacchariflorus 
MsYSL1 is a transporter involved in the creation of 
metal–NA complexes in vivo. The overexpression 
of MsYSL1 in transgenic Arabidopsis increased Cd 
detoxification and translocation [10]. 

Sedum alfredii Hance SaNAS1 encoded protein 
responsible for enhanced Cd and Zn roots and shoots 
uptake. Transgenic Arabidopsis plants expressing 
SaNAS1 showed the same pattern associated with 
increased Cd and Zn accumulation, tolerance and 
nicotianamine production in plants [7, 12]. Also, 
microarray analysis in N. caerulescens showed that 
all four NAS genes were highly expressed in N. 
caerulescens compared to non-hyperaccumulator 
A. thaliana when exposed to high levels of Zn, Cd, 
and/or Ni [75]. 

Amino Acids (AA) is also known as a group 
of nitrogen donor ligands as Changed pathways of 
nitrogen utilization of tested plants were noted. The 
glutamic acid and glutamate contents in plant biomass 
were decreased under Cd content more than 60mg/kg 
soil [89]. According to Zemanova et al. (2013), under 
Cd stress for N. caerulescens glutamate were main for 
nitrogen transport, while for A. halleriare asparagine 
were noted. Also, under Cd stress, the content of 
aspartic acid and proline was determined only in 
N. caerulescens, while A.halleriare didn’t show any 
changes. At the molecular level, heavy metal tolerance 
of plants is under the regulatory genes, that encode 
various transcription factors (TFs) and/or functional 
genes encoding metabolic compounds such as amines, 
etc. [67]. In A. thaliana exposed to Cd, various TFs 
families, AP2/ERF superfamily and  ERF1 and ERF5, 
as well as the dehydration-responsive element-binding 
protein (DREB) transcription factor were induced 
[4]. However, Brassica oleracea AP2/ERF-like genes 
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haven’t had an expression profile exposed to abiotic 
stress (74). Furthermore, 5-aminolevulinic acid (ALA), 
is a well-known growth regulator, that is proved to 
be involved in Cd tolerance in Brassica napus L. 
Moreover, ALA-induced Cd2+ tolerance in B. napus 
is related to gene expression of antioxidant enzymes 
superoxide dismutase (SOD), catalase (CAT), and 
peroxidase (POD) as well as glutathione, carotenoids, 
and ascorbate [3].

Sulfur Donor Ligands

Phytochelatins (PCs) and metallothioneins (MTs) 
belong to different classes of cysteine-rich, heavy 
metal-binding proteins [8, 14]. PCs are enzymatically 
synthesized peptides, from the tripeptide glutathione 
(γ-Glu-Cys) -Gly) [62, 68]. PCs are not genetically 
encoded but are non-ribosomal peptides [7]. Also, 
PC peptides are not primary translation products of 
mRNAs but are synthesized enzymatically [63]. The 
synthesis of PC is followed by a decrease in cellular 
levels of glutathione (GSH) [50]. As products of an 
enzymatic reaction involving the enzyme PC synthase, 
PCs are positively correlated with metal accumulation 
in plant tissues [50], i.e., plants naturally produce 
phytochelatins when exposed to Cd, Pb, Zn, Ag, 
Hg, As and Cu. Because of the structural similarity 
between PCs and GSH, GSH is thought to be the 
substrate for PCs biosynthesis [8, 14]. As a precursor 
of PCs, GSH- dependent pathway takes place in Cd 
sequestration [5, 9]. Also, GSH has a crucial role as a 
cellular antioxidant, as a reactive oxygen species (ROS) 
signaling molecule, and as a metal chelator [42]. In 
comparison to nonaccumulators, high concentrations 
of cysteine O-acetylserine and GSH were found 
in Ni-hyperaccumulating Noccaea species and 
hyperaccumulators N. caerulescens and N. goesingense. 
Increased serine acetyltransferase (SAT) activity and 
higher steady-state GSH levels were in correlation 
with high expression levels of genes encoding SAT 
and glutathione reductase in N. goesingense. High 
expression of NgSAT in A. thaliana was reported to 
confer Ni, Co, and Zn tolerance, and to a small extent 
Cd tolerance [42]. According to Chen et al., (2015), 
AtMAN3, which encodes an endo-b-mannanase 
regulates Cd tolerance of Arabidopsis thaliana through 
the GSH-dependent PC synthesis pathway. In a line 
with this exposure to Cd trigger MAN3 expression 
followed by increase mannanase activity and a larger 
amount of mannose in cell walls [5, 9]. Furthermore, 
exposure to Cd triggers an ABC-type transporter 
AtABCC3 known as a transporter of PC-Cd complexes. 
This finding showed that overexpression of AtABCC3 
increases Cd tolerance and vacuolar Cd content in 
protoplast [6]. Song et al. (2017) investigated Cd stress-
regulation pathway in transgenic Arabidopsis, which 
involves  Ferrochelatase-1 (FC1, EC4.99.1.1) as the 
terminal enzyme encoded by AtFC1 gene. It was noted 
that activation of AtFC1 by Cd exposure exceeded the 

primary root by PCs-dependent detoxifying pathway, 
and increased biomass and chlorophyll content [69].

As a metal chelator, GHS acts through its thiol 
groups, which have high metal-binding affinity [43]. 
GSH1 and GSH2 genes involved in GSH synthesis 
were identified in A. thaliana when exposed to Cd 
[43]. The expression of GSH1 and GSH2 contributed to 
Cd tolerance, while a decrease in GSH levels reduced 
Cd tolerance [43]. Furthermore, Arabidopsis AtFC1 
regulate Cd stress response in hematin triggering  
GSH/PCs-synthesized gene expression, GSH1, GSH2, 
PCS1, and PCS2 [69]. It was also found that coexpression 
of  PCS1 and GS in transgenic Arabidopsis increased 
PC production, Cd, and As tolerance and accumulation 
[28]. 

Also, GSH is essential in Fe-mediated Zn tolerance 
in A. thaliana [43]. Xiang and Olive (1998) have treated 
Arabidopsis plants with Cd or Cu. The plants responded 
by increased transcription of the genes for glutathione 
synthesis, g-glutamylcysteine synthetase, and 
glutathione synthetase, as well as glutathione reductase. 
The study showed that the response was specific for 
metals whose toxicity is thought to be mitigated through 
phytochelatins, and for toxic and nontoxic metals, 
which did not alter mRNA levels. It was also reported 
that neither oxidative stress (as a result of exposure 
to H2O2) nor oxidized or reduced glutathione levels 
were responsible for activating transcription of these 
genes. Unlike H2O2, oxidized or reduced glutathione, 
jasmonic acid treatment increased mRNA levels and 
the capacity for glutathione synthesis but did not 
increase the glutathione content in unstressed plants, 
which indicated that the glutathione concentration was 
controlled at multiple levels. Interestingly, jasmonic 
acid activated the same suite of genes for GA synthesis, 
which suggests that it might be involved in the signal 
transduction pathway for copper and cadmium [82]. 
Sidhu et al. (2018b) have pioneered the applicability 
of EDDS (chelant ethylenediamine disuccinic acid) to 
boost Ni-phytoextraction by Coronopus didymus. The 
results of the study indicated that EDDS treated soil 
increased antioxidant activities of superoxide dismutase, 
catalase, and glutathione peroxidase, raising of H2O2 
content and MDA levels and production of superoxide 
anion. The increased antioxidant enzyme activity led to 
increased binding affinities to Ni, as well as enhanced 
Ni translocation in plant tissues [66]. Also, it was found 
that Coronopus didymus has the potential to ameliorate 
Pb-contaminated soils. The study showed greater Pb 
accumulation potential in roots compared with the 
shoots, with the bioconcentration factor less than 1, and 
the translocation factor greater than 1 [65]. 

The class of polyhydroxy steroids called 
Brassinosteroids (BRs) is found to have protective 
activity in the plants exposed to various stresses by 
the synthesis of antioxidant compounds in plants. One 
of the roles is in the syntheses of PC in plants exposed 
to lead [54] Although, at very low concentrations up to 
120 ng/kg, BRs can be found in the roots, the leaves, 
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and the stem. Within the Brassicaceae family these 
steroidal plant hormones are present in Brassica napus 
L., Brassica campestris var. pekinensis L., Raphanus 
sativus L. and Arabidopsis thaliana L. but not in 
Brassica juncea plants [37]. 

To prevent biotic and abiotic stress caused by 
HMs, 70 BRs analogs have been identified in different 
cultivated plants, and among these, 24-epibrassinolide 
(24-eBL) [85]. Application of 24-eBL reduced uptake 
and accumulation of copper in B. junceae, and regulated 
developmental processes, such as biomass production 
[54]. Genetic analyses clearly showed the signal 
transduction pathway of BR, from the Brassinosteroid 
intensive 1 (BRI1) receptor kinase to transcriptional 
regulation by the Brassinazole resistant (BZR) family, 
involved in BR-mediated stress tolerance in Arabidopsis 
[79]. Based on the Genevestigator Arabidopsis thaliana 
Cd-regulated genes database, there is a similarity in 
gene expression in response to Cd and brassinosteroids 
(BR).  Furthermore, Cd-induced activation of the BR-
signalling pathway reflects in the expression of genes 
able to influence the Cd response [77]. Since the 
plasma membrane is the first line of defense, from Cd 
stress, activation of the plasma membrane protection 
enzymes H+-ATPase and NADPH oxidase by BR gives 
a new perspective. Therefore, Arabidopsis thaliana 
transmembrane receptor BR insensitive 1 (BRI1) and 
the co-receptor BRI1-associated receptor kinase 1 
(BAK1) regulate BR signaling processes and have a 
key role in transcription and gene regulation related to 
Cd stress regulation [55]. Also, B. juncea treated with 
EBL and 28-homobrassinolide (HBL) showed lower 
Ni exposed stress, by BRs stimulated the activity of 
some antioxidant enzymes [76]. Furthemore, Huang 
et al. (2018) showed that Brassica rapa BRI1 proteins 
BrBRI1-1, BrBRI1-2, and BrBRI1-3 had sequence 
similarity to Arabidopsis thaliana BRI1 (AtBRI1) [35]. 

Application of EDTA, EDDS chelants to increase 
Cd, Cu, and Zn uptake and accumulation by Brassica 
napus L. showed increased Cd accumulation in stems 
and leaves, Zn concentration was higher in stems with 
leaves,  while higher Cu concentration was found in 
roots [38]. Meyer et al. (2011) compared PCs between 
Cd-hyperaccumulators A. halleri and N. caerulescens, 
and non-hyperaccumulator A. thaliana, and found that 
PCS1 gene from A. halleri and N. caerulescens showed 
lower expression than its orthologue from A. thaliana 
[47].

Unlike PCs, MTs are gene-encoded polypeptides 
[8;14]. (Metallothioneins (MTs) are a class of small 
cysteine-rich proteins with high binding affinity to 
metals via metal-binding motifs that provide sulfhydryl 
for interacting with divalent metal ions [43]. Based 
on the type of cysteine residues, MTs in higher plants 
are classified into four types: MT1, MT2, MT3, and 
MT4 [56]. There are some general trends in the tissue-
specific expression of MT genes, with type-1 MTs 
expressed predominantly in roots, type-2 MTs in 
leaves, type-3 MTs in fruits, and type-4 MTs in seeds 

[56]. According to  Guo et al. (2008a), most active 
MT genes confer Cu tolerance and accumulation, 
MT4 types confer Zn tolerance and accumulation, 
and MT1, 2, and 3 types enhance tolerance to Cd, but 
often not Cd accumulation. Hence, some difference in 
the gene expression levels between hyperaccumulators 
and non-accumulators has been found. In non-
accumulator plants, such as A. thaliana, MT1a and 
MT1b are expressed at high levels in roots during 
exposure to Cd, Cu, and Zn, while in hyperaccumulator  
N. caerulescens the levels of MT1 mRNA were found 
in leaves constitutively higher than in roots [59]. As a 
consequence, NcMT1 and NcMT2 are expressed at 
much higher levels in N. caerulescens compared to 
A. thaliana. However, MT2 is constitutively expressed 
in both A. halleri and N.caerulescens [59, 75]. According 
to Roosens et al. (2004), in N. caerulescens, NcMT3 
confers much greater levels of tolerance to Cu than to 
Cd and increases the intracellular Cd concentrations. 
NcMT3 and AtMT3 expressed in the yeast mutant both 
showed similar Cd tolerance. However, better growth 
of yeast expressing NcMT3 than AtMT3 under Cd 
exposure, implies that NcMT3 can chelate more Cu 
than AtMT3 [58]. Furthermore, expression of B. juncea 
BjMT2 gene in A. thaliana, increased not only Cu but 
also Cd tolerance [90]. A member of type-1 MT genes, 
MT1, is found to be expressed in leaves of Brassica 
napus, Brassica rapa L. and Arabidopsis sp. exposed 
to Cd. Also, BrMT1 isolated from Brassica rapa has 
shown resistance to Cd, in part, because its genome, 
has on average, 50% DNA similarity in coding regions 
with the genome of hyperaccumulator B. juncea [40]. 
Arabidopsis has seven active MT genes belonging to 
four types (MT1a, MT1c; MT2a, MT2b; MT3; MT4a 
and MT4b) and one pseudogene (MT1b) [56]. MT 
gene expression is highly induced by Cu exposure, 
and a correlation between type 2 MT gene expression 
and Cu tolerance has been concluded from studies of 
Arabidopsis ecotypes [27]. Ren et al. (2012) investigated 
the functions of Arabidopsis AtMT4a and AtMT4b 
genes, in seed development, germination, and early 
seedling growth. This study showed that AtMT4a and 
AtMT4b are responsible for the accumulation of some 
important metal ions in late embryos [56]. As well, 
phytohormones abscisic acid (ABA) and gibberellic 
acid (GA) was found to be important in regulating 
the expression and function of AtMT4a and AtMT4b 
during seed development. In many Brassicaceae 
species, including metal hyperaccumulators A. halleri, 
non-hyperaccumulator relatives A. lyrata, A. thaliana, 
and metal hyperaccumulators N.goesingense and 
N. caerulescens, MT gene expression is strongly 
induced by Cu treatment and, to a lesser degree, by 
Cd and Zn [43]. Additionally, MT genes protect the 
plant from heavy metal toxicity by their MT genes 
expression, which presents the main difference between 
hyperaccumulator plants and non-hyperaccumulator 
plants. Significantly, this reflects their important role in 
phytoremediation [8].
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Conclusion

The myriad of physicochemical methods for removal 
of the pollutants through effective is very expensive 
and not suitable where the city budgets are limited 
[48]. To tackle the problem of the metal-contaminated 
environment in the most economically end ecologically 
friendly way, construction of transgenic plants, 
based on the introduction of foreign genes, which are 
connected with uptake, transport, and accumulation 
of heavy metals, present a solution to clean up the 
urban environment. The review highlighted the 
remarkable results obtained from different studies 
regarding molecular aspects of proved accumulators of 
heavy metals in the Brassicaceae family. Most of the 
discovered hyperaccumulators belong to the genera 
Noccaea, Brassica, Alyssum and Arabidopsis [21]. The 
suitable candidates for the bio-removal of a wide range 
of heavy metals from the environment are shown in 
Table 1.

Table 1. Genes and proteins contributing to heavy 
metal tolerance or accumulation found in species of 
family Brassicaceae. Based on the results reviewed 
in this paper, the differences between species genetic 
blueprints in the same family provide more significant 
insights into the specific genes, their regulatory 
mechanisms, proteins, and informational pathway 
responses connected to phytoremediation. Variations 
on molecular levels within plants of one family are a 
way for populations to adapt to changing environments, 
landscapes, etc. The implication of this research is in 
the direct insertion of identified genes to enhance the 
metabolic capabilities and metal accumulating potential 
of Brassicaceae and other plant species.
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