
Introduction

Since the reform and opening-up policy adopted in 
1978, China’s economy has achieved great development. 
Compared with 1978, gross domestic product (GDP) in 
2017 increased by nearly 224 times. Meanwhile, with the 
rapid development of urbanization and industrialization 
in China, the demand for transportation service has 

increased a lot. In accordance with the data released 
by the Ministry of Transport of the People’s Republic 
of China (MTPRC) in 2018, the converted turnover of 
transport sector reached 21253.9 billion ton-kilometers 
in 2017, an increase of 15.2% over 2013. The huge 
demand has resulted in more infrastructure investment 
and energy consumption in transport sector [1]. 

The land transportation, which consists of railway 
transportation and highway transportation, has been 
the most important sector within the whole transport 
system [2]. In line with the data issued by NBSC 
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(National Bureau of Statistics of China), the passenger 
turnover and freight turnover of land transportation 
reached 17.7 billion people and 40.6 billion tons in 2017, 
accounting for 95.5% and 84.4% of the whole transport 
sector. Based on the above statistical data, it can be 
observed that it is more meaningful to concentrate 
on the land transportation rather that other sectors 
in the whole transport system. In addition, as one of 
the three high-energy-consumption sectors in China, 
the transportation sector faced a serious challenge 
of resource utilization [3], according to the data of 
China Statistical Yearbook, the energy consumption 
of China’s transportation sector is 421.91 million 
tons of standard coal in 2017, accounting for 9.41% 
of China’s final energy consumption, and the land 
transportation constitutes more than 80% of energy 
consumption in the whole transportation sector. And, 
the energy consumption in China’s land transportation 
is dominated by fuel energy, which results in severe 
environmental pollution problems. Although the 
renewable energy strategies have been emphasized by 
the government in recent years, the energy consumption 
structure cannot be changed recently [4]. To achieve 
the sustainable development, it’s essential to reduce the 
energy consumption in China’s land transportation. The 
improvement of energy efficiency is regarded as the 
most efficient methods to decrease energy consumption 
[5-6]. Hence, measuring the energy efficiency of the 
land transportation is important. Based on this thought, 
this paper wants to discuss the following question. Has 
the energy efficiency of the whole land transportation 
been improved in recent years? How about the 
efficiency of the railway transportation and the highway 
transportation? To address the above issues, this paper 
combines the parallel slack-based measure (SBM) 
model and three-stage data envelopment analysis (DEA) 
method to investigate the energy efficiency of China’s 
land transportation.

Literature Review

The issues about energy efficiency have attracted 
extensive attention of scholars, generally speaking, there 
are two types indicators that are used to measure the 
energy efficiency, named single factor energy efficiency 
and total factor energy efficiency [7], respectively. The 
former indicator is not reasonable whilst computing 
the energy efficiency, because the energy is selected 
as the only input index without taking into account the 
contributions of other production elements like labor 
and capital. Thus, most researches on energy efficiency 
measurement utilize the later concept which not only 
consider the energy input but also other key factors. 
Following the work of Hu and Wang [7], numerous 
empirical analysis about energy efficiency have been 
done by many methods, mainly including parametric 
and non-parametric approaches. For example, Lin and 
Wang [8] applied stochastic frontier analysis (SFA) 

approach to analyze energy efficiency of China’s iron 
and steel sectors. Recently, applying SFA method, Xie 
et al. [9] calculates the provincial energy efficiency 
and energy saving potential of China’s transport 
sector. Also, much energy efficiency analysis has been 
finished on the basis of data envelopment analysis 
(DEA), a widely used non-parametric approach which 
is firstly introduced by Charnes et al. [10]. Since DEA 
can solve the multiple inputs and multiple outputs 
without considering the relationship between variables 
[11], DEA has been extensively used to evaluate the 
efficiency in many areas, such as health care [12-13], 
industry sectors [14-15], banks [16-17]. The existing 
research articles on the total-factor energy efficiency 
evaluation can be mainly divided into two categories. 
The first category applies the extended DEA methods to 
measure single process efficiency. The second category 
uses the network DEA methods to study the two-stage 
efficiency of production system.

Many researches have been done on the evaluation 
of single process energy efficiency by applying radial 
and non-radial measures. For instance, Wang et al. [18] 
measured the energy efficiency of 35 sub-industrial 
sectors in Beijing via improved Bootstrap-DEA model. 
Based on a DEA-Tobit analysis, Borozan [19] assessed 
the energy efficiency of European Regions and explore 
the factors affecting the efficiency scores. Recently, 
applying the game cross-efficiency DEA, Yang and Wei 
[20] measured the urban total factor energy efficiency 
in China. However, radial measures may ignore the 
slack variables, leading to overestimate the efficiency 
[21], So, non-radial approach is widely applied in 
empirical research [22]. For example, Song et al. [23] 
combined the window DEA with the super-efficiency 
SBM model to compute the energy consumption and 
environmental performance of highway transportation 
system in China. Liu et al. [24] adopted non-radial DEA 
and window analysis to measure energy-environment 
efficiency of road and railway sectors of 30 provinces 
in China. Applying super efficiency SBM model, Yang 
et al. [25] investigated the energy efficiency of China’s 
30 provinces. Another issue that should be mentioned 
is that environmental factors, statistical noise and 
administrative inefficiency are considered as three 
important elements that exert impacts on the efficiency 
evaluation [26-27]. To obtain the real efficiency 
which is only affected by administrative inefficiency, 
environmental factors and statistical noise, which 
are collectively named as non-management factors 
for convenience, have to be eliminated. To approach 
this concern, Fried et al. [28] proposed three-stage 
DEA model which can exclude the impacts of non-
management factors. Since then, the three-stage DEA 
has widely been used in energy efficiency measurement. 
For example, Cui and Li [1] applied a three-stage virtual 
DEA model to evaluate transportation efficiencies. Chen 
et al. [29] and Wang et al. [30] employed the three-stage 
DEA model to analyze the provincial energy efficiency 
in China.
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However, these models, whether radial or non-radial, 
always treat the production system as a “black box” 
without considering the internal divisions. However, 
actual production activities are not independent, such 
as land transportation which consists of railway and 
highway transportation, ignoring the internal process 
will not explore the disparities of energy efficiency of 
the two subsystems. Thus, the results obtained may 
be misleading without considering the intermediate 
procedures [31]. To address this problem, Färe and 
Grosskopf [32] introduced a network DEA model that 
can open the “black box”. In application, a number 
of studies have focused on considering the internal 
structure of production system [33-34]. Following these 
studies, three most commonly used types of network 
structures have been developed, called as parallel 
structure [35-36], series structure [37-39] and mixed 
structure [40-41], respectively. There are several papers 
about energy efficiency measurement of transport sector 
by using the network DEA approach. For instance, Wu 
et al. [42] and Lei et al. [43] applied a parallel DEA 
approach to measure the energy and environmental 
performance of transportation systems in China with 
a network structure consisting of passenger and freight 
transportation. Liu et al. [2] employed a parallel SBM 
measure to evaluate the environmental efficiency of 
China’s land transportation which includes railway 
and highway transportation. Xu and Cui [44] applied 
Network Epsilon-based Measure and Network SBM 
to assess the overall energy efficiency and divisional 
efficiency of 19 international airlines. 

An unavoidable problem derived from the network 
DEA method is to explore the relationship between 
the system and the subsystem efficiencies. In general, 
efficiency aggregation and efficiency decomposition 
are always used to discuss the relations. The efficiency 
aggregation method firstly defines the relationships, 
based on which the system and subsystem efficiencies 
can be measured with multiplicative or additive form. 
For the multiplicative form, the system efficiency is 
defined as the product of the subsystem efficiencies [37, 
45], while a weighted average of subsystem efficiencies 
for the additive form [36, 38, 46]. Nevertheless, 
efficiency aggregation can’t reveal the real relationship 
between the whole system and subsystem efficiencies, 
due to that the whole system efficiency is not evaluated 
independently of subsystem efficiencies. In contrast, 
the efficiency decomposition approach evaluates the 
system efficiency by directly using all inputs and 
outputs of the whole production activities [47], and then 
obtains the relationships between system and subsystem 
efficiencies. Many studies have been done on efficiency 
decomposition, regrettably, most of them are based on 
the radial methods, such as Kao [48], Tang et al. [49] 
and Wu et al. [50]. Non-radial means are less used in 
efficiency decomposition due to its complexity, and 
according to Kao [47], those studies based on non-
radial approaches that claimed to be a decomposition 
of system efficiency are actually aggregations of 

division efficiencies. Until recently, Kao [51] propose an 
efficiency decomposition method based on non-radial 
measures.

By reviewing the literature, it’s observed that 
few studies focus on energy efficiency evaluation of 
land transportation and the measurement of energy 
efficiency in transport sector always neglects the 
impacts of non-management factors. However, the 
land transportation system is a parallel structure, thus, 
both the internal process and non-management factors 
should be considered. In this paper, parallel SBM model 
and three-stage DEA method are combined to measure 
the energy efficiency of China’s land transportation 
with excluding the non-management factors. And 
then, the energy efficiencies of railway and highway 
transportation are also calculated by means of efficiency 
decomposition approach.

Materials and Methods

Parallel System and Methodological Framework

Prior studies always treated the transportation system 
as an entirety. However, the real land transportation 
system is composed of railway transportation and 
highway transportation. According to Kao [52], a 
production system can be considered in a parallel 
structure, if all processes can operate independently. 
In this sense, the land transportation of each province 
is a parallel system and two modes of transportation 
(railway and highway transportations) are two parallel 
subsystems. The inefficiency of the two subsystems 
can be easily found with this decomposition. Therefore, 
decision makers can take proper measures to enhance 
the efficiency of the whole system. Fig. 1 shows the 
parallel structure, for these two subsystems, the railway 
and highway length, labor and energy consumption are 
used to generate desirable outputs (passenger turnover 
and freight turnover). The indicators will be described 
in detail in the following section.

Depending on the parallel structure of the land 
transportation, an extended parallel network SBM 
model, introduced by Kao [51], will be adopted to 
measure the energy efficiency of land transportation 
in China. There are two main reasons for selecting 
the parallel SBM model in this paper. First, this 
selected model is non-radial, which could construct 
the efficiency indicator by directly introducing the 
slacks of inputs and outputs, thereby making it have 
higher discrimination power than radial approaches [53-
54]. Second, traditional network SBM models define 
the system efficiency according to a predetermined 
relationship with the subsystem efficiencies [47]. 
However, this method cannot reveal the real relationship 
between system and subsystem efficiencies [55]. In 
contrast, the parallel SBM model of this paper measures 
the system efficiency from the inputs it consumes and 
the outputs it produces, and then derives the relationship 
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via efficiency decomposition. With this relationship, the 
subsystems that result in the inefficiency of the system 
can be identified. Then, the efficiency of the system can 
be effectively increased by making improvements in 
these subsystems.

Moreover, considering that the non-management 
factors may affect the efficiency measurement, which 
may make the results distorted. This paper will apply 
the SFA approach to eliminate the non-management 
factors. The methodological framework is represented in  
Fig. 2. At the first stage, the energy efficiency of the land 

transportation in each province under the influences of 
non-management factors are measured via the parallel 
SBM model. In the second phase, the slack term of each 
input sequence is disintegrated into two sequences, 
including non-management factors and administrative 
inefficiency, and then the initial input variables will 
be adjusted by excluding the non-management factors 
based on the SFA method. At the third phase, the energy 
efficiencies of land transportation will be reevaluated 
with the adjusted inputs and initial outputs via the 
parallel SBM model. Meanwhile, the energy efficiencies 

Fig. 1. The parallel structure of the land transportation.

Fig. 2. Methodological framework for China’s provincial energy efficiency evaluation.
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of railway and highway transportation will be computed 
by means of efficiency decomposition approach.

First Stage

Parallel SBM Model

In this stage, the parallel SBM model is employed to 
measure the energy efficiencies of land transportation 
of China’s 30 provincial-level provinces without 
considering non-management factors, each DMU 
corresponds to a province in the analysis.

Assume that there are k DMUs with m inputs 
and s outputs of the whole land transportation. With 
regard to each subsector, xij

1 = (i = 1,2,...m1) and 
yij

1 = (r = 1,2,...s1) denote the input index and output 
index of railway transportation, respectively; while 
xij

2 = (i = 1,2,...m2) and yij
2 = (r = 1,2,...s2) represent 

the input and output vector of highway transportation, 
respectively. It’s apparent that m = m1 + m2, s = s1 + s2.

Note that railway and highway transportation are 
operating independently in the whole system. So, 
the SBM model for measuring the efficiency of land 
transportation under variable returns to scale can be 
represented as follows: 
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...where ρS denotes the energy efficiency of the province 
being evaluated, si

1– and sr
1+ are respectively the slacks 

of inputs and outputs of railway transportation, the 
same as si

2– and sr
2+, uj and vj implies the weight vector 

of DMU. Let λj = θuj, Si
1– = θsi

1–, Sr
1+ = θsr

1+, γj = θvj, 
Si

2– = θsi
2–, Sr

2+ = θsr
2+ based on the Charnes-Cooper 

transformation, model (1) can be transformed into the 
following linear model (2):
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Based on model (2), the energy efficiencies of 
China’s land transportation can be obtained without 
taking into account the non-management factors. And, 
it should be pointed out that if and only if ρS = 1, the 
province being evaluated will be considered efficient.

Second Stage

Similar SFA Model

The energy efficiency of every DMU that ignores 
non-management factors can be computed at the first 
phase. Meanwhile, the slack variable of each input can 
also be obtained, which reflect the gaps between the 
actual and targeted input values. The slack variable of 
input znj is represented by Snj, which is influenced by 
non-management factors and managerial inefficiency. 
For each input slack variable, the SFA regression 
function can be constructed as follows:

Snj = f n (zj; β
n) + vnj + μnj, n = 1,2,..., m, 
j = 1,2,..., k                              (3)

            
...where zj = (z1j, z2j,..., zhj)  represents the environmental 
variable influencing the energy efficiency of 
province j; β n is the coefficient of the environment 
variable, representing the parameter to be evaluated;  
f n (zj; βn) = zj β n indicates the effect of environmental 
factors on Snj; vnj + μnj refers to the mixed error, where 
vnj is the random noise component of input n for 
province j, and

 
vnj~N(0, σv

2), μnj represents the 
managerial inefficiency term of input n for province j, 
and

 
μnj~N+(u, σu

2).
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Set γ = σv
2 / (σv

2 + σu
2),while the value of γ near 1 

means that the impacts of managerial inefficiency 
dominate the energy efficiency of land transportation, 
and it’s reasonable to apply SFA for estimation. On 
the contrary, the value of γ close to 0 indicates that 
the energy inefficiency is mainly influenced by non-
management factors, so ordinary least squares (OLS) is 
more appropriate than SFA approach. 

Further, in order to adjust all DMUs in the same 
exterior condition, the non-management factors that 
exert an influence on energy efficiency evaluation 
should be eliminated by the following formula:

 (4)

Xnj
A and Xnj in equation (2) represent the adjusted 

input and original input of province j, respectively. The 

term  is used to adjust the external 

environmental factors, while  is 
applied to make all DMUs at the same luck level.

Third Stage

Revised Parallel SBM Model

The adjusted values of input variables calculated at 
the second stage and the original output values used at 
the first phase are brought into the parallel SBM model 
again, Then, the actual energy efficiency of China’s 
land transportation excluding the impacts of non-
management factors can be obtained.

Energy Efficiency Decomposition
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energy utilization of the land transportation. Accordingly, 
in order to measure the energy efficiency of these two 
subsystems and analyze the real relationships between 
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efficiency decomposition method is applied based on 
the work of Kao [51], the calculation formulas can be 
written as follows:
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...where ρf denotes the energy efficiency of subsystem 
f, and term w f is the weight coefficient of subsystem f, 
the other parameters have the same meaning as above. 
Based on Fig. 1, it can be found that m1 = m2, and s1 = s2. 
Thus, w1ρ1 + w2ρ2 = ρS and w1 + w2 = 1 can be proved. 
Apparently, the system efficiency is a linear combination 
of the subsystem efficiencies.

Variables and Data

Input and Output Indices

The SBM model is constructed in accordance with 
the input and output variables in terms of DMUs, 
the DMUs in this study refer to China’s thirty PARs 
(provincial administrative provinces), which will 
be called collectively as provinces. Owing to lack 
of data, Taiwan, Hong Kong, Tibet and Macau are 
excluded. Following the pervious researches [56-57], 
labor for railway and highway transportation, railway 
and highway length, energy consumption of railway 
and highway transportation are also selected as input 
index in this paper. Among these indicators, labor 
input is expressed by the number of employees at the 
end of year in railway and highway transportation; 
railway and highway length denote the total length 
of railway and highway routes; In general, diesel and 
gasoline consumption mainly come from highway 
transportation, so these two indicators can be selected 
as measurements of the energy consumption of highway 
transportation since gasoline and diesel are two of the 
largest types of energy consumed. The main energy 
consumption of railway transportation is electricity 
and diesel, but the diesel consumption of the highway 
transportation is far greater than that of the railway 
transportation and it is difficult to separate the diesel 
consumption from the two sectors, therefore, this 
paper chooses electricity consumption as the energy 
consumption of railway transportation because the 
electricity consumption in land transportation mainly 
come from railway transportation. It’s noted that fuel 
and electricity consumption will be converted to the 
standard coal equivalent (SCE). The output indices 
used for land transportation are railway/highway 
passenger turnover and railway/highway freight 
turnover [58-59], i.e. the product of distance and weight 
of railway/highway transportation, which can reflect  
the number of services provided by railway and 
highway transportation [60]. The input and output 
indices in this article are presented in Table 1. The labor 
for railway and highway transportation, the railway and 
highway length, the passenger and freight turnover are 
derived from China Statistical Yearbook (2014-2018), 
the energy consumption of railway and transportation 
are collected from China Energy Statistical Yearbook 
(2014-1018). The statistical descriptions of the collected 
data of input-output variables are demonstrated in  
Table 2.
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Environmental Variable Indices

The energy efficiencies of the land transportation 
are not only affected by inputs and outputs of the whole 
production system, but also influenced by external 

factors, such as environmental factors and statistical 
noise. Following the previous researches [60-61], per 
capita GDP and industrial structure are selected as 
exterior environmental factors that have an impact on 
energy efficiency of land transportation. Per capita  

Table 1. Indices of inputs and outputs.

Land transportation sector Indices Units

Railway transportation

Inputs

Railway length 100 kilometers

Energy 10 thousands tons of SCE

Labor 1000 person

Outputs
Railway passenger turnover 100 million passenger kilometers

Railway freight turnover 100 million ton kilometers

Highway transportation

Inputs

Highway length 100 kilometers

Energy 10 thousands tons of SCE

Labor 1000 person

Outputs
Highway passenger turnover 100 million passenger kilometers

Highway freight turnover 100 million ton kilometers

Table 2. The statistical descriptions of the collected data of input-output variables.

Variables
Railway transportation Highway transportation

Railway
length Energy Labor Passenger

turnover
Freight
turnover

Highway 
length Energy Labor Passenger

turnover
Freight
turnover

2013

Max 102.0 99.7 139.1 867.2 4233.6 301.8 1920.6 380.5 1202.5 6577.9

Min 4.7 4.4 5.0 25.2 13.1 12.6 99.7 15.9 40.3 75.4

Mean 34.2 41.6 59.9 352.8 967.0 142.9 678.7 126.7 374.0 1855.2

S.D. 19.9 26.3 35.4 252.7 904.6 76.0 413.2 84.7 267.8 1783.3

2014

Max 102.3 106.8 136.0 985.9 4183.1 3097.4 2016.1 383.6 1629.8 7392.4

Min 4.7 4.7 5.2 28.1 12.4 129.5 91.9 14.7 46.5 81.5

Mean 37.0 43.9 63.4 386.4 916.0 1462.8 710.0 129.2 401.7 2031.0

S.D. 20.3 26.5 36.9 278.3 883.3 775.8 432.4 88.0 329.7 1925.3

2015

Max 120.9 107.6 134.7 944.4 3633.0 3155.8 2113.0 385.3 1034.9 6821.5

Min 4.7 5.1 5.7 30.2 10.8 132.0 96.6 12.6 44.7 78.7

Mean 40.1 47.5 62.5 398.2 791.0 1499.6 732.6 129.1 357.3 1928.7

S.D. 22.9 28.3 35.3 277.4 762.7 791.4 451.6 88.1 245.0 1693.1

2016

Max 123.4 135.1 132.2 993.6 3704.5 3241.4 2349.3 393.9 1079.8 7294.6

Min 4.7 6.7 6.2 41.5 10.2 132.9 87.2 11.4 47.5 76.1

Mean 41.1 53.6 62.5 418.8 792.1 1538.1 769.0 128.4 340.2 2032.9

S.D. 23.1 33.2 35.9 291.1 777.0 813.9 491.7 88.6 242.3 1786.3

2017

Max 126.8 220.9 130.0 1042.7 4278.4 3299.5 2373.1 397.2 1129.5 7899.3

Min 4.7 8.0 6.4 43.3 10.1 133.2 89.6 11.5 49.8 78.6

Mean 42.1 62.9 61.6 448.0 898.1 1561.4 784.7 128.0 324.6 2222.2

S.D. 23.7 44.6 34.0 312.4 903.9 826.8 509.8 88.6 242.0 1936.6
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GDP can reflect the economic disparities between 
different provinces. Generally speaking, the higher the 
per capita GDP is, the more demand for transportation 
services will have, which will result in more energy 
consumption. Industrial structure is represented by 
the proportion of the added value of the secondary 

industry in the GDP of each province. In general, the 
improvement of industrial structure will increase the 
freight turnover of industry sector, which will lead 
to more energy consumption. The data on per capita 
GDP and industrial structure are collected from China 
Statistical Yearbook (2014-1018).

Table 3. Energy efficiency of land transportation ignoring non-management factors.

Area Province/Year 2013 2014 2015 2016 2017 Mean

Eastern
area

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Hebei 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Liaoning 0.5146 0.4967 0.5300 0.5565 0.5499 0.5295 

Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Jiangsu 1.0000 0.6106 1.0000 1.0000 0.9625 0.9146 

Zhejiang 0.7227 0.5572 0.7936 0.8065 0.8338 0.7427 

Fujian 0.2389 0.2321 0.2620 0.2665 0.2464 0.2492 

Shandong 0.4853 0.4351 0.6618 0.5774 0.5407 0.5400 

Guangdong 1.0000 0.3205 0.4949 0.4501 0.4639 0.5459 

Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Mean 0.8147 0.6956 0.7947 0.7870 0.7816 0.7747

Central
area

Shanxi 0.3234 0.2860 0.3804 0.3842 0.3780 0.3504 

Jilin 0.4568 0.4448 0.5137 0.5232 0.5054 0.4888 

Anhui 1.0000 1.0000 1.0000 1.0000 0.9412 0.9882 

Jiangxi 0.6960 0.6981 0.8274 0.8730 0.8594 0.7908 

Henan 0.7322 0.6504 0.8790 0.8143 1.0000 0.8152 

Hubei 0.4270 0.4450 0.6123 0.6124 0.6175 0.5428 

Hunan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Heilongjiang 0.4358 0.4339 0.5564 0.4555 0.4664 0.4696 

Mean 0.6339 0.6198 0.7211 0.7078 0.7210 0.6807

Western
area

Guangxi 0.5718 0.5335 0.7599 0.7725 0.7207 0.6717 

Inner Mongolia 0.5379 0.5446 0.7278 0.7675 0.7368 0.6629 

Chongqing 0.2535 0.2582 0.3214 0.3328 0.3031 0.2938 

Sichuan 0.6461 0.6368 0.6462 0.4767 0.3974 0.5606 

Guizhou 0.7915 0.7386 0.7726 0.7431 0.6990 0.7490 

Yunnan 0.2908 0.2618 0.3599 0.3481 0.3602 0.3241 

Shaanxi 0.4410 0.4382 0.5499 0.5911 0.5852 0.5211 

Gansu 0.4949 0.4920 0.6359 0.7938 0.6577 0.6149 

Qinghai 1.0000 1.0000 1.0000 0.6218 0.6201 0.8484 

Ningxia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Xinjiang 0.3699 0.3212 0.3857 0.4155 0.3741 0.3733 

Mean 0.5816 0.5659 0.6508 0.6239 0.5867 0.6018

Average value 0.6810 0.6278 0.7224 0.7061 0.6940 0.6863
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Empirical Results 

Empirical Results of Parallel SBM 
in the First Stage

The energy efficiency of the land transportation 
from 2013 to 2017 calculated by the parallel SBM 
model are listed in Table 3. As shown in Table 3, first, 
average energy efficiency of land transportation in 
2013-2017 is 0.6810, 0.6278, 0.7224, 0.7061, 0.6940, 
respectively, which implies that the energy efficiency is 
not very high and need to be increased. Secondly, seven 
provinces (including Beijing, Tianjin, Hebei, Shanghai, 
Hainan, Hunan and Ningxia) are superior to other 
provinces because their average energy efficiencies are 
equal to 1, which shows that they are both efficient from 
2013 to 2017. Shanxi, Chongqing, Yunnan and Xinjiang 
behave worse than other provinces, with their average 
energy efficiencies of 0.3504, 0.2938, 0.3241, 0.3733, 
respectively.

To further analyze the energy efficiency of land 
transportation at the provincial level, 30 provinces are 
divided into three groups (Eastern area, Central area, 
and Western area) based on geography. These groups 
are listed in Table 4. It can be found that the average 
energy efficiency of the eastern, central and western 
area in 2013-2017 is 0.7747, 0.6807, 0.6018, respectively, 
presenting obvious ladder-like distribution with the 
east having the highest efficiency value, followed by 
the central, and then the west. The results show that 
regional disparities exist in energy efficiency of China’s 
land transportation.

Some deviations maybe exist between the above 
analysis results and actual situation due to the neglect of 
non-management factors. Therefore, the SFA regression 
will be used to eliminate non-management factors and 
adjust the initial input index.

Results of SFA Regression Analysis 
in the Second Stage

In this phase, the slack variable of each input from 
first stage is regarded as explained variables, with 
per capita GDP and industrial structure selected as 
explanatory variables. SFA regression is constructed by 
using Frontier 4.1. Here, taking the results in 2017 as an 
example, the SFA estimation results is demonstrated in 
Table 5. It can be seen that the LR test value of six slack 
variables all pass the critical value of the single side 

generalized likelihood ratio test, and are all under 1% 
significance level, which indicates that it’s reasonable 
to construct SFA regression. The value of γ for six 
regression model are all near 1 and pass 1% significance 
test, which shows the variation of the total slacks of 
inputs are dominated by managerial inefficiency.

Most of regression coefficients listed in Table 5 
have passed the 1% significance test, which indicates 
that the external environment factors do exert effects 
on the energy efficiency measurement of the land 
transportation. Thus, it is necessary to eliminate the 
impact of external environmental factors. In addition, 
it should be noted that different coefficients represent 
different relationships between input slacks and 
environmental variables. Concretely, positive regression 
coefficient means the increase of environmental 
variables will lead to the increase of input slack 
variables and reduce the energy efficiency while 
the negative regression coefficient demonstrates the 
favorable influence brought by environmental variables 
on the increase on energy efficiency.

For the per capita GDP, the coefficients are negative 
for the railway/highway length and labor for railway, 
but positive for the rest. They are significant for 
railway length and energy for highway on 10% level, 
and are significant for the remaining inputs on 1% 
level, indicating that the raising of per capita GDP 
will decrease the input slacks of labor for railway 
and railway/highway length while simultaneously  
increasing the input slacks of energy consumption 
of land transportation and labor for highway which 
will hinder the improvement of energy efficiency. The 
reason may be the excessive investment in the transport 
sector over the past several years, which led to the 
reconstruction and unreasonable competition [62]. 
Thus, the performance of land transportation resource 
utilization should be further improved to increase the 
energy efficiency.

For the industrial structure, the coefficients are 
all significant at the level of 1% and negative for  
the railway/highway length, but positive for the rest. 
This result means, with the improvement of industrial 
structure, the increase of the demand for transportation 
service will negatively influence the slacks of railway 
and highway length while positively affecting  
the slacks of energy consumption and labor for  
land transportation, which would have a negative 
impact on the energy efficiency of land transportation. 
However, with the implementation of energy saving 

Table 4. Regional division based on geography.

Areas Provinces

Eastern area (11 provinces) Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, 
Hainan

Central area (8 provinces) Shanxi, Jilin, Anhui, Jiangxi, Hanan, Hubei, Hunan, Heilongjiang

Western area (11 provinces) Guangxi, Inner Mongolia, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, 
Ningxia, Xinjiang
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policy, the adjustments of industrial structure will 
contribute to the change of China’s industrial sector 
from high-energy-consumption to low-energy-
consumption sector [6, 63]. As results, the unfavorable 
impacts of industrial structure on energy efficiency will 
be under control.

Results Following an Adjustment 
of Input Variables in the Third Stage

The energy efficiency of China’s land transportation 
from 2013 to 2017 is computed again with the adjusted 
inputs obtained in the second phase and original outputs 
by applying parallel SBM model. The results are shown 
in Table 6.

Based on Table 6. First, Hebei, Shanghai, Ningxia 
and Anhui performed better than other provinces from 
2013 to 2017, as the efficiency scores of these four 
provinces are equal to 1, except for Anhui in 2017. 
These provinces can be used as a benchmark. And the 
efficiency of energy utilization of land transportation 
in China is not very good owing to the low average 
efficiency values (i.e., 0.6507) during the research 
period. Second, about 6 regions (including Fujian, 
Shanxi, Heilongjiang, Chongqing, Yunnan, Xinjiang) 
did not have good performance from 2013 to 2017, as 
their average energy efficiency are all less than 0.5. 
Taking Yunnan as an example, the energy efficiencies of 
Yunnan from 2013 to 2017 are 0.2686, 0.2464, 0.3578, 
0.3493, 0.3554, respectively, and the average efficiency 
of Yunnan from 2013 to 2017 is only 0.3155, which 
is greatly lower than the average efficiency value of  
30 provinces. Third, Fig. 3 illustrates the energy 
efficiency changes over time in 2013, 2015 and 2017.  
The average efficiency value in 2013 is close to 0.61, 
while 0.71 in 2015 and 0.68 in 2017. Comparing the 
energy efficiency in 2013 and 2015, 15 provinces exhibit 
a large increase in energy efficiency, accounting for 

50% of all provinces. Only Guangdong and Tianjin 
exhibit a sharp decrease in energy efficiency, and the 
other provinces do not change significantly. While 
analyzing the energy efficiency of 2015 and 2017, it can 
be observed that the energy efficiency in 5 provinces 
(including Beijing, Tianjin, Sichuan, Heilongjiang, 
Qinghai) significantly changed while the energy 
efficiencies in remaining provinces changed little. 

The average energy efficiencies of three areas from 
2013 to 2017 are shown in Fig. 4. First, the energy 
efficiencies of eastern and central area are higher 
than national level except central area in 2014, and it 
can be inferred that the lessening of national energy 
efficiency in 2017 mainly derives from the decrease of 
energy efficiencies in Western area. Therefore, more 
attention should be paid on Western area in next few 
years to improve the whole performance of energy 
utilization. Second, the energy efficiency of eastern 
area are significantly higher than those of central 
area and western area, indicating that although the 
influences brought by non-management factors have 
been eliminated, the provincial differences still exist in 
China due to uneven development among three areas. 
Third, the average energy efficiencies of three areas 
in land transportation show similar change tendencies 
from 2014 to 2017. According to Fig. 4, it can be 
observed that the efficiency values declined in 2014, and 
rose sharply from 2014 to 2015, with a slight decline  
in 2016 and did not have obvious fluctuations in 2017.  
In addition, it should be also noted that the average 
energy efficiencies of three areas in 2017 have 
significantly increased compared with 2013.

Decomposition of Provincial Energy Efficiency 
in Land Transportation

The efficiencies acquired in the third stage can only 
reflect the energy efficiency of land transportation in 

Table 5. The results of SFA analysis.

Explanatory
variable

Railway
length

Energy for
Railway

Labor for
Railway

Highway
length

Energy for
Highway

Labor for
Highway

Constant value 3.9E+02***
(3.9E+02)

-6.7E+00***
(-9.29)

-1.4E+04***
(1.4E+04)

3.1E+04***
(2.0E+03)

-2.6E+02***
(-2.6E+02)

-3.9E+04***
(-3.9E+04)

Per capita GDP -4.8E-03*
(-1.4E+00)

2.8E-05***
(9.26E+00)

-2.1E-01***
(-2.8E+01)

-2.8E-01***
(-5.6E+00)

1.0E-03*
(1.5E+00)

1.1E-01***
(2.9E+00)

Industrial 
structure

-7.4E+02***
(-7.4E+02)

8.2E+00***
(9.32E+00)

4.5E+04***
(4.5E+04)

-5.5E+04***
(-4.2E+04)

3.3E+02***
(3.3E+02)

5.9E+04***
(5.9E+04)

Sigma-squared 1.7E+06***
(1.7E+06)

3.6E+01***
(3.7E+01)

1.3E+09***
1.3(E+09)

1.4E+09***
(1.4E+09)

9.7E+04***
(9.7E+04)

7.4E+08***
(7.4E+08)

γ 1.0E+00***
(4.6E+04)

1.0E+00***
(1.9E+07)

1.0E+00***
(1.18E+03)

9.9E-01***
(8.1E+01)

1.0E+00***
(7.5E+04)

1.0E+00***
(3.8E+04)

Log likelihood -232.2 -70.0 -335.5 -338.6 -190.0 -324.8

LR test 23.7 27.0 14.7 11.8 23.0 20.4

Note: * indicates the 10% significance level, *** indicates the 1% significance level. Data in brackets demonstrate t-statistics of the 
coefficients
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efficient in three years (Tianjin in 2013, 2016 and 2017; 
Zhejiang in 2013, 2014 and 2017). Guangdong and 
Gansu are only efficient in 2013. The provinces with 
the worst performance are Fujian in 2013, 2015, 2016, 
2017 and Guangdong in 2014. Second, the average 
EERT between 2013 and 2017 is 0.774, 0.691, 0.701, 
0.699, 0.710, respectively. The EERT is not high and has 
a downward tendency during the research period, this 
result means that the performance of energy utilization 
in China’s railway transportation is not very high. Third, 
Fig. 5a) depicts the change trend of average energy 
efficiencies of three areas in railway transportation.  
It can be found that the western area is the worst with 

China without exploring the efficiency gaps between 
railway and highway transportation. So, formula (5) 
is applied to calculate the subsystem efficiencies with 
adjusted inputs. In this subsection, the energy efficiency 
for railway transportation is represented by “EERT”, 
while the energy efficiency for highway transportation 
is represented by “EEHT”. The calculation results are 
presented in Table 7.

For the railway transportation, first, 11 provinces 
(including Beijing, Hebei, Inner Mongolia, Shanghai, 
Jiangsu, Anhui, Jiangxi, Hunan, Hainan, Qinghai and 
Ningxia) are on the efficiency frontier from 2013 to 
2017, except for Jiangxi in 2016. Two provinces are 

Table 6. Energy efficiency of land transportation considering non-management factors.

Area Province/Year 2013 2014 2015 2016 2017 Mean

Eastern area

Beijing 0.4785 0.5142 1.0000 0.5568 0.7666 0.6632 
Tianjin 1.0000 0.7773 0.5918 0.7692 1.0000 0.8277 
Hebei 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Liaoning 0.5260 0.5038 0.5386 0.5627 0.5559 0.5374 
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Jiangsu 0.7917 0.5820 1.0000 1.0000 0.9293 0.8606 

Zhejiang 0.7170 0.5468 0.7004 0.7483 0.8160 0.7057 
Fujian 0.2530 0.2395 0.2685 0.2813 0.2479 0.2580

Shandong 0.4894 0.4370 0.6471 0.5785 0.5381 0.5380 
Guangdong 1.0000 0.3215 0.5115 0.4731 0.4772 0.5566 

Hainan 0.3779 1.0000 1.0000 1.0000 1.0000 0.8756 
Mean 0.6939 0.6293 0.7507 0.7245 0.7574 0.7112

Central
area

Shanxi 0.3281 0.2835 0.3840 0.3855 0.3796 0.3521 
Jilin 0.4837 0.4740 0.5324 0.5509 0.5227 0.5128 

Anhui 1.0000 1.0000 1.0000 1.0000 0.9443 0.9889 
Jiangxi 0.7009 0.7092 0.8297 0.7915 0.8641 0.7791 
Henan 0.7395 0.6574 0.8765 0.8232 1.0000 0.8193 
Hubei 0.4259 0.4479 0.5981 0.6113 0.6226 0.5412 
Hunan 0.6519 0.6502 1.0000 1.0000 1.0000 0.8604 

Heilongjiang 0.3294 0.3110 0.5335 0.4024 0.3416 0.3836 
Mean 0.5824 0.5667 0.7193 0.6956 0.7094 0.6547

Western
area

Guangxi 0.5627 0.5329 0.7660 0.7858 0.7180 0.6731 
Inner Mongolia 0.5920 0.5782 0.7645 0.7837 0.7484 0.6934 

Chongqing 0.2621 0.2561 0.3124 0.3336 0.3030 0.2934 
Sichuan 0.6496 0.6389 0.6497 0.4874 0.3913 0.5634 
Guizhou 0.3190 0.3534 0.7765 0.7566 0.7079 0.5827 
Yunnan 0.2686 0.2464 0.3578 0.3493 0.3554 0.3155 
Shaanxi 0.4591 0.4558 0.5507 0.6073 0.6259 0.5398 
Gansu 0.4688 0.4340 0.5883 0.8142 0.6161 0.5843 

Qinghai 1.0000 1.0000 1.0000 0.6296 0.5984 0.8456 
Ningxia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Xinjiang 0.3522 0.3076 0.3872 0.4198 0.3792 0.3692 

Mean 0.5395 0.5276 0.6503 0.6334 0.5858 0.5873
Grand mean 0.6076 0.5753 0.7055 0.6834 0.6817 0.6507
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low average EERT throughout 2013 to 2017. The energy 
efficiency in eastern area is higher than central area 
in 2013 and 2016, and lower than central area in 2014, 
2015 and 2017.

As for the highway transportation, first, it can be 
seen that 4 provinces (Shanxi, Shanghai, Guangdong, 
Ningxia) are efficient during the research period. It’s 
followed by Anhui and Hunan, which are efficient 
from 2013 to 2016, and 2014 to 2017, respectively.  
7 provinces (Tianjin, Henan, Hunan, Guangxi, Sichuan, 
Guizhou, Qinghai) are efficient in three years, and 
Jiangsu is efficient in 2015 and 2016. Beijing, Shandong 
and Gansu are efficient in only one year. The values of 
energy efficiency in Chongqing is the lowest in 2013, 
2015, 2016, 2017, and Yunnan performs worst in 2014, 
with great potential to enhance. Second, in the period 
of 2013 to 2017, the average EEHT is 0.545, 0.559, 
0.756, 0.712, 0.705, respectively. The efficiency value 
is relatively low, but it presents an apparent increasing 
trend in recent years. Third, based on Fig. 5b), it can 
be seen that the eastern area has the highest efficiency 
value from 2013 to 2017, and the efficiencies in three 
areas show a significant increasing trend from 2013 to 
2017, except the efficiency in western area has a slight 
decline in 2016 and 2017.

Discussion and Policy Implications

Discussion

After removing the effect of non-management 
factors, it can be found that the energy efficiencies of 

Fig. 3. The provincial energy efficiencies in 2013, 2015 and 2017.

Fig. 4. The average energy efficiency of three areas from 2013 
to 2017.

Fig. 5. The average energy efficiencies of three areas in railway 
and highway transportation. 
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19 provinces have decreased. And the average energy 
efficiency of the land transportation in the period 
of 2013 to 2017 decreases from 0.6863 considering 
non-management factors to 0.6507 excluding non-
management factors. Average efficiencies of the eastern 
area, central area, and western area during 2013 to 
2017 respectively decreased 0.064, 0.026, and 0.014, 
indicating that non-management factors resulted in 
the overestimation of provincial energy efficiency in 

China’s land transportation from 2013 to 2017. For 
provinces, with the non-management factors excluded, 
7 provinces are efficient in 2017 (including Tianjin, 
Hebei, Shanghai, Hainan, Henan, Hunan, and Ningxia). 
Compared with the first stage, Beijing has left the 
efficiency frontier, indicating that the non-management 
factors of Beijing exert favorable effects on the energy 
efficiency of land transportation. Beijing and Tianjin 
decreased by 0.337 and 0.172 respectively, the biggest 

Table 7. The provincial EERT and EEHT from 2013 to 2017.

Provinces
EERT EEHT

2013 2014 2015 2016 2017 2013 2014 2015 2016 2017

Beijing 1.000 1.000 1.000 1.000 1.000 0.284 0.320 1.000 0.346 0.581

Tianjin 1.000 0.594 0.558 1.000 1.000 1.000 1.000 0.621 0.607 1.000

Hebei 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Shanxi 0.382 0.308 0.378 0.369 0.347 0.295 0.267 0.389 0.401 0.415

Inner Mongolia 1.000 1.000 1.000 1.000 1.000 0.393 0.386 0.597 0.620 0.583

Liaoning 0.549 0.523 0.477 0.476 0.470 0.504 0.487 0.619 0.702 0.682

Jilin 0.491 0.458 0.461 0.457 0.459 0.478 0.487 0.603 0.658 0.576

Heilongjiang 0.698 0.669 1.000 0.565 0.635 0.237 0.226 0.345 0.340 0.261

Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jiangsu 1.000 1.000 1.000 1.000 1.000 0.651 0.377 1.000 1.000 0.868

Zhejiang 1.000 1.000 0.617 0.792 1.000 0.548 0.342 0.811 0.705 0.685

Anhui 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.892

Fujian 0.214 0.188 0.201 0.210 0.174 0.305 0.311 0.447 0.456 0.422

Jiangxi 1.000 1.000 1.000 0.814 1.000 0.524 0.537 0.701 0.771 0.761

Shandong 0.515 0.440 0.450 0.469 0.427 0.460 0.433 1.000 0.766 0.743

Henan 1.000 0.734 0.758 0.668 1.000 0.530 0.588 1.000 1.000 1.000

Hubei 0.635 0.695 0.748 0.762 0.753 0.311 0.319 0.487 0.492 0.525

Hunan 1.000 1.000 1.000 1.000 1.000 0.470 0.467 1.000 1.000 1.000

Guangdong 1.000 0.174 0.323 0.292 0.292 1.000 1.000 1.000 1.000 1.000

Guangxi 0.578 0.528 0.590 0.619 0.513 0.549 0.537 1.000 1.000 1.000

Hainan 1.000 1.000 1.000 1.000 1.000 0.218 1.000 1.000 1.000 1.000

Chongqing 0.359 0.302 0.327 0.340 0.306 0.210 0.223 0.301 0.326 0.301

Sichuan 0.462 0.454 0.463 0.448 0.394 1.000 1.000 1.000 0.530 0.389

Guizhou 0.738 0.619 0.625 0.608 0.532 0.216 0.258 1.000 1.000 1.000

Yunnan 0.343 0.323 0.363 0.324 0.346 0.215 0.202 0.352 0.389 0.367

Shaanxi 0.578 0.513 0.564 0.569 0.529 0.394 0.416 0.540 0.652 0.772

Gansu 1.000 0.717 0.701 0.678 0.608 0.295 0.329 0.512 1.000 0.624

Qinghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.428 0.398

Ningxia 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Xinjiang 0.678 0.504 0.415 0.517 0.511 0.258 0.252 0.362 0.354 0.310

Mean 0.774 0.691 0.701 0.699 0.710 0.545 0.559 0.756 0.718 0.705



Xu C., Wang S.2856

reductions in all provinces. The reason is that these two 
provinces get more support of the local governments, 
and formulate a sustainable development environment 
for industry [6], which is beneficial to the improvement 
of energy efficiency in the land transportation. In 
addition, considering that the efficiencies excluding the 
effect of non-management factors are more reliable, 
thus, the calculation results in the third stage will be 
adopted in subsequent discussions.

At the area level, the energy efficiencies show 
obvious area disparities in the land transportation. 
For highway transportation, the eastern area is the 
highest, followed by the central and western areas. The 
similar conclusion has been verified by Liu et al. [2], 
and this can be explained by two reasons. On the one 
hand, the eastern area has highly developed highway 
networks, and advanced technology and management 
systems [60], thus, the energy input is fully utilized  
and the energy loss in the production process has  
reduced which are conducive to the improvement of 
energy efficiency. On the other hand, the combustion 
efficiency of diesel is higher than that of gasoline, thus, 
from the perspective of energy consumption structure, 
a higher proportion of diesel use may promote the 
improvement of energy efficiency in the highway 
transportation [24]. And according to the raw data, 
the proportions of diesel usage in 2017 of the eastern, 
central, and western areas are 65%, 66% and 69%, 
respectively. Thus, the eastern area has advantages 
in economy, technology and energy structure, which 
lead to higher energy efficiency. As for the railway 
transportation, the central and eastern areas all have 
a better performance. This means that the highway 
transportation in the central area exhibited a catch-up 
effect [64]. Note that the western area has the lowest 
energy efficiency not only in terms of the whole system, 
but also in every subsystem. The reason is that some 
manufacturing industries eliminated from eastern 
and central areas moved to the western area, which 
resulted in more transport service demand. Moreover, 
the energy efficiencies of three areas in terms of two 
subsystems are not high during the sample period. 
This finding means that there still exists huge potential 
for China’s land transportation to improve the energy 
efficiency. The lower energy efficiency level results 
from the development limitations. In the early stages of 
development, backward technology and lack of energy 
saving awareness result in the poor performance in the 
land transportation. A series of energy saving policies 
have been formulated by the local governments, but 
the effects have not emerged for a long time due to the 
characteristics of the transport industries, i.e., intensive 
capitals and long circles [65].

At the regional level, Ningxia, Anhui, Hebei and 
Shanghai perform the best in the land transportation, 
which shows that they are also efficient in two 
subsystems. It can be found that there is no certain 
relationship between economic development level 
and energy efficiency. Take Ningxia and Anhui as 

examples, these two provinces are underdeveloped 
provinces, but they are efficient during the sample 
period. Structural factors may be the main reason 
for the high energy efficiency of Ningxia. The pillar 
industry in Ningxia is dominated by the primary 
industry, such as agriculture and animal husbandry, 
which can reduce the transport service demand and are 
beneficial to the improvement of the energy efficiency. 
For Anhui and Hebei, the reason may be that they have 
strong energy saving technology advantages in the 
transportation industry [65]. As for Shanghai, based 
on the traffic operation annual report of Shanghai in 
2018, the number of metro vehicles has exceeded 5000, 
and average daily passenger flow is 9.69 million times, 
which further consolidates the dominant position of 
rail transit, thereby reducing the energy consumption 
of the land transportation. There are some provinces 
with low energy efficiency, such as Fujian (0.2580), 
Shanxi (0.3521), Heilongjiang (0.3836), Chongqing 
(0.2934), Yunnan (0.3155), and Xinjiang (0.3692). Take 
Fujian as an example, the raw data indicates that the 
average passenger turnover volume and the average 
freight turnover volume from 2013 to 2017 in Fujian are 
23.08% and 59.59% less than the national average value 
respectively, which indicates that Fujian should further 
improve the management level to increase energy 
efficiency. All of these provinces are located in the 
central and western areas except for Fujian. This result 
means that although no certain relations are found in 
economic level and energy efficiency, the central and 
western areas still deserve more attention. Moreover, 
seven provinces (including Beijing, Jiangsu, Hainan, 
Hunan, Qinghai and Inner Mongolia) are efficient 
in the railway transportation from 2013 to 2017, but 
inefficient in the highway transportation, which lead to 
the energy inefficient of the whole land transportation. 
Guangdong is efficient in the highway transportation, 
but inefficient in the railway transportation. The 
findings reveal the efficiency difference between these 
two subsystems of the land transportation. Take Beijing 
as an example, traffic jam problem in Beijing’s highway 
transportation is particularly acute in recent years, 
which exacerbates the difficulty of management in 
the transportation. And the traffic jams always lead to 
frequent braking and acceleration, which will increase 
the energy consumption [66]. These results show that 
only the two subsystems are efficient, can the whole 
land transportation system be efficient, therefore, both 
railway and highway transportation should get the 
attention of the local governments.

In addition, as shown in Table 7, the average 
efficiencies of railway transportation during the 
sample period are 0.774, 0.691, 0.701, 0.699, and 0.710 
respectively, while that of highway transportation are 
0.545, 0.559, 0.756, 0.718, and 0.705 respectively. The 
EERT is apparently better than EEHT in 2013 and 2014, 
however, the EEHT is slightly higher than EERT in next 
two years. It can be inferred that the inefficiency of 
the land transportation mainly derives from the lower 
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performance of the highway transportation from 2013 to 
2014. And the efficiency disparities between these two 
subsystems has narrowed in next three years, indicating 
the influence of the highway transportation in the whole 
land transportation system is increasing.

To illustrate the changing trend of energy efficiencies 
in two subsystems over time and further analyzes the 
efficiency difference between railway and highway 
transportation from 2013 to 2017. Fig. 6 is plotted with 

the sequence of graphs corresponding to the time.  
30 provinces can be grouped into four categories 
according to the average values of EERT and EEHT, 
namely, high-high group, low-high group, low-low 
group, and high-low group. Fig. 6 shows that EEHT 
presented an increasing trend, it can be found that most 
provinces have a low EEHT in 2013 and 2014, then the 
numbers of provinces with high EEHT have a sharp 
increase in 2015, and keep relatively steady from 2015 

Fig. 6. The provincial EERT and EEHT from 2013 to 2017.
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to 2017, the proportion of provinces with high EEHT 
exceeded 50% from 2015 to 2017, indicating that the 
administrative level in China’s highway transportation 
have improved greatly within the study period. Different 
from the trends in EEHT, the proportion of provinces 
with high EERT accounted for nearly 50% in each year 
between 2013 and 2017, showing that no significant 
changes happened in the railway transportation as a 
whole.

Fig. 7 presents the changes in the number of 
provinces within the four groups over time. It can be 
found that the numbers of provinces in high-low and 
low-low group show a decreasing trend from 2013 to 
2017, while having an increasing trend in low-high and 
high-high groups. Specifically, 4 provinces (Shanghai, 
Hebei, Anhui, Ningxia and Hainan) have been in high-
high group, except Hainan in 2013. These provinces can 
be the benchmark for other provinces as they have both 
high EERT and EEHT. On the contrary, 8 provinces 
(Fujian, Yunnan, Chongqing, Xinjiang, Shanxi, Jilin, 
Heilongjiang, Shaanxi) are in low-low group, except 
Heilongjiang in 2015 and Shaanxi in 2017, indicating 
that these provinces have great potential to enhance the 
EERT and EEHT. Inner Mongolia has always been in 
high-low group, which indicates that it should improve 
the managerial level in highway transportation to 

increase the EEHT. Table 8 demonstrates the variation 
of the remaining 16 provinces between the four groups 
from 2013 to 2017. 1, 2, 3, 4 respectively represent 
quadrant I, II, III and IV. It shows that 5 provinces 
(Jiangsu, Jiangxi, Hunan, Zhejiang, Henan) have a 
better change trend, since Jiangsu, Jiangxi, Hunan 
and Henan change from high-low group to high-
high group in 2015 and remain steady in next three 
years, except Henan in 2016, Zhejiang arrived high-
high group in 2016. 4 provinces (Hubei, Shandong, 
Liaoning, Guangxi) don not reach the high-high 
group, but their overall efficiency change trend is 
developing in a better direction. In detail, Shandong, 
Liaoning and Guangxi change from quadrant III to 
quadrant II, which shows that these provinces have 
increased EEHT during the research time, but still 
have a bad performance in EERT, so some measures in 
railway transportation should be taken to arrive high-
high group for these provinces. Hubei changes from 
quadrant III to quadrant IV in 2016, meaning EEHT 
should be increased. 4 provinces (Guangdong, Qinghai, 
Sichuan and Gansu) presented bad change trends within  
5 years. Specifically, Guangdong left the high-high 
group in 2014 and were in low-high group within next 
four years, Qinghai dropped the high-high group from 
2016, these two provinces should improve EERT and 
EEHT, respectively, Sichuan and Gansu reached low-
low group in 2016 and 2017, respectively, which means 
both EERT and EEHT should be improved for these 
two provinces. In addition, Guizhou went from high-
low to low-low to low-high group, indicating EERT in 
Guizhou should be increased.

Policy Implications

To improve the energy efficiency of the land 
transportation system, several policy suggestions are 
proposed based on the above results and discussion.

(1) The policy decision-makers should refer to the 
efficiency evaluation results with excluding the non-
management factors, since traditional SBM model 
cannot eliminate the effects of non-management 
factors, which may make the evaluated results 

Fig. 7. The numbers of different groups from 2013 to 2017.

Table 8. The variation of 16 provinces between the four groups from 2013 to 2017.

Provinces 2013 2014 2015 2016 2017 Provinces 2013 2014 2015 2016 2017

Jiangsu 4 4 1 1 1 Guangxi 3 3 2 2 2

Jiangxi 4 4 1 1 1 Guangdong 1 2 2 2 2

Hunan 4 4 1 1 1 Qinghai 1 1 1 4 4

Zhejiang 4 4 2 1 1 Sichuan 2 2 2 3 3

Henan 4 4 1 2 1 Gansu 4 4 4 2 3

Hubei 3 3 3 4 4 Guizhou 4 3 2 2 2

Shandong 3 3 2 2 2 Tianjin 1 2 3 4 1

Liaoning 3 3 3 2 2 Beijing 4 4 1 4 4
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distorted. Industrial structure exerts a negative effect 
on the energy efficiency, so local governments should 
accelerate the industrial structure adjustments to 
switch from the development mode relying on massive 
energy inputs to modern industries which are low-
energy-consumption and high value added. Moreover, 
according to the SFA regression results, excessive 
investments may lead to the unreasonable allocation 
of resources, which will result in resource redundancy 
and hinder the improvement of energy efficiency, Thus, 
the local government should consider the reasonable 
allocation of funds in land transportation sector.

(2) Energy efficiencies in the land transportation 
present significant area disparities, how to narrow 
the area imbalances of the land transportation should 
be concerned. We suggest that both the railway and 
highway transportations should pay more attention to 
the western area owing to its bad performance in recent 
years. On the one hand, the western area can strengthen 
the technical cooperation with the central and eastern 
areas, because technical transfer is more convenient 
to establish traffic system and promote energy 
conservation for the western area [9], on the other hand, 
several provinces in the western area, such as Xinjiang 
and Inner Mongolia who are rich in renewable energy, 
can develop clean energy strategies to improve the 
energy efficiency. Moreover, the eastern and central 
areas have better economic development level, thus, it’s 
more suitable for these two areas to increase investment 
in infrastructure construction, such as the electric 
vehicle charging pile.

(3) Different policies should be formulated 
concerning four different groups. Specifically, for the 
provinces categorized to the low-low group, such as 
Fujian, Yunnan, Chongqing, Xinjiang, Shanxi, Jilin and 
Heilongjiang, both EERT and EEHT should be boosted 
to guarantee the improvement of energy efficiency in 
land transportation; the provinces attributed to the low-
high group, such as Guangdong and Shandong in recent 
three years, shall continue to increase the proportion 
of electric locomotive in the railway sector, which is 
conducive to reducing fuel energy consumption and 
improving the EERT; the provinces attributed to high-
low group, such as Hubei and Beijing in 2016, 2017, 
shall expand the market share of electric vehicles and 
public transport, so that the numbers of private cars 
relying on gasoline can decrease greatly, which is 
beneficial to the improvement of energy efficiency in 
the highway transportation.

Conclusions

The aim of this article is to analyze the energy 
efficiency of China’s provincial land transportation 
(including railway and highway transportation). A 
parallel structure of land transportation is firstly 
constructed. Then, the parallel SBM model and three 
stage of DEA approach are combined to measure the 

energy efficiency at provincial level from 2013 to 2017 
with excluding the impacts of non-management factors. 
And, the energy efficiencies in railway and highway 
transportation are also calculated by means of efficiency 
decomposition approach. Through the empirical energy 
efficiency evaluation of China’s 30 administrative 
provinces, several primary conclusions can be obtained 
as follows: 

(1) Non-management factors (including per capita 
GDP, industrial structure and statistical noise in this 
paper) do exert unfavorable influences on the energy 
efficiency measurement of China’s land transportation. 
Generally, the non-management factors do result in the 
overestimation of energy efficiencies.

(2) The energy efficiencies of China’s land 
transportation present significant area differentiation. 
The eastern area is the highest, followed by the 
central and western areas. For railway transportation, 
the western area still performs worst, the central 
and eastern areas fluctuated obviously. In terms of 
highway transportation, the eastern area has the highest 
efficiency value, while the central and western areas 
have a poor performance.

(3) The average energy efficiency of China’s land 
transportation is low, with a huge potential to improve. 
From the dynamic perspective, the energy efficiencies 
of the whole land transportation and the highway 
transportation present a significant upward trend during 
the sample period. However, the changing trend is not 
promising for the railway transportation.

(4) The inefficiency of the land transportation 
mainly derives from the lower performance of the 
highway transportation from 2013 to 2014, however, the 
influence of the highway transportation in the whole 
land transportation system is increasing in next three 
years.
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