
Introduction

Global change and the intensification of human 
activity have a significant impact on the ecosystems 
[1]. With the increasing concerns on the global 
environmental change, ecological fragile belts and 
ecological vulnerability and its impact factors have 
become global research topics [2, 3]. Ecological 
vulnerability assessments and spatial correlations 

reveal the spatial and temporal characteristics of 
regional ecological vulnerability and have important 
practical significance for ecological and environmental 
protection, rational use of resources, and sustainable 
development [2, 4]. Therefore, ecological vulnerability 
has become one of the most important topics in the 
study of global environmental change and sustainable 
development [5, 6].

Ecological vulnerability stems from the concept 
of “ecological transition zone” proposed by American 
ecologists in the early 20th century [7]. There is still 
some controversy about the concept of ecological 
vulnerability, but vulnerability is commonly used 
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to characterize the ecosystem’s response to external 
pressure [8, 9]. The Intergovernmental Panel on Climate 
Change (IPCC) defines it as the system’s sensitivity 
to external pressure. It can be characterized in three 
aspects: 1) external pressure on the ecosystem; 2) 
the sensitivity of the ecosystem; 3) the adaptability 
or elasticity of the ecosystem [10, 11]. Ecological 
vulnerability refers to the sensitivity and resilience of 
an ecosystem under the disturbance of external factors 
at a specific time and space scale, which is determined 
by its own attributes and external human factors [12]. 
Research on ecological vulnerability assessment has 
passed through the stages of the qualitative assessment 
of early vulnerability zone division and theoretical 
discussion, quantitative assessment, and system 
vulnerability discussion [13]. At present, there are many 
evaluation systems for ecological vulnerability, but 
a set of recognized models has not been formed, and 
evaluation indicators and calculation methods are not 
unified [14]. Commonly used conceptual models include 
the ecological sensitivity, resilience, and pressure degree 
(SRP) model [15], exposure, sensitivity, adaptability 
(VSD) model [16] and the pressure, sensitivity, 
elasticity (PSE) model. The indicator system includes 
the systems of natural causes-result performance, 
influencing factors-performance factors-stress factors, 
and the natural-ecological-socioeconomic system [17]. 
Evaluation methods include the analytic hierarchy 
process (AHP) method [18], comprehensive index 
method [19], fuzzy mathematics method [20], principal 
component analysis (PCA) method [21], neural network 
method [22], entropy weight method [6], the method of 
landscape ecology [23], and the fuzzy matter-element 
evaluation method [2]. 

With the development of the “3S” technology, remote 
sensing (RS) methods have been increasingly used in 
ecological vulnerability research due to their rapid, real-
time, and multi-scale monitoring capabilities [24-26]. 
To select appropriate monitoring indicators, ecological 
vulnerability has been evaluated for a single indicator 
or multiple indicators [27]. Comprehensive evaluation 
models with multiple indicators include an ecological 
and environmental assessment model composed entirely 
of remote sensing data and a comprehensive index 
model composed of multiple indices using AHP [28, 
29]. The comprehensive assessment model of ecological 
vulnerability composed of remote sensing data can 
reflect the vulnerability characteristics of the ecological 
environment in a timely, rapid, and objective manner 
[30]. Xu (2013) proposed a remote sensing ecological 
index (RSEI) by integrating various indicators such 
as greenness, humidity, heat, and dryness with remote 
sensing information [31]. The indicators of the RSEI 
are determined by the nature of the remote sensing 
data. The calculation method of RSEI not only reduces 
the influence of human subjective factors in actual 
operation, but also realizes high-precision visual 
expression of ecological vulnerability results in time 
and space [32]. It has the advantages of objectivity, 

multiple indicators, and a wide range, which offsets 
the deficiencies of the existing technology, reduces 
the difficulty of extracting ecological indicators, and 
avoids the subjectivity in practical applications [33, 34]. 
Therefore, the RSEI can be used to objectively calculate 
ecological vulnerability and rapidly analyze its spatial 
distribution characteristics [35]. 

The ecological environment is fragile in the arid 
region of Northwest China and highly sensitive to 
global climate change [29]. The Xinjiang Tianshan 
Heritage Site consists of four districts, Tormur, Bogda, 
Kalajun-Kuerdening, and Bayanbulak. The Tianchi 
Scenic Area (TSA) is an important part of the Bogda 
Heritage Area, whose vertical natural zones directly 
affect the biodiversity and ecological succession 
process and objectively reflect the community function 
and structure. Since the successful declaration of 
the Tianshan Heritage Site in Xinjiang, the TSA 
has become a popular tourist destination [36]. From 
2000 to 2017, the number of tourists increased from 
421,200 to 2,095,600. However, tourism activities, 
infrastructure, and construction of new roads pose a 
threat to the ecological and environmental protection 
efforts [37]. Previous studies on the conservation of 
the ecological environment in the TSA investigated the 
impact of climate change on the ecological environment 
in the scenic area, the impact of grass cover and rain 
intensity on runoff, key technologies for geological 
disasters and ecological environmental protection, 
the extraction method for the vertical natural band 
spectrum, the evaluation of lake ecosystem services, 
spatial differentiation of ecological security and driving 
mechanisms, geological and ecological risk assessment, 
and soil characteristics and their environmental 
significance near the scenic roads [19, 37-45]. However, 
there are only a few studies that investigated the 
ecological vulnerability and its influencing factors 
through remote sensing. Previous studies on ecological 
risk and ecological security in the study area, mostly 
use comprehensive multi-factor evaluation methods. 
In this method, the factors are carried out by experts, 
thus making the results subjective. This study refers to 
Xu Hanqiu’s ecological risk remote sensing calculation 
method, it can objectively and truly reflect the risk 
situation suffered by the ecosystem of the heritage site 
[46]. Through the discussion of the factors to ecological 
vulnerability, the strengthening of heritage ecosystem 
management and regional security has important 
practical significance and provides a theoretical basis 
for the subsequent implementation of the protection, 
monitoring and management policies of heritage sites 
[47].

In this study, ecological vulnerability of the TSA was 
calculated using the RSEI based on TM and OLI data, 
the temporal and spatial distribution of the ecological 
vulnerability was analyzed, and the influencing factors 
were detected using the geographical detectors model. 
The goal was to investigate the temporal and spatial 
evolution of ecological vulnerability and provide 
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the decision-makers with a theoretical basis for the 
protection and management of ecological vulnerability 
in the study area.

Materials and Methods   

Study Area

The TSA is located in Fukang City, Changji 
Prefecture, Xinjiang, China, at the geographic 
coordinates of 88°0′38″-88°25′51″E, 43°44′53″-
44°4′55″N. The study area is about 100 kilometers 
away from Urumqi, the capital of Xinjiang Uygur 
Autonomous Region in China. The total area is  
548 km², and the tourist area is 28 km², accounting for 
5% of the total area. The elevation gradually increases 
from north to south, from 1380 to 5445 m. The TSA is 
located in an arid area, which belongs to a continental 
temperate climate zone. The climate is warm in winter 
and cool in summer, with long hours of sunlight, and 
deep snow cover. The average annual temperature 
is 2.55 °C, and the relative humidity is 70-85%. The 
average annual precipitation is 443.9 mm, and it is 
concentrated from April to September. The average 
annual evaporation is 1439 mm [41]. The TSA covers 
68.27% of the Bogda Heritage Site. There is a typical 
vertical mountainous natural belt on the northern 
slope of the Xinjiang Tianshan Mountain [36, 42]. 

These vertical mountainous natural belts are typical in 
temperate arid regions of the world. The TSA has six 
distinct vertical natural belts, which are distributed 
as a temperate desert belt (700-1,100 m), mountain 
steppe belt (1,100-1,650 m), mountain coniferous forest 
belt (1,650-2,700 m), subalpine-alpine meadow belt  
(2,700-3,300m), alpine cushion vegetation belt  
(3,300-3,700 m), and snow belt (3,700-5,445 m) [48]. The 
site was rated as a 5A scenic spot in 2007 and was one 
of the first scenic spots in the country to be included in 
the national scenic spots in 1980 (Fig. 1).

Data Source and Pre-Processing

The data required for this study include the digital 
elevation model (DEM) data, remote sensing data, land 
use type data, and field data. 

DEM data. Through the geospatial data cloud 
website, the DEM data with a resolution of 30 m 
were downloaded. The resolution of the DEM data is 
consistent with the remote sensing data. Using ArcGIS 
10.5 software, the range of the TSA area and the DEM 
data were superimposed to obtain the DEM data of the 
study area. 

Remote sensing data. The remote sensing data were 
obtained from Landsat 5 TM on June 13, 2000 and 
Landsat 8 OLI_TIRS on June 4, 2017. The requirements 
for image selection criteria were as follows: the 
cloud cover should be less than 5%, and the seasonal 

Fig. 1. Location and natural vertical belts of the Tianchi Tourism Scenic Spots. 
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differences should be small. The remote sensing data 
were obtained from the geospatial data cloud website. 
The ENVI 5.3 software was used to perform band 
fusion, radiation calibration, atmospheric correction, 
and geometric correction on two phases of remote 
sensing data. Then, the processed data were cropped 
based on the boundary of the study area. 

Land use type data. Combined with China’s land 
use classification standards and field surveys, the 
land use types were divided into the bare-rock area, 
glaciers, water bodies, low-coverage meadow, medium-
coverage meadow, high-coverage meadow, forest, 
agricultural area, and construction area, using the 
two phases of remote sensing data. In remote sensing 
data interpretation, first, an interpretation mark was 
established through Google Earth images and field 
survey data. Second, ENVI 5.3 software was used 
with the support vector machine classification method 
for remote sensing data interpretation through human-
computer interactions. Finally, the accuracy of the 
interpretation results was verified using the high-
resolution remote sensing images and the field survey 
data. In 2000 (2017), the land use classification accuracy 
was 85.03% (88.21%), and the Kappa coefficient was 
0.857 (0.873).

Field data. To verify the consistency of the results 
with the real-world data, we collected a total of 58 
plots in 2018-2019 (July, vegetable growth season) to 
conduct vegetation surveys in the TSA. For the plot 
selection, the altitude, topography, soil conditions, and 
vegetation types in the same conditions should not be 
very different. The size of the plots was 10 m × 10 m. 
Three sets of repetitions were required. In a selected 
plot, the size of the herb plot was set to 1 m × 1 m, and 
the measurements were repeated in five groups. The 
data of the vegetation species name, height, coverage, 
number of plants, and crown width in each sample were 
recorded, and then the Simpson index, Shannon-Wiener 
diversity index, and Margalef richness index were 
calculated.

Methodology

Framework of Ecological Vulnerability in TSA

The ecological vulnerability was assessed using 
the remote sensing ecological index in this study [49, 
50]. Then, the spatial-temporal evolution characteristics 
of ecological vulnerability were analyzed at different 
time periods using the exploratory spatial data analysis 

Fig. 2. Framework of ecological vulnerability in study area. 
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(ESDA) model [51]. Using the geographical detectors 
model, the influencing factors and the temporal and 
spatial evolution mechanism of ecological vulnerability 
were determined. The framework of ecological 
vulnerability consists of four parts. (1) Data collection 
and processing: The database, which contained the 
DEM data, remote sensing data, land use type data, 
and field survey data, was established. (2) Evaluation 
of ecological vulnerability: referring to the research of 
Xu (2013), the RSEI was used to assess the ecological 
vulnerability in the study area. The RSEI contains 
the indicators of greenness, wetness, dryness and 
heat, which are represented by Normalized difference 
vegetation index (NDVI), Wetness (WET), Dryness 
(NDISI), and Heat (LST) index, respectively [34, 
52]. Then, the indicators of NDVI, WET, NDISI, and  
LST were analyzed using the principal component 
analysis (PCA) method to establish the RSEI [31, 53]. 
(3) Spatio-temporal characteristics: Using the ESDA 
model, spatio-temporal characteristics of ecological 
vulnerability were analyzed in 2000 and 2017. (4) 
Influencing factors: Based on the previous research, 
the influencing factors were analyzed through the 
geographical detectors model of the study area in 2000 
and 2017 [54] (Fig. 2).

Comprehensive Assessment Model of Ecological 
Vulnerability

The RSEI is a new type of remote sensing index 
used to reflect the status of the regional ecological 
environment. With the indicators of greenness, 
humidity, dryness, and heat, the RSEI was used to 
comprehensively reflect the ecological vulnerability. 
The indicators of greenness, wetness, dryness, and heat 
are represented by NDVI, WET, NDISI, and LST index, 
respectively [49, 55].
(1) Indicators of RSEI
 – Greenness  

Vegetation is an important factor reflecting the 
regional ecological environment. Normalized difference 
vegetation index (NDVI) is the most widely used 
vegetation index to detect vegetation coverage, plant 
growth, and leaf area index [56, 57]. The NDVI is 
calculated as follows:

                   (1)

...where NDVI is the index of greenness; bRed and bNIR 
denote the planetary reflectance of the red and near-
infrared band of the Landsat 5 TM and Landsat 8 OLI 
images, respectively.
 – Wetness  

Wetness reflects the moisture of soil, vegetation, and 
surface water in the ecological environment. Brightness, 
greenness, and wetness obtained by remote sensing 
tassel cap transformation are widely used in ecological 
environment monitoring research [58, 59]. Based on 

the data of Landsat 5 TM and Landsat 8 OLI images, 
wetness can be calculated as follows:

 (2)

 (3)

...where bBlue, bGreen, bRed, bNIR, bSWIRI, and bSWIR2 are the 
planetary reflectance values of the blue, green, red, near-
infrared, and mid-infrared bands of the Landsat 5 TM or 
Landsat 8 OLI images, respectively.
 – Dryness  

The dryness of the surface is caused by vegetation 
removal and construction activities. According to the 
land use classification of the study area, the bare soil 
index and the building index were selected to synthesize 
the dryness index and to calculate the environmental 
dryness of the area [29].

 
(4)

         (5)

                        (6)

...where IBI is the bare soil index, SI is the building 
index, NDISI is the index of dryness.
 – Heat  

As an important indicator of environmental analysis, 
surface temperature is closely related to vegetation and 
water resources in the environment [60, 61]. In this 
study, the land surface temperature represents the heat 
index, which can be calculated as follows:

                   (7)

                      (8)

                 (9)

...where Lλ is the radiance value of the Landsat 5 TM 
thermal infrared 6 band and Landsat 8 OLI thermal 
infrared 10 band. Tb is the at-satellite brightness 
temperature, and K1 and K2 are the thermal conversion 
constants. LST is the heat index, DN is the pixel value of 
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the Landsat 5 TM thermal infrared 6 band and Landsat 
8 OLI thermal infrared 10 band. Values of gain and 
bias can be obtained from the header file of the image.  
At the thermal infrared band of Landsat 5,  
K1 = 607.76W/(m2 ∙ sr ∙ μm) and K2 = 1260.56K; at the 
thermal infrared band of Landsat 8, K1 = 774.89W/
(m2 ∙ sr ∙ μm) and K2 = 1321.08K. λ is the wavelength of 
the thermal infrared band; ρ = 1.4380*104 μm; ε is the 
surface specific emissivity.
(2) Construction of RSEI

The PCA method can remove the correlation between 
various indicators by rotating the spatial coordinate axis 
of the characteristic spectrum, thereby concentrating the 
information to fewer principal components. When the 
cumulative variance contribution rate of a component 
is greater than or equal to 85%, that component 
represents the majority of relevant information. This 
method is widely used in the construction of the RSEI 
[62]. Its biggest advantage is that the weight value of 
the integrated indicators is not artificially determined 
but is objectively determined according to the nature 
of each indicator and its contribution to each principal 
component. Therefore, it avoids the deviations in the 
results caused by different weights set by people, 
making the RSEI more objective and reliable [63].

Due to the different dimensions of the indicators, the 
NDVI, WET, NDISI, and LST should be standardized 
to the values within [0,1] before the principal component 
transformation to reduce the impact of the time 
differences. According to the contribution to the RSEI, 
NDISI and LST are positive indicators, and NDVI and 
WET are reverse indicators. The standardization of the 
indicators adopts the range standardization method [25, 
46].

                      (10)

                       (11)

...where SIi represents the standardized value of the i-th 
index, ranging between 0 and 1; Ii is the actual value 
of the i-th index; Imax is the maximum value of the i-th 
index; Imin is the minimum value of the i-th index.

Using the ENVI 5.3 software, the standardized 
NDVI, WET, NDISI, and LST indicators were analyzed 
with the PCA method to calculate the RSEI, which 
represents ecological vulnerability of the study area 
[30].

          (12)

...where RSEI represents ecological vulnerability. PCA 
is the method of principal component analysis. To 
facilitate the measurement and comparison of indicators, 
the RSEI was normalized to a value between 0 and 1.

Based on the RSEI value, the natural classification 
method was used to determine the classification of 

ecological vulnerability, in which grades I–V indicate 
the ecological vulnerability from low to high.

Spatial Statistical Model 

(1) Exploratory spatial data analysis (ESDA)
Exploratory spatial data analysis (ESDA) measures 

the spatial agglomeration degree. By calculating the 
spatial autocorrelation coefficient, ESDA describes 
the spatial agglomeration and anomaly of the spatial 
distribution patterns of visual objects to discover the 
spatial interactions between the objects [51, 64]. The 
ESDA model has two analysis methods: global statistics 
and local statistics.
 – Global spatial autocorrelation  

The global spatial autocorrelation is an overall 
quantitative description of the observed spatial patterns 
and used to detect the spatial correlation pattern of the 
entire study area [65].

 (13)

...where Moran’s I is the index of the global spatial 
autocorrelation; N is the total number of raster data 
center points, with the size of 30 m × 30 m in the study 
area; xi and xj represent the observed values of a certain 
attribute on the x-space regional unit;  is the mean of 
the research object x; Wij is the spatial weight matrix. 
If Moran’s I is significantly positive, then the areas with 
higher (or lower) ecological vulnerability levels are 
spatially significantly clustered. Conversely, if Moran’s 
I is significantly negative, then there is a significant 
spatial difference in the ecological vulnerability levels 
of the region and the surrounding area.
 – Getis-Ord Gi*  

Getis-Ord Gi* is used to identify the high-value 
and low-value agglomeration areas at different spatial 
positions, i.e., hot spots and cold spots [66].

           (14)

                  (15)

...where Wij is the spatial weight matrix, the spatial 
adjacency is 1, and the non-adjacent is 0. E (Gi*) is 
the mathematical expectation, and Var (Gi*) is the 
compilation number of Gi*. If Z (Gi*) is positive and 
significant, then the value around position i is relatively 
high (above the mean), which is the high-value spatial 
clustering (hot spot area); if Z (Gi*) is negative and 
significant, then the value around position i is relatively 
low (below average), which belongs to the low-value 
spatial clustering (cold spot area).
(2) Geographical detectors method

According to Wang (2017), a geographical 
detector is used to detect the spatial differences in 
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geographical elements. The geographical detector 
includes a differentiation factor detector, risk detector, 
interaction detector, and ecological detector [67]. 
Differentiation factor detector is used to analyze the 
interpretation degree of the influencing factor to the 
research object. Interaction detector can identify the 
explanatory power of two factors to the research 
object under the interaction. Geographical detectors 
are better at processing the algorithms for classified 
data than for continuous data. In this study, we 
selected the differentiation factor detector and the 
interaction detector to study the influencing factors and 
mechanisms of ecological vulnerability [68].

 – Differentiation factor detector 
This model detects the spatial differentiation of 

Y and probes how much factor x explains the spatial 
differentiation of Y.

               (16)

...where q is the indicator of the spatial differentiation 
detection of the dependent variable; h = 1,…, L is the 
stratification of variables or factors; Nh is the number 
of sub-level regional sample units; N is the number of 
sample units in the entire region; L is the number of 
secondary regions; б² is the variance of the dependent 
variable for the entire region; бh² is the variance of 
the second-level region. The value interval of q is 
[0, 1]. The larger the q value, the higher the degree of 
spatial differentiation of the dependent variable. If the 
stratification is generated by independent variables, 
the greater the value of q, the stronger the explanatory 
power of the independent variable. When q = 0, the 
independent variable has no relationship with the 
dependent variable. When q = 1, the independent 
variable completely controls the dependent variable.
 – Interaction detector

The model can identify the interactions between 
different factors and assess whether the influencing 

factors will increase or decrease the explanatory power 
of the dependent variable when they work together, 
or the influence of these factors on the dependent 
variable is independent. First, the factors (x1 and x2) 
are calculated for dependent variable q (q(x1) and q(x2)). 
Then, the interactive variable q (q(x1∩x2)) is calculated 
under the interaction of several factors. Finally, q(x1), 
q(x2), and q(x1∩x2) are compared. When q(x1∩x2) is 
higher than the sum of x1 and x2, then x1 and x2 have a 
non-linear strengthening effect. When q(x1∩x2) is higher 
than the individual values of x1 and x2, and q(x1∩x2) is 
less than the sum of x1 and x2, then x1 and x2 have a 
mutual strengthening effect [5].

Based on the existing research and data accessibility, 
the main influencing factors of elevation (x1), slope (x2), 
precipitation (x3), temperature (x4), land use type (x5), 
distance from road (x6), distance from tourist attractions 
(x7), and distance from settlements (x8) were used to 
explain the ecological vulnerability of the study area. 
According to the data requirements of the geographical 
detectors model, ecological vulnerability was used as 
the dependent variable, and the influencing factors were 
classified via the natural fracture method. In ArcGIS 
10.5 software, vector points and fishnet vector data with 
the size of 30 m × 30 m were generated. The dependent 
and independent variables were matched through each 
vector point to detect the contribution of influencing 
factors (Table 1).

Results 

Characteristics of Ecological Vulnerability 
Indicators

The values of NDVI, WET, NDISI, and LST showed 
differences in 2000 and 2017. From 2000 to 2017, the 
values of WET, NDISI, and LST in the TSA showed 
an upward trend, with their average values rising 
from -0.1076, 0.0042, and 9.5960 to -0.0616, 0.0241, 

Table 1. Independent variables of ecological vulnerability.

Variables Standard of Classification

Elevation (x1) Calculated from DEM data, the data is divided into 5 categories by natural fracture method

Slope (x2) Calculated from DEM data, the data is divided into 5 categories by natural fracture method

Precipitation (x3) Classed into five categories with natural breaks

Temperature (x4) Classed into five categories with natural breaks

Land use type (x5)
Categorized into: bare-rock area, glaciers, water bodies, low coverage meadow, medium coverage 

meadow, high coverage meadow, forest, agricultural area and construction area

Distance from road (x6) Calculated the distance from road, the data is divided into 5 categories by natural fracture method

Distance from tourist 
attraction (x7)

Calculated the distance from tourist attraction, the data is divided into 5 categories by natural fracture 
method

Distance from settlements (x8)
Calculated the distance from settlements, the data is divided into 5 categories by natural fracture 

method
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and 19.1933, with an increase of 42.75% 473.81%, and 
100.01%, which indicates that the water conservation 
capacity of the research area improved, and surface 
temperature and the degree of surface exposure 

increased. The value of LST changed the most; the 
maximum and minimum values were different, and the 
mean value was higher than that of the other indicators. 
The value of WET changed the least, and the mean 
value was also lower than that of the other indicators.  
The average value of NDVI decreased slightly from 
0.3819 to 0.3579. From 2000 to 2017, the standard 
deviation of NDVI, NDISI, and LST increased, 
indicating large differences in greenness, dryness, and 
heat (Table 3).

The spatial distribution of ecological vulnerability 
indicators shows that the area of the bare land in the 
study area increased; thus, the surface dryness and 
LST also increased, during 2000-2017. With the 
establishment of ecological conservation measures, 
such as the demolition of hotels, guesthouses, and 
infrastructure within the scenic area, vegetation 
coverage and soil moisture have improved, and the 
ecological factors have developed in the favorable 
direction in the residential area in the north of TSA 
(Fig. 3). 

Table 2. The result of spatial component principle analysis.

PC
Eigenvalues Contribution ratio of Eigenvalues/% Cumulative contribution of Eigenvalues/%

2000 2017 2000 2017 2000 2017
1 0.0253 0.0146 62.4558 52.4522 62.4558 52.4522
2 0.0090 0.0087 22.2822 31.0644 84.7380 83.5116
3 0.0043 0.0036 10.5998 13.0116 95.3379 96.5279
4 0.0019 0.0010 4.6621 3.4721 100.0000 100.0000

Table 3. Statistics of NDVI, WET, NDISI, LST during 2000-
2017.

Statistics Max Min Mean Std

2000

NDVI 1 −1 0.3819 0.2588

WET 0.5805 -0.4646 -0.1076 0.1473

NDISI 0.4500 -0.6500 0.0042 0.2034

LST 31.0513 -25.1337 9.5960 9.1505

2017

NDVI 1 −1 0.3579 0.2802

WET 1.1135 -0.2784 −0.0616 0.1158

NDISI 1 −1 0.0241 0.2302

LST 43.1841 -17.8275 19.1933 10.0547

Fig. 3. Characteristics of ecological vulnerability indicators in TSA. 
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Temporal and Spatial Evolution Pattern 
of Ecological Vulnerability

According to the PCA, the evaluation model of the 
RSEI in 2007 and 2017 can be expressed as follows.

RSEI2007 and RSEI2017 are the remote sensing 
ecological indices of 2007 and 2017, respectively, and 
PC1–PC3 are the first three principal components after 
the principal component transformation of the original 
spatial variables.

In 2007 and 2017, the cumulative contribution rate of 
the three principal components reached 95%, which is 
greater than 85%; thus, the fourth principal component 
in these two years can be ignored (Table 2).

The RSEI was used to represent the spatial 
distribution of ecological vulnerability levels in 2000 
and 2017. The RSEI showed a downward trend from 
2000 to 2017. The highest value decreased by 23.53% 
from 1.19 to 1.01, and the minimum value decreased by 
15.12% from 0.34 to 0.26 (Fig. 4).

In 2000 and 2017, the regions of grades I, II, and 
III in the study area were dominant, and the overall 
ecological vulnerability was low. The areas of grades 
I, II, and V decreased by 33.56 km², 32.80 km², 
and 8.94 km², respectively, and those of grades III  

and IV increased slightly by 50.60 km² and 24.69 km² 
(Fig. 5).

In 2000, the areas of the RSEI grades I–V were 
128.11 km², 188.59 km², 111.40 km², 67.38 km², and 
43.02 km², respectively. The areas of grades I, II, and 
III (low ecological vulnerability) accounted for 79.5%, 
while those of grades IV and V (high ecological 
vulnerability) were smaller, 110.40 km². The region 
of grade I is distributed in the temperate desert belt, 
mountain steppe belt, and partly in the alpine cushion 
vegetation belt in the north of TSA. The land use type 
of this region is low- and medium-coverage grassland 
and part bare land. The area of grade II region is the 
largest, and it is mostly in the alpine cushion vegetation 
belt and partly in the mountain coniferous forest belt, 
which is dominated by bare land and partly by the high-
coverage grassland. The grade III region is mostly in 
the mountain coniferous forest belt, subalpine-alpine 
meadow belt, and partly in the northern residential 
agglomeration area along the Sangong River valley. 
The grade IV region is dominated by the mountainous 
coniferous forest belt. The grade V area has the smallest 
area and is distributed in the glacial snow belt in the 
northern part of the study area.

In 2017, the areas of RSEI grades I–V were  
94.64 km², 156.03 km², 162.42 km², 92.32 km², and 
34.84 km², respectively. The areas of grades I, II, and 
III (low ecological vulnerability) accounted for 76.46%, 
while the areas of grades IV and V (high ecological 
vulnerability) were 127.16 km². The area of grade I, 
which extends to the southern part of the mountain 
steppe belt, decreased while the region in the alpine 
cushion vegetation belt disappeared. The area of grade 
II region decreased. However, in the alpine cushion 
vegetation belt, the distribution changed from the flake 
to the point, and the region became more fragmented. 
The area of grade III and IV increased. The grade IV 
region extends to the snow belt in the south. The area of 
the grade V region, which is still mainly distributed in 
the glacial snow belt, decreased (Fig. 6).

Spatial Heterogeneity of RSEI

Using Geoda software, the Moran’s I value of 
the RSEI was calculated. The spatial correlation of 

Fig. 4. Spatial distribution of RSEI in TSA. 

Fig. 6. Area of ecological vulnerability grades. Fig. 5. Regions of grades to RSEI in TSA. 
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the RSEI combining the scatter plot and the hot-cold 
spot spatial distribution map was analyzed. Moran’s 
I in 2000 and 2017 passed the significance test (p = 
0.01<0.05). Moran’s I was greater than 0.5, implying that 
the ecological environment in the TSA had a positive 
autocorrelation or a highly clustered pattern. From 2000 
to 2017, the value of Moran’s I increased from 0.955 to 
0.974, indicating that the ecological vulnerability of the 
study area was stable during the 17-year period. The 
spatial positive correlation of ecological vulnerability 
in the study area showed strong spatial agglomeration 
(Fig. 7).

To study the pattern evolution of ecological 
vulnerability, we used Getis-Ord G* to calculate the 
spatial correlation in the distribution of the RSEI and 
identify the hot spots (high-high) and cold spots (low-
low). From 2000 to 2017, the RSEI showed positive 

spatial agglomeration in hot and cold spots, and the 
distribution pattern showed significant differences. 
The cold-hot spots in the study area showed the 
characteristics of “cold spots-hot spots-cold spots-hot 
spots” alternating from north to south. The distribution 
of cold and hot spots shows obvious vertical zonality. 

In 2000, the cold spot areas were mainly distributed 
in the temperate desert belt and alpine cushion 
vegetation belt, partly scattered in the mountain steppe 
belt and mountain coniferous forest belt. In 2017, the 
cold spot areas in the north extended to the south, 
gradually transitioning from the temperate desert belt 
to the mountain steppe belt. The cold spot areas in the 
mountain coniferous forest belt also increased; whereas, 
those in the southern alpine cushion vegetation belt 
decreased, and the distribution changed from the 
banded cluster to the dotted random distribution. 

Fig. 8. The distribution of spatial associations type in TSA. 

Fig. 7. Moran scatterplot of RSEI during 2000-2017. 
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In 2000, hot spot areas were mainly distributed in 
mountainous coniferous forest belts and glacial snow 
belts, and scattered in the Sangong River basin. In 2017, 
the hot spot areas in the mountain coniferous forest belt 
gathered slightly to the south and extended south to the 
alpine cushion vegetation belt. The hot spot areas in the 
snow belts did not change significantly, and the sporadic 
hot spot areas in the Sangong River transformed into 
insignificant areas (Fig. 8).

Detected Factors of Ecological Vulnerability

Based on the results of the geographical detectors 
model, the influencing factors of the RSEI passed the 
significance test (p<0.001). In 2000, the q values of the 
factors were as follows: land type (0.6803)>elevation 
(0.3140)>precipitation (0.3029)>temperature (0.3003)> 
tourism (0.2024)>community resident (0.1740)>road 
(0.0432)>slope (0.0223). The q values of the factors in 
2017 were as follows: land type (0.6652)>temperature 
(0.3918)>precipitation (0.3852)>elevation (0.3839)> 
tourism (0.2458)>community resident (0.2215)>slope 
(0.0685)>road (0.0293). In 2000 and 2017, the factor 
of land use type (x5) had the largest contribution, 
with a contribution value greater than 0.5, followed 
by the value of elevation (x1), temperature (x4), and 
precipitation (x3). The slope (x2) factor had the lowest 
contribution value. In 2017, the contribution value of 
factors to the RSEI increased, the values of elevation 
(x1), slope (x2), precipitation (x3), temperature (x4), 
tourism (x7), and community resident (x8) increased 
by 22.27%, 207.44%, 27.16%, 30.48%, 21.46%, and 
27.26%, respectively (Table 4).

The results of the geographical detectors model 
show that the impact of the interactions of any two 
factors on the RSEI is greater than the impact of a 
single variable. The explanatory value of any two 
mutually reinforcing factors was calculated. Overall, the 
explanatory value of land use type (x5) is the highest; 
thus, the explanatory power of the combination of land 
use type (x5) and other factors is significantly higher 

than that of the other factors. In 2000, the combination 
of land use type (x5) and precipitation (x3) factors had 
the largest explanatory value of 0.7053, followed by the 
factors of elevation and land use type (x1∩x5), with an 
explanatory power of 0.7046. In 2017, the explanatory 
power of various factors increased, but there was also 
a decline in the explanatory power among the factors 
because of the decline in the explanatory power of the 
single factor of the land use type (x5). The combination 
of land use type (x5) and temperature (x4) factors had 
the largest explanatory value of 0.7064, followed by the 
factors of precipitation and land use type (x3∩x5), with 
an explanatory power of 0.7061. In 2017, the explanatory 
power between elevation (x1) and slope (x2) changed 
from nonlinear strengthening to mutual strengthening 
effect, and the explanatory power between the distance 
from road (x6) and the distance from tourist attractions 
(x7) changed from mutual strengthening to nonlinear 
strengthening (Table 5).

Discussion 

Spatial and Temporal Evolution of Ecological 
Vulnerability 

The ecological vulnerability zoning in this study 
is based on the RSEI, which represents the combined 
effect of greenness, wetness, dryness, and heat. From 
2000 to 2017, the values of greenness, wetness, dryness, 
and heat changed in space, which were represented 
by the indicators of NDVI, WET, NDISI, and LST. 
According to the result of the PCA, the indicator of 
LST is ignored. Therefore, the value of RSEI was 
calculated by NDVI, WET, NDISI. NDISI is positive 
indicators, and NDVI and WET are reverse indicators 
to RSEI. The value of NDVI decreased. And the results 
of PCA showed that the contribution value of NDVI to 
RSEI decreased. The value of WET increased and the 
contribution value to RSEI increased. Although the 
value of NDISI increased, the value changed little and 

Table 4. The contribution value of factors to RSEI in 2000 and 2017.

Factors q2000 Statistic q2017 Statistic Absolute change of q Statistic Relative change of q Statistic

Elevation (x1) 0.3140*** 0.3839*** 0.0699 22.27%

Slope (x2) 0.0223*** 0.0685*** 0.0462 207.44%

Precipitation (x3) 0.3029*** 0.3852*** 0.0823 27.16%

Temperature (x4) 0.3003*** 0.3918*** 0.0915 30.48%

Land Use Type (x5) 0.6803*** 0.6652*** -0.0151 -2.22%

Distance from road (x6) 0.0432*** 0.0293*** -0.0139 -32.20%

Distance from tourist 
attraction (x7)

0.2024*** 0.2458*** 0.0434 21.46%

Distance from settlements 
(x8)

0.1740*** 0.2215*** 0.0474 27.26%



Shi H., et al.3242

its contribution value to RSEI was significantly less 
than that of NDVI and WET. In the superposition of 
three values, the value of RSEI decreased from 2000 to 
2017. As a result, a reduction in the NDVI value did not 
increase the RSEI, which had no impact on RSEI.

Ecological vulnerability zones of the same grade 
showed spatial differences, and hot and cold spots in 
the study area alternated. Different grades of ecological 
vulnerability have different influencing factors. The 
distribution of the region of grade I is consistent with 
the cold spot area of the RSEI. It is mainly distributed 
in the temperate desert belt, mountain steppe belt, and 
some alpine cushion vegetation belt to the north of the 
study area, with low- and medium-coverage grassland 

and some bare land. According to the field survey 
conducted in 2018-2019, the main plant types in the 
area are temperate semi-shrubs and dwarf semi-shrubs, 
such as Caragana soongorica, Seriphidium borotalense, 
and Ceratoides latens. The species diversity and 
richness are low in this area. The values of Simpson, 
Shannon-Wiener, and Margalef indices were less than 
0.5 (Table 6). The result of this partition is consistent 
with the findings of Shi (2019), which showed that the 
basic characteristics of the ecological environment 
in this area are poor [19, 69]. When the area is 
subjected to external forces or human interference, its 
ecological environment did not change significantly. 
The local government implemented strict protection 

L = xi ∩ xj q2000 (xi ∩ xj) Result2000 Explanatory q2017 (xi ∩ xj) Result2017 Explanatory

x1∩x2 0.3376 L>x1+x2 x1↗x2 0.4002 L>x1,x2; L<x1+x2 x1↑↑x2

x1∩x3 0.3802 L>x1,x3; L<x1+x3 x1↑↑x3 0.4245 L>x1,x3; L<x1+x3 x1↑↑x3

x1∩x4 0.3887 L>x1,x4; L<x1+x4 x1↑↑x4 0.4384 L>x1,x4; L<x1+x4 x1↑↑x4

x1∩x5 0.7046 L>x1,x5; L<x1+x5 x1↑↑x5 0.7037 L>x1,x5; L<x1+x5 x1↑↑x5

x1∩x6 0.3634 L>x1+x6 x1↗x6 0.4192 L>x1+x6 x1↗x6

x1∩x7 0.3862 L>x1,x7; L<x1+x7 x1↑↑x7 0.4436 L>x1,x7; L<x1+x7 x1↑↑x7

x1∩x8 0.3947 L>x1,x8; L<x1+x8 x1↑↑x8 0.4280 L>x1,x8; L<x1+x8 x1↑↑x8

x2∩x3 0.3227 L>x2,x3; L<x2+x3 x2↑↑x3 0.4031 L>x2,x3; L<x2+x3 x2↑↑x3

x2∩x4 0.3132 L>x2,x4; L<x2+x4 x2↑↑x4 0.4033 L>x2,x4; L<x2+x4 x2↑↑x4

x2∩x5 0.6854 L>x2,x5; L<x2+x5 x2↑↑x5 0.6768 L>x2,x5; L<x2+x5 x2↑↑x5

x2∩x6 0.0823 L>x2+x6 x2↗x6 0.1138 L>x2+x6 x2↗x6

x2∩x7 0.2150 L>x2,x7; L<x2+x7 x2↑↑x7 0.2705 L>x2,x7; L<x2+x7 x2↑↑x7

x2∩x8 0.2257 L>x2+x8 x2↗x8 0.2962 L>x2+x8 x2↗x8

x3∩x4 0.3658 L>x3,x4; L<x3+x4 x3↑↑ x4 0.4292 L>x3,x4; L<x3+x4 x3↑↑x4

x3∩x5 0.7053 L>x3,x5; L<x3+x5 x3↑↑x5 0.7061 L>x3,x5; L<x3+x5 x3↑↑x5

x3∩x6 0.3926 L>x3+x6 x3↗x6 0.4434 L>x3+x6 x3↗x6

x3∩x7 0.3752 L>x3,x7; L<x3+x7 x3↑↑x7 0.4439 L>x3,x7; L<x3+x7 x3↑↑x7

x3∩x8 0.4090 L>x3,x8; L<x3+x8 x3↑↑x8 0.4477 L>x3,x8; L<x3+x8 x3↑↑x8

x4∩x5 0.7011 L>x4,x5; L<x4+x5 x4↑↑x5 0.7064 L>x4,x5; L<x4+x5 x4↑↑x5

x4∩x6 0.3753 L>x4+x6 x4↗x6 0.4393 L>x4+x6 x4↗x6

x4∩x7 0.3762 L>x4,x7; L<x4+x7 x4↑↑x7 0.4483 L>x4,x7; L<x4+x7 x4↑↑x7

x4∩x8 0.3917 L>x4,x8; L<x4+x8 x4↑↑x8 0.4419 L>x4,x8; L<x4+x8 x4↑↑x8

x5∩x6 0.6883 L>x5,x6; L<x5+x6 x5↑↑x6 0.6699 L>x5,x6; L<x5+x6 x5↑↑x6

x5∩x7 0.7046 L>x5,x7; L<x5+x7 x5↑↑ x7 0.6959 L>x5,x7; L<x5+x7 x5↑↑x7

x5∩x8 0.6906 L>x5,x8; L<x5+x8 x5↑↑x8 0.6767 L>x5,x8; L<x5+x8 x5↑↑x8

x6∩x7 0.2546 L>x6,x7; L<x6+x7 x6↑↑x7 0.2834 L>x6+x7 x6↗x7

x6∩x8 0.2009 L>x6,x8; L<x6+x8 x6↑↑x8 0.2419 L>x6,x8; L<x6+x8 x6↑↑x8

x7∩x8 0.3463 L>x7,x8; L<x7+x8 x7↑↑x8 0.4196 L>x7,x8; L<x7+x8 x7↑↑x8

Table 5. Interaction between different factors to RSEI in 2000 and 2017.
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and management measures for the TSA in 2012, such 
as banning the mining activities and the relocation of 
herdsmen, which decreased the ecological vulnerability 
[40].

The distribution of the region of grade II changed 
from 2000 to 2017. This area is mainly distributed in 
alpine cushion vegetation belts and some mountainous 
coniferous forest belts. The alpine cushion vegetation 
belt is dominated by the dominant species of Trollius 
lilacinus Bunge, Rhodiola rosea L., Saxifraga 
stolonifera Curt., and Saussurea involucrata (Kar. et 
Kir.) Sch.-Bip [70, 71]. The species diversity, richness, 
and vegetation coverage of the grade II area are slightly 
higher than those of the grade I area but still poor 
mostly because of the human activity and grazing. 
Since 2012, the local government has implemented 
policies of banning, restricting, and rotating grazing, 
as well as strict supervision and protection measures 
in the area. The size of the area decreased in 2017, 
which shows that the vulnerability of the ecological 
environment decreased and the implementation of the 
policies improved the ecological environment [19, 72].

The region of grade III is concentrated in the 
mountainous coniferous forest belt, subalpine-alpine 
meadow belt, and partly in the residential area along 
the Sangong River basin in the north. The vegetation 
in the area is mainly temperate grass, weedy meadows, 
and alpine artemisia, such as Alchemilla japonica, 
Geranium wilfordii Maxim., and Polygonum viviparum 
L. The species diversity, richness, and vegetation 
coverage in this area are high [44, 48]. The values of 
Simpson and Shannon-Wiener indices are greater than 
0.5. Since 2013, the government has implemented a 
strict management system for tourism activities and 
demolished some infrastructure in the tourist areas. 
Therefore, although the area of this grade increased in 
the past 17 years, the overall ecological environment 
vulnerability improved after the implementation of the 
policies [73].

The region of grade IV is distributed in the 
mountainous coniferous forest belts, which is 
consistent with the distribution of some hot spots in 
the RSEI. This region has Betula tianschanica Rupr, 
Larix sibirica Ledeb, Sabina pseudosabina and Picea 
schrenkiana. The area has abundant precipitation, high 

species diversity, and richness (the values of Simpson 
and Shannon-Wiener indices are greater than 0.5), and 
good vegetation coverage (the value of total coverage 
was greater than 0.5). This area has the richest species 
diversity in the TSA [40]. Picea schrenkiana in this 
area is a typical vegetation group in the Xinjiang 
Tianshan heritage site and has a unique bio-ecological 
value in the arid region. When the region was subjected 
to external forces or human interference, the ecological 
environment changed [74]. The Tianchi Lake in this 
area is an important viewing point and gathering place 
for tourists. Tourists have a significant impact on the 
surrounding ecological environment [37, 75]. From 2000 
to 2017, the size of the area increased, its range extended 
to the snow belt, and the distribution was fragmented 
in the north. Since the local government in the TSA 
has implemented policies to protect the landscape and 
supervise the tourist activities in 2012, the region was 
less affected by human activities [38, 76]. Therefore, the 
changes in the region can be attributed to the variations 
in temperature, precipitation, and government policies 
[77].

The region of grade V is distributed in the snow 
belt, which coincides with the hot spots of the RSEI. 
The Quaternary glacial erosion and moraine landform 
types, such as the ancient glacial landscape of tind, 
aretes, U-shaped valleys, cirques, sheep back stones, 
boulders, glaciarium, and moraine-dammed lakes, are 
completely preserved in this region [78, 79]. Due to 
its high altitude and poor vegetation distribution, the 
region lacks the ability of self-renewal and recovery. 
The reason this area becomes smaller is the climate 
change, which considerably decreases the glacier area 
[45, 79].

Factors of Ecological Vulnerability 

The assessment of the factors of the temporal and 
spatial changes in ecological vulnerability showed 
that the land use type is the main factor, followed by 
temperature, precipitation, and elevation. 

The land use type is the surface complex covered 
by the earth’s natural surface covering and various 
artificial buildings. It is determined by human activities 
such as crop selection, crop layout, input, and power.  

Species diversity Grade I Grade II Grade III Grade IV Grade V

Simpon index 0.4527 0.5100 0.6720 0.6179 0.1352 

Shannon-Wiener diversity index 0.3054 0.3844 0.5043 0.4933 0.1285 

Margalef richness indexes 0.2097 0.2611 0.3613 0.4568 0.4997 

Number of dominant species 0.1750 0.1806 0.2028 0.2625 0.3542 

Average height of dominant spe-
cies 0.0300 0.3037 0.2167 0.1950 0.3972 

Total coverage 0.4667 0.8210 0.8662 0.8811 0.8130 

Table 6. Species diversity of under different ecological vulnerability grades in 2018-2019.



Shi H., et al.3244

Its changes reflect the state of the ecological 
environment, and the degree of interference of human 
activities on nature [80]. Ecological vulnerability 
is determined by the natural conditions, and is also 
affected by human activities. Wang (2008) believed that 
different land use types resulted in different degree of 
ecological vulnerability. The land use types that are 
suitable for the ecological environment are conducive 
to the improvement and stability of the land ecological 
environment, enabling the healthy development and 
reduce ecological vulnerability. Improper man-made 
utilization will cause the patch fragmentation of land 
use types [80]. This fragmented feature increases the 
degree of isolation between habitat patches, resulting 
in reduced biodiversity, destruction of ecosystems, 
and deterioration of the original environmental quality 
[81,82]. In this paper, land use type has the highest 
impact on ecological vulnerability, which reflects the 
greenness, wetness, dryness, and heat of the region. 
The results of this paper are consistent with those of the 
above scholars, and verify the effect of land use types 
on ecological vulnerability.

Climate change causes the changes in regional 
distribution of water and heat, affecting the distribution 
of vertical natural belts, the structure of ecological 
communities, and the biodiversity of habitats [83]. 
Temperature and precipitation directly affect vegetation 
coverage, soil moisture, and surface temperature. From 
1989 to 2016, the distribution of vertical natural belts in 
the study area changed significantly due to the combined 
influence of temperature and precipitation. Among them, 
the lower limit of the forest belt decreased by 25 m, the 
upper line rose by 24 m, so the mountain coniferous 
forest belt expanded, and the suitable growth range of 
Picea schrenkiana became wider [44]. Temperature 
and precipitation also play a very important role in the 
pattern and development of grassland, and the influence 
of temperature on the grassland ecosystem is lower 
than that of precipitation. Temperature and precipitation 
will inevitably affect the distribution of grassland, 
causing vegetation to migrate within a certain range 
[83]. In addition, climate change may also lead to the 
disappearance or extinction of species in some areas. 
In some hot spots, climate change may cause 43% of 
species to disappear, that is, about 56,000 local plants 
and 3700 local vertebrates will be extinct [84]. The 
research in this paper is consistent with the above 
scholars, which verifies the importance of temperature 
and precipitation to ecological vulnerability and have a 
significant impact on regional ecosystems.

Topographic factors determine the climate, land use 
type and the distribution of vertical belt in the study 
area, which are important factors affecting the spatial 
pattern of land use, vegetation and soil distribution 
[85]. The change in terrain directly affects the flow of 
material on the ground and the conversion of energy, 
which has obvious restrictions on human production 
and life, and makes the distribution of land use types 
on the terrain gradient show regular changes [86]. 

Elevation is an important digital parameter of terrain 
factor. With the change of elevation, temperature and 
precipitation change significantly, which have effects on 
land use types, vegetation coverage, and soil moisture. 
Obviously, it leads to obvious changes in ecological 
vulnerability. The results of this study are consistent 
with the above studies, reflecting the significant 
effect of elevation factors on the regional ecological 
vulnerability [86-88].

Limitations and Future Trends 

The purpose of selecting the RSEI in this study 
was to objectively reflect the vulnerability of the 
ecological environment in the TSA, and to make a real 
and objective assessment of the regional ecological 
environment [53]. The RSEI ecological indicator is 
not subject to human factors and subjective conditions 
[30]. It can not only achieve the objective quantitative 
assessment of the ecological status of the region, but 
also reveal the spatial and temporal analysis of the 
evolution of the ecological environment [89, 90]. The 
RSEI can objectively reflect the vegetation coverage, soil 
conditions, surface bareness, and surface temperature 
in the area [29, 35]. The comprehensive index weighted 
by greenness, wetness, dryness, and heat can not 
only overcome the disadvantages of using a single 
index, but also makes the integration of each subindex 
more reasonable. In addition, the index weights were 
objectively determined using PCA, which can reduce 
the uncertainty caused by human factors and avoid the 
ecological vulnerability caused by the subjective weight 
setting [2, 33, 62, 91, 92]. 

One of the limitations of this study is that we only 
used the remote sensing image data for two years, 
and the analysis of the evolution of the ecological 
environment was not clear. Second, the study area has 
obvious vertical natural belt characteristics, and the 
vegetation types, diversity, coverage, and soil types 
of the different vertical natural belts in the study area 
showed significant differences [3]. This study has not 
explored the reasons of the ecological vulnerability of 
the study area from 2000 to 2017 from the perspective 
of vertical natural belts. In future research, the reasons 
for the changes in ecological vulnerability will be 
explored from the perspective of the vertical natural 
belts of the mountains to scientifically reflect the 
spatial and temporal characteristics of the ecological 
vulnerability of the mountain natural heritage sites and 
to achieve sustainable development [34, 54].

Conclusions

In this study, RSEI was used to analyze the 
ecological vulnerability in the TSA. With the spatial 
statistical model and geographical detectors model, 
the spatial distribution characteristics of the study area 
in 2000 and 2017, and the influencing factors were 
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detected. The results showed that: (1) From 2000 to 
2017, the values of greenness, wetness, dryness, and 
heat changed in space. The values of WET, NDISI, and 
LST increased, and the value of NDVI decreased. The 
spatial distribution of indicators to RSEI shows that 
the area of the bare land in the study area increased. 
But, with the establishment of ecological conservation 
measures, the ecological factors have developed in 
the favorable direction in the residential area in the 
north of TSA. (2) According to the result of the PCA, 
the value of RSEI was calculated by NDVI, WET and 
NDISI. In the superposition of three values, the value 
of RSEI decreased from 2000 to 2017. Based on the 
RSEI value, grades I–V was used to determine the 
classification of ecological vulnerability from low to 
high. In 2000 and 2017, the regions of grades I, II, 
and III  were dominant, and the overall ecological 
vulnerability was low. The area of grades I, II, and V 
decreased, grades III and IV increased. (3) From 2000 
to 2017, the value of Moran’s I increased, indicating 
that the ecological vulnerability of the study area was 
stable during the 17-year period, and the spatial positive 
correlation of ecological vulnerability showed strong 
spatial agglomeration. The cold-hot spots in the study 
area showed the characteristics of “cold spots-hot spots-
cold spots-hot spots” alternating from north to south, 
and the distribution of cold and hot spots shows obvious 
vertical zonality. (4) The results of the geographical 
detectors model showed that the factor of land use type 
(x5) had the largest contribution, followed by the value 
of elevation (x1), temperature (x4), and precipitation (x3). 
The slope (x2) factor had the lowest contribution value. 
The impact of the interactions of any two factors on the 
RSEI is greater than the impact of a single variable. The 
explanatory power of the combination of land use type 
(x5) and other factors is significantly higher than that of 
the other factors. (5) The limitations of this study is that 
we only used the remote sensing image data for two 
years, and the analysis of the evolution of the ecological 
environment was not clear. In future research, the 
reasons for the changes in ecological vulnerability 
will be explored from the perspective of the vertical 
natural belts of the mountains to scientifically reflect 
the spatial and temporal characteristics of the ecological 
vulnerability of the mountain natural heritage sites and 
to achieve sustainable development.
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