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Abstract

Denitrifying phosphorus removal was realized in sequencing batch reactor with alternate anaerobic-
anoxic procedures. Quantitative analysis models of the total phosphorus and nitrate nitrogen were 
established with near infrared spectroscopy combined with interval partial least-squares (iPLS). Second 
derivative, multiple scatter correction and wavelet denoising were respectively used to pretreat the raw 
near infrared spectral data. The results show that the iPLS model established by wavelet denoising 
method was the optimal one. As to the interval partial least-squares calibration models (iPLS models) of 
the total phosphorus and nitrate nitrogen, the results showed that the coefficients (rc) of the correlation 
between the actual values and corrected values were respectively 0.9449 and 0.8681, with the root mean 
square errors of cross validation (RMSECV) being 0.0254 and 0.0315. In addition, the testing results 
of the interval partial least-squares calibration models of the total phosphorus and nitrate nitrogen 
indicated that the coefficients (rp) of correlation between the actual values and predicted values were 
0.9294 and 0.9014, with the root mean square errors of prediction (RMSEP) being 0.0235 and 0.0298. 
This study suggested that the iPLS models of the total phosphorus and nitrate nitrogen may provide 
a method for synchronous detection of the total phosphorus and nitrate nitrogen during denitrifying 
phosphorus removal.

        
Keywords: iPLS, near infrared spectroscopy, wavelet denoising, denitrifying phosphorus removal

*e-mail: zhanghuapaper@163.com

DOI: 10.15244/pjoes/130408 ONLINE PUBLICATION DATE: 2021-05-24



Huang J., et al.3078

Introduction

The excess of nitrogen and phosphorus causes water 
eutrophication. Therefore, the nitrogen and phosphorus 
removal has become the focus of wastewater treatment. 
Denitrifying phosphorus removal is a sustainable 
biological nitrogen and phosphorus removal process [1, 
2]. Under anaerobic condition, denitrifying phosphorus 
removal bacteria convert volatile fatty acids into 
poly-β-hydroxybutyrate and store them in their cells. 
Under anoxic condition, denitrifying phosphorus 
removal bacteria decompose intracellular poly-β-
hydroxybutyrate to provide energy for denitrifying 
nitrogen removal and excessive phosphorus uptake [3, 
4]. The content of nitrate nitrogen and phosphorus is 
the main factor affecting the denitrifying phosphorus 
removal. Therefore, it is important to quickly 
determine the concentration of the total phosphorus 
and the nitrate nitrogen in denitrifying phosphorus 
removal process [5]. However, the traditional chemical 
detection methods are rather time-consuming, usually 
costing considerable materials and causing secondary 
pollution. In addition, only one single indicator can be 
measured by a traditional detection instrument. Hence, 
it is particularly significant to develop a new method for 
synchronous and rapid determination of nitrate nitrogen 
and phosphorus, which however is rarely reported in 
literature [6].

Compared with the traditional chemical methods, 
the quantitative analysis model established by the 
combination of chemometrics and near infrared 
spectroscopy is capable of synchronous and rapid 
detection of multi-components. Moreover, the method 
has the advantages of low cost and no secondary 
pollution. Hence, in recent years, near infrared 
spectroscopy combined with chemometrics has attracted 
much attention [7-9]. The near infrared spectrometer 
is often interfered by various external factors when 
spectral data are collected. The main interfering  
factor is the background noise of instrument [10]. 
Therefore, in order to eliminate the noise and obtain 
valid information, the raw near infrared spectral data 
should be pretreated so as to improve the accuracy 
of the model. At present, the pretreatment methods 
commonly include second derivative [11, 12], multiple 
scattering correction [13, 14], and wavelet denoising 
[15-17]. All the pretreatment methods can reduce the 
interference of noise with the spectral data. However, 
different pretreatment methods may have different 
effects [18, 19].

The quantitative analysis model can be established 
via the pretreated spectral data. Partial least squares 
(PLS) is a chemometrics method which can establish 
quantitative analysis model in the full spectrum range 
[20-23]. Interval partial least squares (iPLS) is a new 
chemometric method developed on the basis of PLS 
[24, 25], dividing the full spectrum range into several 
intervals with equal width. Then PLS regression model 
is established in the full spectrum range and each 

interval, and each corrected root mean square errors 
(RMSECV) are calculated respectively [26-29]. The 
optimal interval which has the minimum RMSECV 
is selected for modeling. IPLS is featured by simple 
operation and easy determination of optimal interval 
[30-32]. Therefore, iPLS model is believed to be more 
effective has better prediction effect than PLS model 
[33-36]. However, there have been few studies on rapid 
quantitative analysis of the total phosphorus and the 
nitrate nitrogen in wastewater treatment process. This 
motivated this study in which water samples from 
denitrifying phosphorus removal process are collected 
and scanned by near infrared spectroscopy to obtain the 
raw near infrared spectral data. The second derivative, 
multiple scattering correction and wavelet denoising are 
then applied to pretreat the spectral data. After that, 
an examination of the results of different pretreatment 
methods determined the optimal pretreatment method, 
which combined with iPLS, was used to establish the 
quantitative analysis models of the total phosphorus 
and the nitrate nitrogen in denitrification phosphorus 
removal process. It is hoped that in this way, 
simultaneous, rapid and pollution-free detection of the 
total phosphorus and nitrate nitrogen was realized in 
denitrifying phosphorus removal process. Our research 
may have technological significance for the rapid 
determination of the total phosphorus and the nitrate 
nitrogen in wastewater treatment.

Material And Methods

Experimental Reactor and Water Quality 

The experimental reactor was made by our own. 
The reactor is cylindrical, with the volume of 15 L. 
The operation of the reactor at room temperature 
was controlled by micro-computer, under alternating 
anaerobic-anoxic conditions. The experimental raw 
water is taken from the influent water of wastewater 
treatment plant. The water quality is as follows: the 
total phosphorus is 7.5 mg/L, NH4

+-N is 32 mg/L, COD 
is 180 mg/L and pH is 7.5. Potassium nitrate solution 
was added with a concentration of 360 mg/L-1.

Experimental Controls and Sample Collection

The operation cycle is as follows: 30 min for influent, 
105 min for anaerobic stage, 150 min for anoxic stage, 
25 min for precipitation, 5 min for drainage, 45 min 
for stabilization. The reactor was fed with wastewater 
by peristaltic pump. The volume of water inflow and 
the volume of drainage in each cycle are both 5.5 L. 
During the stable operation of the reactor, water sample 
was collected every 15 minutes. A total of 140 water 
samples were collected in 7 cycles. The water samples 
were centrifuged for 5 min at speed of 1200 r/min, and 
the supernatant was collected. Then the supernatant was 
filtered with 0.45 um filter membrane. Samples were 
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divided into two sets: one for spectral data collection 
and the other for chemical analysis.  

Chemical Analysis and Spectral Data Collection

The total phosphorus was determined by ammonium 
molybdate spectrophotometry. Nitrate nitrogen was 
determined by ultraviolet spectrophotometry. Near 
infrared spectral data were collected with a transform 
near infrared spectrometer (Bruker, Germany). The 
spectral range is 4000-12500 cm-1, the scanning times 
are 32, and the resolution is 8 cm-1.

Establishment and Evaluation Index 
of the iPLS Model

The full spectrum ranges from 4000 to 12500 
cm-1 with 2203 raw near infrared spectral data. The 
full spectrum is divided into 20 intervals. The PLS 
model was built for each interval. The interval with 
the minimum RMSECV is considered as the optimal 
interval for iPLS model [37]. 

The iPLS model is evaluated with the calibration 
correlation coefficient (rc), predictive correlation 
coefficient (rp), corrected root mean square error 
(RMSECV), and predicted root mean square error 
(RMSEP) [38]. The calculation formulas are as follows:
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In the fumula, m is the number of the calibration 
set samples; xi are the truth values of the calibration 
set samples; x’i are corrected values by iPLS model; 
x–  is the average of the truth values of the calibration 
set samples; n is the number of the test set samples; 
yi is the truth values of the test set samples; y’i is 
predicted values by iPLS model; y–  is the average of 
the truth values of the test set samples. The correlation 
coefficient is an index evaluating  the correlation 
between the two sets of data. The root mean square 
error is an index evaluating the degree of deviation of 
the corrected values (or the predicted value) from the 
truth values.

Test and Evaluation Index of the Ipls Model

External validation method was applied to test  
the iPLS model. 40 water samples from 2 cycles that 
are not used in modeling were centrifuged and filtered  
with 0.45 um filter. The spectral data of these  
40 samples are collected to test the iPLS model whose 
effectiveness is evaluated by the predictive correlation 
coefficient (rp) and the predictive root mean square error 
(RMSEP).

Results and Analysis

Change of Water Quality During Stable Period

Fig. 1 shows the water quality during the stable 
cycles of the reactor. As can be seen in Fig. 1, the total 
phosphorus is 7.9 mg /L and COD is 180 mg /L in raw 
water. After the anaerobic stage, the total phosphorus 
increased to 24.2 mg /L, and COD decreased to  
22.3 mg /L. After anoxic stage, the total phosphorus 
decreased to 0.67 mg /L and nitrate nitrogen decreased 
from 18.1 mg/L to 0.41 mg/L. These results indicate 
that, in the anaerobic stage, denitrifying phosphorus 
removal bacteria decompose intracellular polyphosphate 
and release phosphate, and that in anoxic stage, 
denitrifying phosphorus removal bacteria use nitrate 
nitrogen as electron acceptor to excessively absorb 
phosphate, thus reducing the concentration of phosphate 
and nitrate nitrogen [39].

Collection of Raw Near Infrared Spectral Data

140 water samples were collected for modeling, and 
then were filtered with 0.45 µm filter membrane. These 
water samples were divided into two groups. 100 water 
samples were used for iPLS modeling, and 40 water 
samples was used to test the iPLS models. The spectral 
data are recorded at intervals of 3.66 cm-1. Each full 
spectrum has 2203 data. The raw near infrared spectra 
are shown in Fig. 2, which shows that the shapes of 

Fig. 1. Changes of COD, nitrite nitrogen and the total phosphorus.
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near infrared spectra of different samples are similar, 
indicating similar water quality composition. 

Pretreatment of Raw Near Infrared Spectral Data

The iPLS models established by different 
pretreatment methods have different degrees of 
accuracy. To find out the most accurate iPLS model 
established through the optimal pretreatment method, 
we compared the results of iPLS models established  
by three pretreatment methods, which are shown in 
Table 1 and Table 2.

From Table 1 and Table 2, it can be seen that the 
wavelet denoising, which has been widely used in signal 
processing, image processing and many nonlinear 
science fields, is the optimal pretreatment method for 
establishing iPLS models. The results indicates that 
the rc and RMSECV of the iPLS model of the total 
phosphorus are respectively 0.9449 and 2.5448, and 
the rc and RMSECV of the iPLS model of the nitrate 
nitrogen are respectively 0.8681 and 3.1475. 

Establishment of iPLS Calibration Model 
of the Total Phosphorus

The establishment of the iPLS model for the 
total phosphorus is shown in Figs 3-6. Fig. 3 gives 
the regression analysis of PLS in each interval. The 
RMSECV is taken as evaluation index, and the interval 
with the minimum RMSECV is selected as modeling 
interval. As can be seen in Figure 3, the minimum 
RMSECV is obtained when the principal component 
number is 10.

Fig. 4 shows the variation of the RMSECV in 
different intervals. In Fig. 4, the number  in each bar 
represents the optimal number of principal components 
in each interval. The Height of the bar represents the 
corresponding RMSECV. The dotted line represents 
the minimum RMSECV in the full spectrum. The 
curve represents the raw spectra. As can be seen from  
Fig. 4, the RMSECV of the 17th interval is the 
minimum, which meants that this interval contains the 
optimal spectral information. Therefore, the 17th interval 
(5272~ 5693 cm-1) is selected as the optimal interval to 
establish iPLS model (Fig. 5). As shown in Fig. 6, the 
iPLS model of the total phosphorus is established in the 
optimal interval. The rc of the iPLS model for the total 
phosphorus is 0.9449 and the RMSECV is 0.0254.

Establishment of iPLS Calibration Model 
of Nitrate Nitrogen

The establishment of the iPLS model of nitrate 
nitrogen is shown in Figs 7-10. Fig. 7 gives the regression 
analysis of PLS in each interval. The RMSECV is taken 
as evaluation index, and the interval with the minimum 
RMSECV is selected as modeling interval. As can be 
seen from Fig. 3, the minimum RMSECV is obtained 
when the principal component number is 11.

Fig. 8 shows the variation of the RMSECV in 
different intervals. In Fig. 8, the number  in each bar 

Fig. 2. Raw near-infrared spectra of water samples.

Pretreatment method Number of principal 
component Optimal interval rc

RMSECV
(%) rP

RMSEP
(%)

Second derivatives 17 19 0.8233 3.5529 0.8012 3.7617

Multiple scatter correction 19 18 0.8431 3.3084 0.8301 3.4157

Wavelet denoising 21 18 0.8681 3.1475 0.9014 2.9794

Table 1. Three pretreatment methods of iPLS model for the total phosphorus.

Table 2. Three pretreatment methods of iPLS model for nitrate nitrogen.

Pretreatment method Number of principal 
component Optimal interval rc

RMSECV
(%) rP

RMSEP
(%)

Second derivatives 8 17 0.8459 2.7315 0.8192 2.9633

Multiple scatter correction 8 18 0.9011 2.6031 0.8837 2.5753

Wavelet denoising 10 17 0.9449 2.5448 0.9294 2.3459
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represents the optimal number of principal components 
in each interval. The height of the bar represents the 
corresponding RMSECV. The dotted line represents 
the minimum RMSECV in the full spectrum. The 
curve represents the raw spectra. As can be seen from  
Fig. 8, the RMSECV of the 1st interval is the minimum 
interval, which meants that this interval contains the 
optimal spectral information. Therefore, the 1st interval 
(4000-4423 cm-1) is selected as the optimal interval to 
establish iPLS model (Fig. 9). As shown in Fig. 10, the 
iPLS model of the total phosphorus is established in the 
optimal interval. The rc of the iPLS model for the total 
phosphorus is 0.8681 and the RMSECV is 0.0315.

Test of iPLS Models of the Total Phosphorus 
and Nitrate Nitrogen

The iPLS models were tested with the spectral data 
of the 40 samples that were not used in modeling. The 
actual values of the total phosphorus and the nitrate 

Fig. 3. Change of RMSECV with principal component in full 
spectrum.

Fig. 6. iPLS calibration model of the total phosphorus.

Fig. 4. Variation of the RMSECV in different intervals.

Fig. 7. RMSECV of the PLS model in full-spectrum.
Fig. 5. Optimal interval establishing iPLS calibration model of 
the total phosphorus.
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nitrogen are determined through traditional chemical 
methods. The results of the test for the the iPLS model 
of the total phosphorus are shown in Fig. 11, which 
indicates that the correlation between the predicted 
value and the actual value is high: the rp is 0.9294 and 
the RMSEP is 0.0235. these results show that the iPLS 
model of the total phosphorus is accurate.

The results of the test for the iPLS model of nitrate 
nitrogen are shown in Fig. 12 which indicates that the 
correlation between actual values and the predicted 
values is high: the rp is 0.9014 and the RMSEP is 
0.0298. these results show that the iPLS model of nitrate 
nitrogen is accurate.

Conclusions

Sequencing batch reactor was used in our study to 
realize the denitrifying phosphorus removal. Combined 

Fig. 12. Test result of iPLS calibration model of nitrate nitrogen.

Fig. 8. Variation of the RMSECV in different intervals.
Fig. 11. Test result of iPLS calibration model of the total 
phosphorus.

Fig. 9. Optimal wave number establishing iPLS calibration 
model of nitrate nitrogen.

Fig. 10. iPLS calibration model of nitrate nitrogen.
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with iPLS, near infrared spectroscopy was employed 
to analyze simultaneously the total phosphorus and 
the nitrate nitrogen. The second derivative, multiple 
scattering correction and wavelet denoising were used to 
pretreat the raw near infrared spectral data. The results 
show that the wavelet denoising is the best pretreatment 
method. Near infrared spectroscopy combined  
with iPLS method was used to establish iPLS models 
of the total phosphorus and the nitrate nitrogen. These 
models can realize the rapid analysis of the total 
phosphorus and the nitrate nitrogen. The rc and rp of the 
iPLS model of the total phosphorus were respectively 
0.9449 and 0.9294, with the RMSECV and RMSEP 
being 0.0254 and 0.0235. The rc and rp of the iPLS 
model of nitrate nitrogen were respectively 0.8681 and 
0.9014, with the RMSECV and RMSEP being 0.0315 
and 0.0298. It is thus concluded that the near infrared 
spectroscopy combined with iPLS can provide a new 
approach to the detection of water quality indicators.  
In future research, it is suggested that this method 
should be used in the rapid detection of other indicators 
in water.
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