
Introduction

Economic development and environmental 
pollution are a pair of strongly coupled partners in the 
development process of most developing countries. 

Green Peace Southeast Asia and the Centre for Research 
on Energy and Clean Air have released a new report 
about the costs of air pollution from fossil fuels, both 
human and economic. Burning gas, coal and oil results 
in three times as many deaths as road traffic accidents 
worldwide and it is estimated that air pollution has  
a $2.9 trillion economic cost, equating to 3.3 percent 
of the world’s GDP. In 2018, the report estimates that it 
was linked to 4.5 million deaths with PM2.5 pollution 
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also responsible for 1.8 billion days of work absence, 
4 million new cases of child asthma and 2 million 
preterm births [1].

With the rapid growth of China’s economy, China’s 
demand for energy has increased rapidly. However, 
China’s energy structure is dominated by energy with 
high pollution emissions, and clean energy accounts for 
a small proportion. China’s energy market is dominated 
by coal accounting for 62%, far exceeding the average 
level of 20% in developed countries [2]. Therefore, the 
increase in energy demand in China will cause a lot 
of environmental pollution, especially air pollution. 
The SO2 and NOx in the air pollutants can cause acid 
fog and acid rain, and have a serious negative impact 
on economic development. Dust and smoke in air 
pollutants can cause smog and cause serious damage 
to citizens’ health and social welfare. The total annual 
cost of air pollution in China is estimated to be $900 
billion each year with costs in the U.S. running to $600 
billion annually. In 2018, the cost of dirty air equated to  
6.6 percent of Chinese GDP, 5.4 percent of India’s GDP 
and 3 percent of US’s GDP [1]. The economic burden of 
air pollution is shown as Fig. 1.

Decoupling economic growth from environmental 
pollution to achieve green development is the only way 
to deal with this dilemma. China has formulated a great 
plan for this. The Chinese government has issued the 
air pollution prevention and control action plan, which 
puts forward 10 key actions and 35 specific measures on 
air quality management. Including industrial structure 
upgrading, energy structure adjustment, point source 
and non-point source pollution control, management 
mechanism and safeguard measures [3]. The Chinese 
government clearly stated in the plan of the “energy 
production and consumption revolution strategy  
(2016-2030)” that the proportion of natural gas 
consumption and non-fossil energy consumption will be 
increased to about 15% and 20% respectively by 2030 
[4]. To achieve these goals, China has adopted a policy 
of curbing the consumption of highly polluting fossil 

energy while encouraging the consumption of clean 
energy. In addition, China is also actively adjusting its 
industrial policies, implementing industrial upgrades, 
promoting low-energy and low-emission production 
technologies, and reducing energy consumption 
intensity.

The essence of green development is to reduce the 
environmental load while maintaining the increase 
in total economic output, and even to “decouple” 
economic development from environmental pollution. 
Due to the characteristics of low pollution and low 
emissions, clean energy has been placed high hopes 
by the Chinese government in this decoupling process. 
However, on the one hand, many studies have shown 
that the stability, cost, and technological maturity of 
clean energy have obvious disadvantages compared 
with traditional fossil energy. In many cases, the use of 
clean energy will increase production costs and reduce 
production efficiency. So, what role does clean energy 
consumption play in decoupling economic growth 
from environmental pollution? Previous scholars 
have rarely done quantitative research on this topic. 
On the other hand, is the impact of clean energy on 
the decoupling of different regions heterogeneous? 
Because of the vast territory of China, the resource 
endowments, industrial structure, urbanization level, 
foreign investment preference, and environmental 
regulation level of different provinces vary greatly. The 
economic development models of various provinces 
are also completely different. Some choose to give 
priority to economic development, and some choose 
to give priority to environmental protection. These 
differences will cause the flow of capital, manpower, 
industry and other factors among different regions. 
This will cause the decoupling effect of economic 
growth and environmental pollution in various regions 
to diverge. Therefore, it is necessary to study the trend 
and differentiation of the decoupling effect between 
economic growth and environmental pollution, and the 
impact of clean energy consumption on decoupling in 
this context.

To improve the research in this field. Based on 
the Tapio decoupling theory, this paper calculates the 
decoupling index of economic growth and environmental 
pollution in 30 provinces and cities in China and in 
eastern, central and western China. Secondly, this 
article describes the decoupling characteristics of 
spatiotemporal coupling, and uses a spatial model to 
analyze its spatial aggregation and spatial heterogeneity. 
Finally, based on the spatial Durbin model, this paper 
quantitatively analyzes the impact of clean energy 
consumption on the decoupling effect of comprehensive 
environmental pollution, SO2 (Sulfur Dioxide) 
emissions, NOx (Oxynitride) emissions, DS (dust and 
smoke) emissions and economic growth.

The research on Environmental economy started 
from Environmental Kuznets Curve (EKC)in China. 
Scholars initially studied whether there is EKC 
between the level of China’s economic development Fig. 1. The economic burden of air pollution [1].
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and environmental pollution [5, 6]. Later, decoupling 
analysis began to be applied to analyze the relationship 
between economic growth and environmental pollution. 
The Organization for Economic Cooperation and 
Development (OECD) first proposed the decoupling 
theory in 2002, which is mainly used to analyze the 
relative relationship between economic development 
and resource consumption [7]. Then, the scholar Tapio 
constructed the decoupling elasticity coefficient and 
classified the types when studying the development 
status and carbon dioxide emissions of the European 
transportation industry from 1970 to 2001 [8]. Since 
then, this model has been used by more and more 
scholars to analyze economic growth, carbon emissions, 
and air pollutant emissions [9, 10].

However, a single interactive relationship cannot 
explain the internal connection between economic 
growth and environmental pollution. Some scholars 
have evaluated the decoupling state of economic 
growth and environmental pollution and its driving 
factors from the perspective of decoupling analysis 
and factor decomposition. They initially combined the 
Tapio’s model with the LMDI model. It is applied to 
the coupling analysis of economic growth and carbon 
emissions and to decompose the influencing factors 
of carbon emissions [11, 12]. Subsequently, the Tapio 
model was further expanded to analyze a variety of 
socio-economic driving factors. Wu et al. (2019) [10] 
combined the Tapio’s elastic analysis method, modified 
the gravity model, social network analysis (SNA), 
secondary distribution process (QAP) regression and 
LOGIT model, and they explored the network effect of 
the decoupling between industrial waste gas emissions 
and industrial value added.

Liu et al. (2020) [13] proposed a combined model 
based on Tapio decoupling model, KAYA identity and 
LOG-MEAN DIVISIA index, and decomposed the 
impact of urbanization into four related factors. They 
used the method of comparative analysis to investigate 
the similarities and differences of urbanization-related 
factors that affect the decoupling state of logistics energy 
consumption and economic growth. Wang et al. (2019) 
[14] used the Tapio model, JOHANSEN co-integration 
theory and Granger causality test to study the impact of 
urbanization and industrialization on the decoupling of 
China's economic growth and carbon emissions. Dong 
et al. (2019) [15], Dong et al. (2020) [16] used GTWR to 
study the temporal and spatial heterogeneity of factors 
that affect the decoupling between economic growth 
and carbon emissions/pollutant emissions.

In addition to the diversity of research methods, 
research perspectives are also gradually diversified. 
Asumadu et al. (2019) [17] used PRAI-WINSTEN 
and COCHRANE-ORCUTT regression models to 
study the relationship between pollution and economic 
development during the transition from polluted energy 
to clean energy. The author believes that decoupling 
energy from economic growth can encourage Clean 
energy transformation. Chovancova et al. (2020) [18] 

proposed a cross-country comparison of the decoupling 
between economic growth and resources (energy 
consumption) and the decoupling between economic 
growth and environmental impact (greenhouse gas 
emissions), and found that the increase in renewable 
energy is coupled with most country’s economic 
growth.

Another part of scholars does quantitative analysis 
from the perspective of decoupling effort index, 
studying the decoupling effort in different regions and 
the degree of influence of each factor on decoupling 
[12, 16, 19, 20]. However, only a few researchers 
study the relationship between economic growth and 
environmental load from a spatial perspective. Yuan et 
al. (2019) [21] studied the driving factors of household 
carbon emissions from a spatial perspective, and studied 
the decoupling between "scale" effect (population, per 
capita income) and "effort" effect (emission factors, 
energy consumption structure and energy consumption 
intensity). 

In summary, the current research has the following 
shortcomings: (1) Most scholars study carbon emissions 
rather than environmental pollutants. The research 
on environmental pollution only separately studies 
the coupling relationship between different types 
of pollutants and economic growth, while ignoring 
the correlation between pollutants. This will cause 
the conclusion to be underrepresented. (2) There is 
insufficient research on the spatial heterogeneity of 
decoupling and the spatial effect of decoupling. Few 
researchers combine the spatial econometric model 
with the Tapio’s model to study economic growth 
and environmental pollution, so that the spatial 
characteristics of the decoupling between economic 
growth and environmental pollutants have not been fully 
explored. (3) There is insufficient research on the role 
of clean energy consumption in the decoupling between 
economic growth and environmental pollutants. Few 
scholars have quantitatively studied the impact of clean 
energy consumption on the decoupling of economic 
growth and environmental pollutants.

Compared with the existing research, the main 
contributions of this paper are as follows: (1) The 
comprehensive evaluation index of the three major 
pollutants SO2 (sulfur dioxide), NOx (oxynitride), DS 
(dust and smoke) has been constructed. This paper 
studies the decoupling effect between economic growth 
and environmental pollution in 30 provinces and cities 
in China from the provincial level and the eastern, 
central and western regions. (2) This paper uses the 
decoupling model to calculate the decoupling index 
between economic growth and environmental pollution 
in 30 provinces and cities in China. Combined with the 
spatial econometric model, the spatial aggregation and 
spatial heterogeneity of decoupling effects are analyzed. 
(3) This paper uses a spatial econometric model to 
quantify the impact of clean energy consumption on 
the decoupling between comprehensive environmental 
pollution, SO2 emissions, NOx emissions, DS emissions 
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and economic growth. (4) In addition, this article 
also analyzes the impact of foreign direct investment 
(FDI), energy consumption per unit GDP (ECPG), 
environmental regulation (ER), industrial structure (IS) 
and urbanization rate (UR) on the decoupling between 
environmental pollution and economic growth.

Materials and Methods

Data Sources

This article selects the panel data of 26 provinces 
and 4 municipalities in China from 2011 to 2017 
as the research sample (due to the availability and 
completeness of the data, this article excludes Tibet, 
Macau, Hong Kong and Taiwan). The data comes from 
“China Statistical Yearbook”, “China Energy Statistical 
Yearbook” and “China Environment Yearbook”. See 
Table 1 for descriptive statistics of variables.

Decoupling Elasticity Coefficient Model

The Organization for Economic Cooperation and 
Development (OECD) first proposed the decoupling 
theory in 2002, which is mainly used to analyze the 
relationship between economic development and 
resource consumption. However, the index system 
it constructed is very sensitive to the base period of 
economic development and resource consumption. The 
results and conclusions calculated from different base 
periods are very different, so the guiding significance 
is not great. This article refers to Tapio (2005) [8], 
constructs the decoupling elasticity index and classifies 
it. The elasticity index e (elasticity) calculation method 
is as follows:

                (1)

Among them, Pt represents the pollutant emissions 
during the t period, Yt represents the economic output 
during the t period, and in this article is GDP at  
a constant price.

The classification of the decoupling elasticity index 
in Tapio’s model is shown in Fig. 2. In order not to over-
interpret subtle changes, the coupled elasticity index is 
defined as between 0.8 and 1.2. The decoupling elasticity 
index can be divided into three categories: negative 
decoupling, decoupling, coupling. In which, negative 
decoupling could be divided into three categories: 
expansive negative decoupling (ΔP>0,ΔY>0,eit>1.2),
weak negative decoupling (ΔP<0,ΔY<0,0<eit<0.8), strong
negative decoupling (ΔP>0,ΔY<0,eit<0). Decoupling 
could be divided into three categories: strong decoupling 
(ΔP<0, ΔY>0,eit<0), weak decoupling (ΔP>0,ΔY>0,0
<eit<0.8), recessive decoupling (ΔP<0,ΔY<0,eit>1.2). 
Coupling could be divided into two categories: 
expansive coupling (ΔP>0, ΔY>0, 0.8<eit<1.2), recessive 
coupling (ΔP<0, ΔY<0,0.8<eit<1.2).

Spatial Econometric Models

Spatial autocorrelation is described by the global 
Moran index, the calculation method is shown  
as follows:

   (2)

However, the global Moran index cannot detect  
the local correlation, so it is necessary to quote the 
local Moran index, the local Moran index is expressed  
in Eq. (3):

      (3)

Spatial weight matrix is the core component 
of spatial analysis model. The spatial adjacency 
weight matrix is a spatial weight matrix that reflects  
the spatial adjacency relationship. It can be set as follows: 
There is a significant mutual influence relationship 
between the areas that border each other, and the areas 
that are not bordered have no significant interaction. 
The spatial adjacency weight matrix can more 
closely reflect the spatial relationship of development  
indicators between provinces and municipalities. 
Therefore, this article introduces the spatial adjacency 

Table 1. Descriptive Statistics of variables.

 Variable  Mean Std.Dev  Min  Max

 eNOx 6.41 4.59 0.526 56.866

 eDS 11.577 3.564 0.23 26.037

 eSO2 11.676 3.211 0.99 32.038

 eCP 8.229 3.482 0.296 39.958

 CEC 63.059 46.944 3.18 237.69

 FDI 0.49 0.463 0.079 2.253

 ECPG 1.234 0.778 0.435 4.046

 ER 4582.5 6683.91 84 45140

 UR 0.571 0.122 0.364 0.896

 IS 0.447 0.083 0.19 0.577
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weight matrix of each province and municipality to 
make the spatial relationship of development indicators 
concrete.

     (4)

Spatial Durbin Model

When we analyze and study issues related to 
regional characteristics, we often regard each region 
as an independent individual to study the relationship 
between variables. There are often spatial correlations 
and spatial dependencies between regions and cannot 
be ignored. Therefore, we need to use the spatial 
measurement model to study the relationship between 
variables based on considering the spatial correlation 
and dependence between variables. The spatial 
Durbin model (SDM) integrates the advantages of 
both the spatial error model and the spatial lag model.  
It comprehensively considers the spatial lag factors  
of important variables such as explanatory variables  
and explained variables. SDM contains both the 
dependent variable and independent variable spatial lag 
term. SDM is usually employed as the starting point  
for analysis, and its manifestation can be expressed  
as Eq. (5).

         (5)

Eq. (5) represents the spatial Durbin model of the 
decoupling elasticity coefficient between economic 
growth and environmental pollution, where e_P is  
the explained variable in this article, which represents 
the decoupling elasticity index of economic growth 
and environmental pollution. The decoupling elasticity 
index studied in this paper includes four types: eCP, 

eSO2, eNOx, eDS, which correspond to the decoupling 
elasticity index between pollutants CP, SO2, NOx, DS 
and economic growth. β represents the coefficient of 
the variable. X represents the n×k combination matrix  
of exogenous explanatory variables. The core 
explanatory variable is clean energy consumption 
(CEC). In addition, control variables that affect the 
flexibility of decoupling between economic growth and 
environmental pollution are selected, including ECPG 
(Energy Consumption Per GDP), GDP, ER (environment 
regulation), and FDI (Foreign Direct Investment), IS 
(Industrial Structure), UR (Urbanization Rate). ρ is the 
spatial autoregressive coefficient. ρWe_P represents 
the spatial lag term of decoupling elasticity between 
economic growth and industrial sulfur dioxide. θ is the 
spatial overflow coefficient. θWX is the spatial lag of 
the explanatory variable. W is an n×n spatial weight 
matrix. ε represents a random error term that follows a 
normal distribution.

However, considering that the decoupling elasticity 
index e_P has positive and negative values, this article 
refers to Xia et al. (2017) [22] and adopts the translation 
method of Eq. (6):

   (6)

Among them, int(eit–min) represents the integer of the 
minimum value of the decoupling elastic coefficient. 
eit represents the original decoupling elastic coefficient. 
s_eit represents the decoupling elastic coefficient after 
translation.

Direct and Indirect Spatial Impact

In the spatial econometric model, the independent 
variable usually has an indirect effect (spatial spillover) 
on the dependent variable in the surrounding non-local 

Fig. 2. Decoupling elasticity index and its classification.
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areas. Spatial spillover effects include indirect spillover 
effects and direct spillover effects. The direct, indirect 
and total spatial effects have been estimated based 
on the estimated spatial regression coefficients [23, 
24]. This further quantifies the spatial spillover effect 
of clean energy consumption and other explanatory 
variables on the decoupling of economic growth and 
environmental pollution. The direct and indirect spatial 
effects are determined according to the determined 
spatial correlation coefficient ρ. The matrix of the 
partial derivative differential equation of the explained 
variable e_P with respect to the K-th independent 
variable is shown in Eq. (7).

   (7)

The above equation defines the average value of 
the sum of the matrix element values on the right side 
as a direct effect, and the average value of all row and 
column element sums of off-diagonal elements is an 
indirect effect, reflecting the influence of other regional 
independent variables on regional dependent variables.

Variable Interpretation and Hypothesis

Explained Variable

The explained variable in this paper is the elastic 
coefficient of decoupling between economic growth 
and environmental pollution. Among the variables 
measuring the degree of environmental pollution, 
the most representative one is the emission of air 
pollutants. Scholars generally use SO2 (sulfur dioxide), 
NOx (Oxynitride), DS (dust and smoke) to measure air 
pollution. Considering that each pollutant has its own 
limitations, the use of a certain pollutant indicator 
alone cannot reflect the true situation of environmental 
pollution. Therefore, this article reduces the dimensions 
of these indicators to find a comprehensive pollution 
indicator, to make an objective and comprehensive 
evaluation of air pollution as far as possible.

This article draws on the method of Liu et al. (2015) 
[25] for processing, and then obtains the index weights 
of the three pollutants of SO2, NOx, and DS, and finally 
calculates the comprehensive pollution (CP):

                  (8)

Among them: wit is the weight of each pollutant, and  
Xit is the type of pollutant.

Explanatory Variables and Hypothesis

The explanatory variable of this article is clean 
energy consumption (CEC). When environmental 
pollution becomes an obstacle in the process of 
economic growth, the development of clean energy 
is one of the main strategies to promote sustainable 
economic development. Although the cost of clean 
energy at this stage is higher than that of traditional 
high-pollution fossil energy, in the long run, the benefits 
of clean energy to the society and economy will exceed 
the low production cost of high-pollution energy [26]. 
Since the consumption of clean and renewable energy 
such as wind energy, solar energy, and biomass energy 
is relatively small, and the data is difficult to obtain, this 
paper refers to Li et al. (2020) [27] and selects natural 
gas as the representative variable of clean energy.

Hypothesis 1: Clean energy can effectively 
promote the decoupling between economic growth and 
comprehensive pollutant emissions.

Hypothesis 2: Clean energy can effectively promote 
the decoupling between economic growth and SO2 
emissions.

Hypothesis 3: Clean energy can effectively promote 
the decoupling between economic growth and NOx 
emissions.

Hypothesis 4: Clean energy can effectively promote 
the decoupling between economic growth and DS 
comprehensive pollutants.

Control Variables

(1) Environmental Regulation (ER). Due to the 
existence of industry heterogeneity, different types 
of environmental regulations have heterogeneity in 
the environmental impact of different industries. The 
establishment of environmental regulations should avoid 
the uniform adoption of static standards and blindly 
increasing the intensity of supervision. According to 
the characteristics and reality of different industries, 
flexible and dynamic regulatory standards and multiple 
regulatory methods should be adopted [28]. Therefore, 
this article refers to the environmental indicator setting 
of Zhu et al. (2020) [29], and uses the number of 
environmental pollution penalties as the proxy variable 
for environmental regulations in various regions.

(2) Foreign Direct Investment (FDI). The pollution 
paradise hypothesis holds that there are differences in 
the intensity of environmental regulations in different 
regions. To avoid the increase in production costs 
caused by the increase in the intensity of domestic 
environmental regulations, pollution-intensive 
companies tend to move their industries to countries or 
regions with relatively loose environmental regulations. 
This has led to increased environmental pollution in 
the host country or host region, and deterioration in 
environmental quality [30]. Therefore, the increase 
in the intensity of foreign direct investment may 
inhibit the decoupling between economic growth 
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and environmental pollution. This article uses the 
proportion of total foreign direct investment in GDP 
as an indicator to measure the level of foreign direct 
investment in a province or region. However, due to the 
difference between nominal GDP and actual GDP, this 
article uses the GDP of each province and city in 2000 
as the basis to calculate the GDP deflator to obtain GDP 
at constant prices.

(3) Industrial structure (IS): As an important link 
between human economic activities and air quality, 
industrial structure is a key factor in solving the 
contradiction between economic development and 
the environment [31]. The secondary industry is an 
important subject that causes environmental pollution 
emissions. If the proportion of the secondary industry in 
a country or region is too high, environmental pollution 
may increase, which will inhibit the decoupling between 
economic growth and environmental pollution. This 
article uses the proportion of the secondary industry 
to characterize the industrial structure of a province or 
region.

(4) Energy consumption per unit of GDP (ECPG): 
As China’s economy is highly dependent on fossil 
energy and environmental protection measures are not 
perfect, environmental pollution is closely related to 
energy consumption [32]. Industries with high energy 
consumption are more polluting than industries with 
low energy consumption. The increase in energy 
consumption per unit of GDP may inhibit the decoupling 
between economic growth and environmental pollution. 
Therefore, this paper chooses energy consumption per 
unit of actual GDP as the indicator.

(5) Urbanization rate (UR): Urbanization means 
the agglomeration of population, the improvement 
of economic consumption level, and the increase of 
energy consumption. This is often accompanied by an 
increase in pollution levels. The relationship between 
urbanization and environmental pollution is nonlinear, 
and there is a comprehensive relationship. The role of 
urbanization in promoting environmental pollution has 
become more and more obvious, but this promotion 
has weakened as the proportion of the tertiary industry 
increases [33]. This paper uses the proportion of the 
urban population in the total population of the region at 
the end of the year to measure the level of urbanization.

Results and Discussion

Decoupling Analysis

According to Eq. (1), this paper separately measured 
the Tapio decoupling elastic coefficients between 
comprehensive pollutant emissions (CP), NOx, DS, 
SO2 and the economic growth in eastern, central and 
western China. At the same time, this article defines the 
decoupling status in different years based on economic 
growth and environmental pollutant emission growth, 
as shown in Table 2.

The economic growth of eastern, central, 
and western China presents different trends of 
differentiation, and environmental pollution also 
has different characteristics to a certain extent. The 
elasticity of decoupling between economic growth and 
environmental pollution in different regions and in 
different years is quite different.

Eastern region: From 2012 to 2017, while 
maintaining economic growth in the eastern region, 
the emission of pollutants SO2 and NOx continued to 
decrease. The elastic coefficients of decoupling between 
SO2, NOx and economic growth are all negative, and 
they are all in a strong decoupling state. However, in 
2013 and 2014, the emissions of DS rebounded, which 
led to the weak decoupling of DS and economic growth 
in 2013 and the expansive negative decoupling in 2014. 
Along with economic growth, the increase in DS 
emissions has led to a slight increase in comprehensive 
pollutant emissions in the eastern region. This caused a 
weak decoupling between CP and economic growth in 
2014.

Central China: The decoupling between SO2, NOx 
and economic growth in the central region is the same 
as that in the eastern region. However, the central region 
also encountered similar problems with the eastern 
region, that is, DS emissions increased inversely in 2013 
and 2014. This leads to weak decoupling and expansive 
negative decoupling between DS and economic growth.

Western region: The decoupling trend between SO2 
and economic growth in the western region is the same 
as that in the eastern and central regions. However,  
DS emissions in the western region increased during 
2012-2014. This leads to weak decoupling between 
DS and economic growth, even to strong negative 
decoupling. This led to a weak decoupling between 
comprehensive environmental pollution and economic 
growth in the western region in 2014.

However, China has a vast territory, and the 
differences between provinces and cities are far greater 
than those in the eastern, central, and western regions. 
Therefore, the decoupling elasticity and decoupling 
state between various pollutants and economic growth 
also have spatial heterogeneity and spatial effects.  
This article chooses one year as the calculation period. 
The decoupling status of 30 provinces and cities over 
the years is shown in Fig. 3.

In general, with the improvement of the quality 
of economic growth, China’s provinces and cities 
have made more significant achievements in green 
development. The specific manifestation is that more 
and more provinces and cities have reached a strong 
decoupling state of decoupling between economic 
growth and environmental pollution. The comprehensive 
pollutant emissions have fallen while maintaining 
economic growth. Among them, on the one hand, the 
proportion of provinces in strong decoupling in China 
increased from 66.7% to 76.7% from 2012 to 2017. 
On the other hand, provinces in expansive coupling 
accounted for 20% in 2012, and this proportion dropped 
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to zero in 2017. The changing trend of the decoupling 
state is very satisfying. It shows that the economy has 
grown, but the environmental pollution has dropped. 
In the context of green development, the “decoupling” 
between China’s economic growth and environmental 
pollution has replaced “coupling.” However, economic 
growth has also brought obstacles to some regions. 
“Weak decoupling” or even “recessive coupling” 
appeared in some areas. The decoupling state shows 
obvious periodicity and spatial heterogeneity. The first 
type of regions, dominated by “strong decoupling”, are 
mainly distributed in the southeast coast of China and 
some central provinces. They have been in a state of 
strong decoupling during the study period. The second 
type of region is in strong decoupling most of the time 

and weak decoupling for a small part of the time. Such 
areas mainly include Hubei, Hunan, Jiangxi, Shanxi, 
Guangxi, and Sichuan. The third type of regions 
fluctuates between decoupling and coupling, mainly 
including Gansu, Inner Mongolia, Liaoning, Jilin,  
and Heilongjiang. Such areas often have relatively 
backward industries and weak foundations for green 
development.

Obviously, the decoupling between economic 
growth and environmental pollution has significant 
spatial heterogeneity. In addition, different provinces 
in the east, middle and west have strong spatial 
connections. Therefore, this article will explore the 
spatial characteristics of the decoupling between 
economic growth and environmental pollution from 

Fig. 3.  Spatial distribution of decoupling status between economy growth and comprehensive pollution from 2012 to 2017.
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the perspective of spatial correlation and spatial 
heterogeneity.

Spatial Heterogeneity of Decoupling

In this paper, the Moran index of the decoupling 
elasticity coefficient between the four environmental 
pollutants and economic growth in 30 provinces and 
cities is measured, and the results are shown in Table 3. 

The results show that the Moran index has 
both positive and negative values. This means that 
there is a positive spatial correlation between the 
decoupling elastic coefficients in some time, that 
is, spatial aggregation. However, there is a negative 
spatial correlation between the decoupling elastic 
coefficients at certain times, namely spatial repulsion. 
Therefore, the decoupling between economic growth 
and environmental pollution in the central area may 
lead to decoupling in neighboring areas, or coupling in 
neighboring areas. This needs to be further empirically 
tested using the spatial measurement model in the 
following part.

This study uses ArcGIS software to calculate the 
local Moran index of decoupling elasticity, and draws 
the Local Indicators of Spatial Association (LISA) 
Cluster Maps, as shown in Fig 4. The local spatial 
autocorrelation of decoupling elasticity can be divided 
into four types: high-high, high-low, low-high, and low-
low. The local spatial aggregation state of decoupling 
elasticity presents a large spatial difference. In 2012, 
the spatial aggregation of decoupling elasticity was not 
significant, and the differences in the level of green 
development among provinces were not particularly 
large. After that, differentiation began. In 2013, 
Xinjiang, Qinghai, Gansu, and Ningxia in the northwest 
region formed “high-high” clusters. The trend of 
“coupling” between economic growth and pollution is 
greater than the trend of “decoupling”, and the level of 
green development in Northwest China has begun to 
lag other regions. At the same time, “low-low” clusters 
were formed in Beijing, Hebei, Jiangsu, and Shanghai. 
In contrast, such a pattern has not appeared in the west. 
This trend of decoupling and differentiation reached 

its peak in 2015. Hubei and Sichuan in the central part 
have become “high-high” clusters, while Beijing and 
Hebei are still “low-low” clusters. This has a lot to do 
with the different clean energy policies and industrial 
development policies adopted by various provinces. 
During this period, the clean energy policies of many 
eastern and central provinces played a key role. Since 
then, the “low-low” cluster center gradually moved 
south to Henan, while the “high-high” cluster center 
gradually moved north to Inner Mongolia. In the 
foreseeable future, the decoupling trend of eastern 
and southern provinces and the coupling trend of 
northwestern provinces will become more and more 
obvious. 

Analysis of Regression Estimation Results 
of Spatial Panel Model

Table 4 shows the results of the spatial Durbin 
model. This model quantifies the impact of clean energy 
consumption (CEC) and other control variables and 
their spatial lag terms on the explanatory variables. 
The WALD and LR test results of eSO2 and eNOx 
showed that H0wald and H0LR were rejected at the 1% 
significance level. The estimation results show that the 
spatial Durbin model is the best model for sample data.

Spatial spillover effect refers to the influence of 
spatial lag variables on dependent variables. But only 
by analyzing the coefficient of the spatial lag term, we 
cannot accurately know whether there is a real spatial 
spillover effect in clean energy consumption. Therefore, 
this paper also decomposes the impact of clean energy 
consumption (CEC) and other control variables on 
explanatory variables into direct spillover effects, 
indirect spillover effects, and total spillover effects, as 
shown in Table 5.

The results show that the regression estimation 
coefficients of CEC for eCP, eSO2, eNOx, and eDS are 
all negative. Among them, the regression coefficients 
of CEC on eCP, eSO2, and eDS passed the significance 
test. Therefore, Hypothesis 1, 2 and 4 were confirmed. 
The increase in local clean energy consumption can 

Table 3. The global Moran’s I statistics of the decoupling elasticity between economy growth and environment pollution.

Variables statistics 2012 2013 2014 2015 2016 2017

eCP
Moran 0.0993 0.156*** -0.107* 0.116* -0.0839 0.0906*

Z value 1.053 2.57 -0.303 0.640 0.281 0.525

eSO2

Moran 0.0851 0.0984* 0.185** 0.084* -0.099* 0.220***

Z value 1.070 1.223 2.085 1.118 0.235 2.418

eNOx
Moran 0.218*** 0.168** 0.197** 0.0994 0.0705 -0.0964

Z value 2.335 1.887 2.078 0.493 0.432 -0.806

eDS
Moran -0.114 -0.211** -0.211** 0.0652 0.00746 0.284***

Z value -0.726 -1.614 -1.614 1.305 0.504 2.927



Can Clean Energy Consumption Promote... 3797

significantly promote the decoupling between economic 
growth and comprehensive pollutant emissions, SO2 
emissions, and DS emissions, which is consistent with 
the conclusions of Sarkodie et al. (2020) [34]. However, 
the lagging coefficient of clean energy consumption did 
not pass the significance test, indicating that the increase 
in local clean energy consumption has no significant 
impact on the decoupling between environmental 
pollution and economic growth in surrounding areas. 
Moreover, we refer to Pace et al. (2009) [24] to further 
decompose the effect of clean energy consumption. 
The direct effect is the average impact of clean energy 
consumption on the decoupling of local areas, and the 

indirect effect is the average impact of clean energy 
consumption on the decoupling of surrounding areas 
through spatial interaction. The total effect refers to 
the average impact of clean energy consumption on the 
decoupling of all regions. The regression coefficients 
of the direct, indirect and total effects of clean 
energy consumption on eSO2 are -0.4359, 0.0272, and 
-0.4087, respectively. The direct effect passed the 1% 
significance level test. At the same time, the regression 
coefficients of the direct effect, indirect effect, and 
total effect of clean energy consumption on eDS are 
-0.6560, 0.2983, and -0.3577, respectively, and the 
direct effect has passed the 1% significance level test.  

Fig. 4. Local indicators of spatial association (LISA) cluster maps for decoupling elasticity between comprehensive pollution and 
economic growth from 2012 to 2017.
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This further proves that clean energy consumption plays 
an important role in promoting the decoupling between 
local economic growth and SO2 emissions and DS 
emissions. This further validates Hypothesis 1 and 4. 
However, the average decoupling effect of clean energy 
consumption on surrounding areas and all regions is not 
significant.

In addition, we further analyzed the estimated 
coefficients and significant levels of foreign direct 

investment, energy consumption per unit of GDP, 
environmental regulations, industrial structure, 
urbanization and its spatial lag. It can be discovered:

(1) The regression coefficients of FDI on eCP, 
eNOx, and eDS are all positive, while the coefficients 
of the lag term of FDI are all negative, but they fail  
the significance test. It shows that the increase in FDI  
in the local area cannot significantly inhibit 
the decoupling between economic growth and 

Table 4. Estimation results of the spatial Durbin panel models with spatial fixed effects.

lneCP lneSO2 lneNOx lneDS

Main

lnCEC
-0.2930* -0.4392*** -0.0297 -0.6695***

(0.1697) (0.1200) (0.2056) (0.1882)

lnFDI
0.0743 -0.0366 0.0418 0.1295

(0.1285) (0.0907) (0.1558) (0.1425)

lnECPG
0.9955 0.5400 0.1585 2.3069**

(0.8562) (0.6071) (1.0378) (0.9503)

lnER
-0.1453** -0.1701*** -0.1335** -0.1388**

(0.0470) (0.0332) (0.0568) (0.0521)

lnIS
0.1317 0.0931 -1.0980 1.1487

(0.6577) (0.4637) (0.7996) (0.7286)

lnUR
1.0116 3.2311*** 2.7362* 0.8161

(1.3396) (0.9528) (1.6229) (1.4866)

Wx

lnCEC
0.4347 -0.0065 0.7991* 0.3547

(0.3954) (0.2797) (0.4816) (0.4389)

lnFDI
-0.0460 -0.0534 -0.2138 -0.2560

(0.2797) (0.1974) (0.3371) (0.3118)

lnECPG
-4.0520** -3.8870*** -4.4400** -4.8761**

(1.5026) (1.0461) (1.8571) (1.6385)

lnER
-0.1323 -0.1741** -0.1739 -0.0789

(0.0975) (0.0717) (0.1171) (0.1091)

lnIS
1.7857 1.4246 2.7921 1.0627

(1.5429) (1.0876) (1.8706) (1.7126)

lnUR
2.1354 5.4517** 0.7098 2.2488

(2.5302) (1.8123) (3.0674) (2.7876)

R-sq 0.039 0.047 0.010 0.053

LR_lag 11.5* 21.44*** 13.53** 13.32**

LR_error 11.7* 21.62*** 13.47** 12.10**

Wald_lag 11.85** 22.77*** 14.09** 13.80**

Wald_error 11.5* 22.22*** 13.42** 11.74*

Notes: z-statistics in parenthesis. *, **, and *** indicate that p values are less than 0.1, 0.05, and 0.01 levels, respectively.
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lneCP lneSO2 lneNOx lneDS

LR_Direct

lnCEC
-0.2894 -0.4359*** -0.0434 -0.6560***

(0.1764) (0.1254) (0.2175) (0.1928)

lnFDI
0.0692 -0.0392 0.0416 0.1161

(0.1248) (0.0885) (0.1529) (0.1379)

lnECPG
1.1027 0.6815 0.3843 2.2725**

(0.8388) (0.5953) (1.0409) (0.9050)

lnER
-0.1456** -0.1673*** -0.1305** -0.1421**

(0.0457) (0.0323) (0.0556) (0.0512)

lnIS
0.1053 0.0522 -1.1976 1.1618*

(0.6197) (0.4343) (0.7453) (0.7050)

lnUR
1.0268 3.1441** 2.7554* 0.9162

(1.3349) (0.9562) (1.6391) (1.4555)

LR_Indirect

lnCEC
0.4306 0.0272 0.7388 0.2983

(0.4005) (0.2706) (0.4569) (0.4968)

lnFDI
-0.0573 -0.0533 -0.2133 -0.2838

(0.2692) (0.1821) (0.3063) (0.3387)

lnECPG
-4.0140** -3.6987*** -4.1183** -5.0900**

(1.4773) (1.0088) (1.7269) (1.7802)

lnER
-0.1261 -0.1469** -0.1448 -0.1020

(0.0987) (0.0660) (0.1110) (0.1224)

lnIS
1.6936 1.2886 2.6076 1.2484

(1.5906) (1.0527) (1.7786) (2.0214)

lnUR
2.1351 4.8761** 0.4095 2.6789

(2.5161) (1.7417) (2.8907) (3.0820)

LR_Total

lnCEC
0.1412 -0.4087 0.6953 -0.3577

(0.3991) (0.2615) (0.4410) (0.5150)

lnFDI
0.0119 -0.0925 -0.1717 -0.1677

(0.2825) (0.1856) (0.3121) (0.3676)

lnECPG
-2.9113** -3.0172*** -3.7339** -2.8175*

(1.3113) (0.8685) (1.4468) (1.6915)

lnER
-0.2717** -0.3142*** -0.2754** -0.2441*

(0.1101) (0.0726) (0.1212) (0.1401)

lnIS
1.7989 1.3408 1.4100 2.4102

(1.8228) (1.1925) (2.0015) (2.3584)

lnUR
3.1619 8.0201*** 3.1648 3.5951

(2.4305) (1.6577) (2.6659) (3.1357)

Notes: z-statistics in parenthesis. *, **, and *** indicate that p values are less than 0.1, 0.05, and 0.01 levels, respectively.

Table 5. Estimate results of direct effects, indirect effects and total effects.
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environmental pollution, and the increase in FDI in 
neighboring regions cannot significantly promote 
the decoupling between economic growth and 
environmental pollution. The estimated coefficients of 
the indirect spillover effects and total spillover effects of 
FDI on eSO2, eNOx, and eDS are all negative, but none 
of them pass the significance test, which shows that FDI 
cannot promote economic growth and decoupling of 
environmental pollution.

(2) The regression estimation coefficients of 
ECPG to decoupling are all positive, but they fail the 
significance test. The estimated coefficients of the 
ECPG lag term are all significantly negative at the 
5% level. This indicates that the increase of ECPG in 
the local area has no significant effect on inhibiting 
decoupling. The increase of ECPG in the surrounding 
areas will significantly promote the decoupling of the 
local area. The direct effects of ECPG on eCP, eSO2, 
eNOx, and eDS are positive, but they are not significant 
except for eDS. The indirect and total effects of ECPG 
are significantly negative, indicating that the increase of 
local ECPG can significantly promote the decoupling 
of neighboring regions and all regions through spatial 
interaction.

(3) The regression estimation coefficient of 
the decoupling between economic growth and 
environmental pollution by environmental regulations 
is significantly negative. The lag coefficient of 
environmental regulations is also negative, but it fails 
the significance test. This shows that environmental 
regulations will significantly promote decoupling. 
Both the direct and total effects of environmental 
regulations are significantly negative, and the indirect 
effects of environmental regulations are also negative 
but not significant. These results further verify that the 
increase in the intensity of environmental regulations 
can significantly promote decoupling. This is consistent 
with the conclusions of Wang et al. [35] that severely 
polluting industries tend to relocate to areas with looser 
environmental regulations, thus turning these areas 
into polluted paradise. With the transfer of domestic 
industries, environmental pollution shifts from east to 
west, while the added value is the opposite. Stricter 
energy regulation will significantly reduce energy 
intensity, and companies will also shift their energy 
structure from using dirty fossil energy to using cleaner 
energy [36].

(4) The regression estimation coefficient of industrial 
structure to decoupling is positive, and the lagging term 
of industrial structure is also positive, but none of them 
pass the significance test. This shows that the increase 
in the proportion of the secondary industry cannot 
significantly inhibit the decoupling in the local area and 
neighboring areas. The direct effect, indirect effect, and 
total effect of the industrial structure are all positive, 
but not significant, which also shows that the increase 
in the proportion of the secondary industry will not 
significantly inhibit the decoupling between economic 
growth and environmental pollution.

(5) The regression estimation coefficient of 
urbanization on the decoupling between economic 
growth and SO2 is significantly positive, and its lag 
coefficient is also significantly positive. This shows that 
urbanization will significantly inhibit the decoupling 
of SO2 emissions from economic growth. However, the 
decoupling effect of urbanization on comprehensive 
pollution is not obvious. Therefore, urbanization 
will not significantly inhibit the decoupling between 
economic growth and environmental pollution in 
local and neighboring areas. The direct, indirect, 
and total effects of urbanization are all positive, but 
only the decoupling effect on SO2 is more significant. 
This further proves that urbanization only inhibits the 
decoupling between certain pollutants and economic 
growth, but not completely. This is consistent with the 
research conclusions of Liu et al. (2020) [37]. Although 
extensive urbanization in some areas of China has 
increased the economic growth rate, it has also caused 
some environmental pollution.

Conclusion

The academic contribution of this paper is to 
interpret the decoupling between economic growth 
and air pollution from the perspective of spatial 
econometrics. The results of the decoupling model 
show that the decoupling of economic growth and 
environmental pollution is obviously cyclical in time and 
heterogeneous in space. As time evolves, the relationship 
between economic growth and environmental pollution 
of all research objects is increasingly inclined to strong 
decoupling rather than coupling. The “decoupling” 
between China’s economic growth and environmental 
pollution has replaced “coupling.” However, “weak 
decoupling” or even “recessive coupling” has appeared 
in some areas. In the foreseeable future, the decoupling 
trend of eastern and southern provinces and the 
coupling trend of northwestern provinces will become 
more and more obvious.

It can be concluded that clean energy consumption  
can promote the decoupling between economic  
growth and environmental pollution, especially in 
the local area, but the impact of decoupling is not 
obvious in neighboring areas. Among them, clean 
energy consumption has the most obvious effect on the 
decoupling between SO2, DS emissions and economic 
growth, and the direct effect is a significant negative 
effect. 

Implications

China should continue to increase the consumption 
of clean energy. At this stage, to achieve green and 
sustainable development, the government should 
formulate energy policies to vigorously develop solar 
power, wind power, and hydropower. In addition, it is 
also necessary to formulate supporting energy policies 
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such as green certificate trading system and carbon 
trading system to encourage the consumption of clean 
energy.

Environmental collaboration between regions should 
be strengthened. Areas with weak green development 
foundations such as Gansu, Inner Mongolia, Liaoning, 
Jilin, and Heilongjiang need industrial assistance 
and support from decoupled areas with leading green 
development levels. Thus, breaking the phenomenon 
of clustering coupling between economic growth and 
environmental pollution.

Implement a package of supporting policies.  
It is necessary to strengthen the screening of foreign-
funded enterprises, encourage foreign direct investment 
into the fields of environmental protection and clean 
energy industries. Strengthen environmental regulations 
and optimize environmental regulations. In addition, 
proportion of pollution-intensive industries should be 
reasonably controlled.
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