
Introduction

As the world’s largest energy consumer, China has 
consumed 4.64 billion tons of coal equivalent with 
coal accounting for 59% of its energy mix in 2018. 
More than 70% of coal is used to generate electricity 
production in recent years [1]. Except for the human 
resource and fix input, steam coal prices are an 
essential part of the cost of coal-based power plants. In 
order to improve the efficiency of electricity generation 

and steel manufacturing in coal consumption [2], China 
has established the national coal trading market, i.e., 
Qinhuangdao coal trading market in 1992. With the 
reform deepening, Qinhuangdao coal price systems 
including steam coal price were issued in 2007 [3]. 
However, the immaturity of the steam coal market of 
China and the impact of international trade uncertainty 
make the steam coal price more volatile. Hence, it is 
urgent to present an effective forecasting technology for 
steam coal prices, which is the foundation to provide the 
price reference for the government’s macro-regulations 
and tool for power enterprise’s risk aversion. 

The current literature has explored the key factors 
that affect steam coal prices from coal production, 

Pol. J. Environ. Stud. Vol. 30, No. 5 (2021), 4241-4254

              Original Research              

Forecasting China’s Steam Coal Prices 
Using Dynamic Factors 

and Mixed-Frequency Data  
 
 

Chunyang Wang1, Wanglin Kang2*
1School of Business, Macau University of Science and Technology, China

2School of Economics and Management, Shandong University of Science and Technology, Qingdao, China
 

Received: 12 October 2020
Accepted: 21 December 2020

Abstract

This paper investigates the dynamic relationship between steam coal price and its drivers sampling 
mixed frequencies to improve the prediction of weekly steam coal price. A novel hybrid method, 
combining the mixed data sampling (MIDAS) model with eXtreme Gradient Boosting (XGBoost) 
algorithm, is proposed to perform forecast of weekly steam coal prices by applying the latest mixed 
factors with high frequencies. The empirical evidences indicate that the daily natural gas prices, 
temperatures, and air quality index (AQI) have better predictive abilities for steam coal prices than 
the A-share index and crude oil prices. It’s shown that the hybrid model has approximately 23.27% 
and 78.39% accuracy improvement over the combination-MIDAS and other benchmark models, 
respectively. The empirical results are helpful for the government to effectively capture the fluctuation 
and uncertainty of steam coal prices from the energy market and environmental conditions to make 
reasonable strategies in China.

Keywords: steam coal price, MIDAS model, forecast combination, XGBoost algorithm

*e-mail: wlkang@163.com

DOI: 10.15244/pjoes/131856 ONLINE PUBLICATION DATE: 2021-06-01



Wang C., Kang W.4242

energy market, and economic development. The costs 
of coal production involving the coal resource supply, 
investment, technology, and transportation are now 
a substantial influence on steam coal prices [4]. From 
the theory of supply and demand, Ding et al. pointed 
out that China’s future coal supply and demand trend 
is increasing, and correspondingly, coal prices will 
drop first and then rise [5]. From the energy side, some 
studies investigate that the price trends of the oil, 
natural gas, and steam coal price [6-7] are the same in 
the long term [8]. All over the world, oil as the most 
important energy source has become the benchmark 
by which other energy sources are measured. The 
price of coal, as another crucial fossil fuel, has been 
historically strongly related to oil. The greenhouse 
climate change motivates the national governments to 
use clean energies to replace the coal. Natural gas is 
considered as clean and cost-effective alternatives for 
electricity generation or coal-fired power plants [9-10]. 
The evidence shows that there exists the inter-market 
contagion of the international energy market, where the 
steam coal prices are influenced by fossil energy, e.g., 
oil, coal, and natural gas markets [11]. Some literatures 
also point out that there is a significant bi-directional 
volatility spillover between the clean energy stocks and 
the steam coal market [12]. On the contrary, Liu et al. 
believed that deregulation of power industry will lead to 
lower coal prices [13].

Economic development is also considered as one 
of the dominating factors in the determination of 
steam coal prices. In developing countries, such as 
China and India, are experiencing the rapid economic 
development of their industries, with 6.1% and 5.3% 
GDP growth, respectively. India has become one of 
the growing countries next to China. To meet the 
need for this rapid growth, the generation of power 
is needed at an exorbitant rate in India [14], and 75% 
of its electricity is currently generated by coal-fired 
power plants [15]. Similarly, some evidence also shows 
that economic growth stimulates coal consumption in 
China [16]. With the economic development, the rapidly 
increased demand for electricity in China has boosted 
the coal-fired power plant capacity. Hence, along with 
its economic development, China has sparked growth 
among power, steel, and chemical industries relying on 
coal as a feedstock, which could lead to the fluctuation 
of the steam coal price.

Although the current literature has realized the 
importance of managing steam coal price and identified 
the influencing factors, the limited research pays 
attention to steam coal price prediction. For example, 
Zhan and Ma used the modified partial least-squares 
method (LSM) to forecast the daily coal price indexes in 
Qinhuangdao of China [17]. Krzemień et al. presented 
the generalized regression neural network (GRNN) to 
forecast the European steam coal spot price [18]. Zhao 
et al. examined the fluctuations of steam coal price in 
China by using the multi-fractal detrended fluctuation 
analysis (MFDFA). They pointed out that the quarterly 

fluctuation index (QFI) had a better forecasting ability 
when the prices fluctuated wildly [19]. Fan et al. 
established a multi-layer perceptron network model 
(MPNM) to make short terms predictions for the 
coal prices of Qinhuangdao of China [20]. Alameer 
et al.combined the long short-term memory (LSTM) 
with deep neural network (DNN) to forecast monthly 
coal price fluctuations in China [21]. Since the coal 
consumptions directly affect the coal prices, the 
coal consumption prediction also achieves attention. 
Wang et al. combined the grey model (GM) with 
the autoregressive integrated moving average model 
(ARIMA) to predict the coal consumption in U.S.A 
[22]. Wang et al. established a hybrid model based on 
particle swarm optimization (PSO) to forecast the coal 
demand in China [23].

The above literature has developed various models 
to coal price prediction, including linear methods, e.g., 
ARIMA and nonlinear methods, e.g., LSTM [14]. In 
order to solve some disadvantages in single forecasting 
method, the combined models are constructed, such as 
LSTM- DNN and GM- ARIMA [21-22]. 

But these forecasting methods and models only 
consider the daily coal price forecast. In fact, the daily 
volatility of spot coal prices sometimes was very low, 
or even unchanged. For example, in the European DES 
ARA (Delivered Ex-ship; Amsterdam, Rotterdam, 
Antwerp) market, the weekly or monthly coal price 
data are often released. Hence, it needs to explore 
the forecast technology to predict the low-frequency 
coal prices using daily driving factors. Traditionally, 
these daily driving factors are always converted into 
lower frequency data, e.g., weekly data by averaging 
or bridging methods. This may result in the loss of 
valuable information from the different frequency 
data and inaccuracy of forecast. In recent years, the 
mixed data sampling (MIDAS) approach, proposed 
by Ghysels et al. [24] allows the explanatory variables 
and the dependent variables to be sampled at different 
frequencies, while distributed lag polynomial is used to 
ensure parsimonious specifications [25]. This method 
is proven to be an effective way to perform real-time 
forecasts for dynamic prices by employing the more 
abundant sample information at different frequencies 
[26-27].

However, there still exist some research gaps in the 
prediction of steam coal prices by using key factors 
at different frequencies. There is no attempt to apply 
the MIDAS regression model to forecast the steam 
coal prices. Some scholars have criticized that the 
single use of MIDAS models can not achieve optimal 
performance in all conditions because of sampling 
variation, structural breaks, and random factors [28]. 
Hence, this paper proposes a hybrid model to forecast 
the steam coal prices. In order to get a better grasp of 
the dynamic and nonlinear features of weekly steam 
coal prices, we combine the eXtreme Gradient Boosting 
(XGBoost) method with MIDAS models to improve the 
accuracy. The technique of XGBoost has been proved 



Forecasting China’s Steam Coal Prices... 4243

to have a better capability of extracting meaningful 
information from unstructured data [29]. The evidence 
shows that the XGBoost method has an advantage over 
the random forest, Bayesian, and k-Nearest Neighbors 
models in terms of speed and prediction accuracy [30]. 
The unique respective strengths of MIDAS model and 
XGBoost method contribute to present the flexible non-
linear forecasting capabilities for steam coal prices.

This paper aims to investigate the dynamic 
relationship between weekly steam coal prices and 
daily drivers to improve the accuracy of steam coal 
price prediction. The contributions are presented 
as follows. First, the comprehensive factor systems 
are presented not only including the daily crude oil 
prices, the natural gas prices, and the A-share index, 
but also the daily temperature and air quality index 
(AQI). Second, this paper constructs a novel hybrid 
model, combing the MIDAS model with the XGBoost 
algorithm to perform a forecast of weekly steam coal 
prices by applying the latest mixed factors with higher 
frequencies. The hybrid model can predict the errors 
to capture the nonlinear changes of weekly steam coal 
prices, which helps to correct the forecast of steam coal 
prices from the best individual model. The empirical 
findings indicate that natural gas prices, temperatures 
and AQI have better predictive abilities than the 
A-share index and crude oil prices. Third, compared 
with the benchmark models, e.g., autoregression 
(AR), moving average (MA), and ARMA, the novel 
hybrid model achieves better performance. It’s shown 
that the hybrid model has approximately 23.27% and 
78.39% accuracy improvement over the combination-
MIDAS and benchmark models, respectively. The 
results are beneficial to the policymakers’ participants 
in environment protection and energy investment 
decisions.  

The remaining part of the paper is organized as 
follows. Section 2 introduces the hybrid model in 
this paper. Section 3 describes the data resources and 
processing. The empirical results are presented in 
section 4 and section 5. Section 6 reports the research 
conclusions and future work.

Material and Methods

The MIDAS method has wide applications for 
multiple forecasting domains, such as prediction of 
the financial market [31-32], energy market [33-34], 
and other macroeconomic issues, e.g., GDP [35-36] 
The MIDAS method can fully utilize high-frequency 
data without sustainable loss of sample information 
to directly reflect the dynamic relationships among 
variables by polynomial weights [37]. To realize the 
accurate forecast for steam coal price, and to address 
the misspecification of the individual MIDAS model 
[38], this paper constructs the combination-MIDAS 
regression model with the comprehensive driving factor 
systems.

The MIDAS Model 

The existing literature discussed early shows that 
steam coal prices can be influenced by many factors, 
such as energy markets, economic markets, weather, 
and environmental aspects. Since the individual MIDAS 
model can not use multiple indicators, the combination-
MIDAS regression model was proposed to make 
forecasts under different information sets and indicators 
[39]. For example, the combination-MIDAS model has 
been used to forecast crude oil price [40], carbon price 
[41], and wastewater discharge [42]. 

The critical step to construct a combination-MIDAS 
model is to present the formation of a combined 
forecast based on a series of individual forecasts [38]. 
It is common to use weight techniques to create the 
formation of a combined forecast by employing the 
information sets of the individual models [43]. Given 
N forecasting results of multiple individual MIDAS 
models, the final forecast result of the combination-
MIDAS model is defined as follows.

              (1)

...where T refers to the last observation in the estimator 
sample for the best individual MIDAS, wj,T refers to the 
combination weights formed at time T, and   
refers to jth individual forecast result of  
computed by the best individual model in the out-of-
sample at time T.  denotes the forecast 
combination generated at time T, which is a weighted 
average of N individual h-step ahead forecast results in 
the out-of-sample. In this paper, the combination-
MIDAS model is formed with five weight techniques, 
e.g., MSFE-weighted type, DMSFE-weighted type, 
AIC-weighted type, BIC-weighted type, Equal-weighted 
type. For details of these five weight techniques, please 
see Appendix A.1. To realize forecasting with the latest 
available published data and to consider the 
autoregressive effect of Yt, the ADL-MIDAL (m, k, h) 
model with h-step-ahead is constructed as follows.

 
1/ ( )

/1
( , ) Xp m m

t j t j t h m tj
Y Y W Lα γ β θ ε− −=

= + + +∑    (2)

...where Yt refers to the weekly steam coal prices and 
t = 1, 2, ···, T. Xt

(m) refers to the ith daily indicators, 
which can be observed m times between week t – 1 and 
t. Thus, set m = 5 in this paper. Here, α, γj, β are the 
model parameters,  h refers to the leads of daily factors, 
and εt  is the stochastic disturbance term. When h is 
greater than or equal to 1, this model can use the daily 
factors before Friday to forecast ahead of the steam coal 
price. The term of W(L1/m, θ) consists of the lag operator 
L1/m and a parameter vector of limited dimension θ. 

W(L1/m, θ) can be denoted by 
/( ; )K k m

k i
w k Lθ

=∑ , where 
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w(k, θ) is a polynomial weight, and K refers to the 
maximum lag order of the daily high-frequency variable. 
Set / ( ) ( )

/
k m m m

t t k mL X X −=  where Lk/m is a lag operator. When 
k = 0, ( )

/
m

t k mX −  refers to the observation of Friday in a 
week. When k = 1, 

( )
/

m
t k mX −  refers to the observation of 

Thursday in a week, and so on.
The MIDAS model depends on the polynomial 

weights to capture the dynamic relationships among 
data with different frequencies. Thus, it’s important to 
choose an appropriate weight function for the ADL-
MIDAS model to achieve an accurate forecast. To 
reflect the direct effects of different high-frequency 
data on the steam coal prices, various parsimonious 
polynomial specifications of W(L1/m, θ) have been 
taken in this paper. These specifications include the 
beta density function polynomial with zero lag (Beta), 
the beta density function polynomial with non-zero 
lag (BetaNN), Exponential Almon lag polynomial 
(ExpAlmon), Almon lag polynomial (Almon), 
Step function (Stepfun), and Unrestricted MIDAS 
(UMIDAS) [39] ( see details in Appendix A.2). 

XGBoost Algorithm

For the accurate prediction of the steam coal 
prices, this paper presents the XGBoost algorithm 
to forecast the change of prediction error [43]. As a 
scalable machine learning system for tree boosting, 
XGBoost shows better performance in analyzing and 
predicting the prices compared with other machine 
learning models [44], such as support vector machines 
(SVM) and hybrid associative memory with translation 
(HACT). Since XGBoost is an optimized distributed 
gradient boosting algorithm which can capture the 
nonlinear characters of the data series [45]. 

XGBoost model could be generated at each 
iteration, and the residuals can be utilized to modify 
the previous predictor to generate the optimal loss 
function. Specifically, the XGBoost model integrates 
multiple weak classifiers into a strong classifier by a 
series of specific learning algorithms [46]. Here, the 
weak classifier is the sub-model produced by a series of 
the model iteration process. The strong classifier is the 
final error prediction model where the weak classifiers 
generated are added by a specific weight function after 
the completion of iterations. 

The prediction error is the final output by summing 
up the scores in the corresponding decision trees. The 
function form is 
displayed as:

 1
ˆ ( ) ( )    K

i i k i kk
y X f X fφ

=
= = ∈ Θ∑          (3)

...where Θ refers to the space containing the forecasting 
functions and the output scores of each function, 
and fk(Xi) refers to the kth forecasting function in the 
function space, and ŷi denotes the final prediction that 

could capture the short-term nonlinear characters. Here, 
Xi = (x1, x2, ..., xm) refers to the input variables.

To realize the accurate forecast of the prediction 
error, we construct the following multi-objective 
function.

2
1 1 1
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2
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        (4) 

...where l(yi, ŷi) is a differentiable convex loss function 
referring to the gap between the target error and the 
prediction error, and Ω( fk) is a penalty term added to the 
loss function to avoid overfitting. Here, γ and χ refers to 
the penalty factors, T refers to the branch number of each 
weak classifier, and wt indicates the weighted score of 
each branch of the weak classifier. Moreover, the goal of 
each loss function in this model is to minimize the gap 
between the prediction error and the target error. Ω( fk) 
measures the complexity of the proposed model where 
the lower the complexity, the stronger the generalization 
ability. Therefore, by minimizing the objective function 
of Equation (4), the best model of predictive function 
could be selected [46]. 

Notably, since functions as import parameters enter 
the target functions Equation (4), it’s unreasonable to 
optimize the prediction model in Euclidean space by 
the traditional estimate method [43]. Considering the 
deficiency of the traditional estimate method, second-
order Taylor expansion is taken to the loss function 
of Equation (4). Assumed that the loss function is 
mean square error (MSE), and thus the multi-objective 
function in the tth iteration is shown:
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1
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...where ( 1)
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ˆ
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2 ( 1)

ˆ
ˆ( , )t-

t
i i iy

h l y y −= ∂ . Here, 
the additive manner is used to model leaning; that is, at 
each iteration, the algorithm identifies a new function 
fk(xi) in the functions space Θ. This method can 
minimize the gap between the target value γ and the 
prediction value ŷi

(t) at the tth iteration, and thus generate 
the final loss function.

According to Equation (5), the finally multi-objective 
function is given as:
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l
         (6)

...where l* represents the optimal solution of the multi-
objective function. Therefore, obtaining the desired 

l

l

l
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output ŷi can be transformed into a question that 
makes the multi-objective function l * of Equation (6) 
minimum. 

Combination-MIDAS-XGBoost Model

In this paper, the proposed combination-MIDAS-
XGBoost model consists of four steps, as shown in 
Fig. 1. In step 1, the main goal is to establish the 
individual MIDAS models with each factor and select 
the best individual model according to its predictive 
performance in out-of-sample. Here, the root means 
squared errors (RMSE) are adopted to measure 
the predictive performance [47]. In step 2, taking 
the weekly steam coal price, corresponding higher-
frequency factors, and the residuals of the individual 
MIDAS model as the input data, the XGBoost 
algorithm could be achieved, and the forecasting values 
of the residuals is the prediction errors. In step 3, the 
predictive errors generated by the XGBoost algorithm is 
utilized to correct the forecast values of the individual 
MIDAS model. The modified forecast performance of 
the individual model shows higher accuracy. In step 4, 
the forecast for weekly steam price could be achieved 
by the combination-MIDAS-XGBoost model. 

Data Description 

This paper uses the daily driving factors from 
energy, economy, weather, and environmental aspects 
to forecast weekly steam coal prices. The data covers 
the period from November 11, 2013, to November 15, 
2019, which is divide into two parts. Namely, 80% of 
the data is constructed as the training data and 20% 
of the data is constructed as the out-of-sample data. 
Specifically, the training data is set to train the proposed 
hybrid model, of which period from November 11, 2013, 
to October 5, 2018. The period from October 12, 2018, 

to November 15, 2019, is utilized for the out-of-sample 
forecast.  

The weekly steam coal price is from China’s 
Qinhuangdao port, which is the largest coal import and 
export port in the world [20]. The fluctuation of steam 
coal price in Qinhuangdao port deeply influences the 
global coal demand and supply, which has an important 
strategic position in guaranteeing China’s energy 
security (source: Chinese Wind Database).

The daily driving factors from the energy market 
include the WTI crude oil future price and the NYMEX 
natural gas future price (source: Chinese Wind 
Database). The daily economic factor is represented by 
the A-share index (source: Chinese Wind Database). 
For weather factors, this paper selects the daily average 
temperature of China as the proxy (source: National 
Ocean and Atmospheric Administration). Regarding 
the environmental factor, this paper selects the daily 
average air quality index (AQI) in 358 major cities of 
China (source: Tianqihoubao web of China). 

To improve the forecasting accuracy and eliminate 
heteroscedasticity, the proposed hybrid model 
adopts the growth rates of variables. Specifically,  
growthi,t = ln(valuei,t/valuei,t–1)×100, where growthi,t  
refers to the return rate or growth rate of the ith variable 
at time t, and valuei,t refers to the ith observation at 
time t. The return rates or growth rates of variables are 
plotted in Fig. 2.

Influence of Driving Factors 
for Steam Coal Price

Selection of the Best Single MIDAS Model

This section selects the best single MIDAS model 
with a predictor to forecast the steam coal price using 
the model discussed in section 3.1. The single MIDAS 
model with the best accuracy and the predictor with 

Fig. 1. Flow chart of combination-MIDAS-XGBoost model.
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Fig. 2. Return of steam coal price and the growth rates of related factors.
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the greater predictive ability is selected by comparing 
the RMSEs value, which is in line with Han et al. [41] 
As the first step to construct the proposed combination-
MIDAS-XGBoost model, that selecting the best MIDAS 
model is a critical process to the accuracy of the final 
results because it’s the basis of the proposed hybrid 
model and further influences the final forecasting 
results. In addition, the excellent predictor also is 
chosen by comparing the RMSEs value generated by 
the single MIDAS model.

The best polynomial weight reflecting the 
dynamic relationship between the steam coal price 
and the relevant factors, and the best lag order of the 
corresponding factor are also determined by the RMSEs 
value generated by the single MIDAS model with fixed 
window method. To construct the best MIDAS model 
with accurate prediction and reflect the changing trend 
in RMSEs value, this paper sets the maximum lag 
orders of daily factors crude oil, natural gas, A-share, 
temp, and AQI as 60, set the maximum lag order of 
the weekly steam coal price as 5 when considering the 

0, 1, 2, 3, 4 step ahead conditions. Moreover, several 
polynomial weights also are considered in this model, 
which have been shown in Appendix A.2. This paper 
takes the single MIDAS model with the crude oil price 
as an instance to make clear the mechanism of selecting 
the best polynomial weight and the best lag order for 
the steam coal price and the crude oil price. Table 1 
shows the detailed RMSEs value generated by the single 
MIDAS model with 1 lead of the steam coal price; that 
is, the RMSEs value of this model when considering  
h = 1. When 0 lag order for steam coal price included in 
this model, the polynomial weight of BetaNN performs 
better in reflecting the relationship between the steam 
coal price and the crude oil price, and the best lag 
order for the crude oil price is 54. When the lag order 
for steam coal price included in this model is 1, 3, 
respectively, BetaNN performs better in reflecting the 
relationship between the steam coal price and the crude 
oil price than other alternative polynomial weights, and 
the best lag order for the crude oil price is 54. When 2, 4, 
5 lag order for steam coal price included in this model, 

Table 1. RMSEs generated by the single MIDAS model with 1 lead of the steam coal price.

Weights

Lag orders for crude oil price Lag orders for crude oil price

9 20 33 45 54 9 20 33 45 54

0 lag orders for steam coal price 1 lag orders for steam coal price

Beta 1.3808 1.4765 1.4752 1.4746 1.4744 1.4341 1.4341 1.4341 1.4341 1.4341

BetaNN 1.4338 1.4667 1.3843 1.4581 1.3684 1.4426 1.4394 1.4301 1.4384 1.4285

ExpAlmon 1.3808 1.3808 1.3808 1.3808 1.3808 1.4446 1.4446 1.4446 1.4446 1.4446

Almon 1.4476 1.4705 1.4462 1.4189 1.4481 1.4647 1.4796 1.4418 1.4445 1.4439

Stepfun 1.4522 1.4632 1.4852 1.5207 1.5826 1.4525 1.4819 1.5087 1.5274 1.5383

UMIDAS 1.4508 1.5259 1.6819 1.6739 1.8077 1.4952 1.5500 1.6198 1.6644 1.6886

2 lag orders for steam coal price 3 lag orders for steam coal L price

Beta 1.4699 1.4544 1.4544 1.4544 1.4544 1.4386 1.4386 1.4386 1.4386 1.4386

BetaNN 1.4709 1.4542 1.4459 1.4540 1.4521 1.4628 1.4372 1.4306 1.4377 1.4291

ExpAlmon 1.4699 1.4699 1.4699 1.4699 1.4699 1.4492 1.4492 1.4492 1.4492 1.4492

Almon 1.4922 1.4972 1.4563 1.4568 1.4562 1.4802 1.4845 1.4463 1.4415 1.4429

Stepfun 1.4744 1.4990 1.5281 1.5414 1.5476 1.4608 1.4878 1.5160 1.5280 1.5371

UMIDAS 1.5175 1.5733 1.6375 1.6758 1.6932 1.5054 1.5574 1.6150 1.6643 1.6895

4 lag orders for steam coal price 5 lag orders for steam coal price

Beta 1.4090 1.4090 1.4090 1.4090 1.4090 1.4432 1.4432 1.4432 1.4432 1.4432

BetaNN 1.4513 1.4055 1.3985 1.4046 1.4063 1.4968 1.4417 1.4340 1.4420 1.4406

ExpAlmon 1.4189 1.4189 1.4189 1.4189 1.4189 1.4525 1.4525 1.4525 1.4525 1.4525

Almon 1.4470 1.4515 1.4146 1.4109 1.4098 1.4829 1.4981 1.4550 1.4557 1.4540

Stepfun 1.4268 1.4562 1.4899 1.5027 1.5130 1.4635 1.4943 1.5304 1.5465 1.5618

UMIDAS 1.4728 1.5273 1.5908 1.6382 1.6636 1.5109 1.5662 1.6297 1.6794 1.6992

Note: The bold values emphasize the smallest RMSEs of the single MIDAS model with different lag orders for steam coal price
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the polynomial weight of BetaNN performs better in 
reflecting the relationship between the steam coal price 
and the crude oil price, and the best lag order for the 
crude oil price is 33. The empirical result shows that the 
best lag order for crude oil prices may be different from 
the variation of the lag order for steam coal price, which 
reflects the duration of the impact derived from the 
crude oil price to the steam coal price that ranges from 
33 to 54 days. Meanwhile, BetaNN performs better in 
capturing the dynamic relationship between the steam 
coal price and the crude oil price than other polynomial 
weights in all conditions of different lag orders for the 
steam coal price and the crude oil price. What’s more, 
when the best lag orders for the steam coal price and 
the crude oil price is 0 and 54, respectively, with the 
polynomial weight of BetaNN, namely, AR(0)-BetaNN-
MIDAS(2, 54) show the highest predictive ability for 
the steam coal price. 

Comparisons Among the Driving Factors

Considering the complex relationship between the 
steam coal price and the relevant daily factors, this 
paper selects the best polynomial weight, the best h 
step lead and the optimal lag orders for the steam coal 
price and the factors, respectively, to determine the 
best single MIDAS in the condition of different leads. 
Using the selecting mechanism introduced above, the 
best single MIDAS for the relevant factors are selected 
considering when various conditions, which is shown in 
Table 2. For crude oil, the best single MIDAS is still 
AR(0)-BetaNN-MIDAS(2, 54) with 1 step ahead, of 
which the polynomial weight is BetaNN, and the best 
lag order for the steam coal price and the crude oil 
price is 0 and 54, respectively. For natural gas, the best 
individual MIDAS with the highest predictive ability is 
chosen, of which the best lag order for the steam coal 

price and the natural gas price is 0 and 33 with the 
best weight Umidas when considering the condition of  
h = 1. For A-share, the best individual MIDAS with the 
highest predictive ability is chosen, of which the best 
lag order for the steam coal price and the A-share is 0 
and 55 with the best weight Stepfun when considering 
the condition of h = 1. For temp, the best individual 
MIDAS with the highest predictive ability is chosen, of 
which the best lag order for the steam coal price and 
the temp is 4 and 36 with the best weight Stepfun when 
considering the condition of h = 4. For AQI, the best 
individual MIDAS with the highest predictive ability is 
chosen, of which the best lag order for the steam coal 
price and the AQI is 4 and 30 with the best weight 
Umidas when considering the condition of h = 4. The 
empirical result shows that the duration of the impact 
derived from crude oil price, A-share, temp, and natural 
gas to the steam coal price lasts longer than that of AQI. 
More specifically, the effect of A-share on the steam 
coal price lasts the longest among these daily factors 
while the AQI lasts the shortest. Natural gas price, 
AQI and temp are better predictors than A-share and 
crude oil price because the individual MIDAS with the 
former factors realizes the higher prediction accuracy. 
At the same time, considering the energy factors as the 
alternative to the steam coal, the effect of the crude oil 
lasts longer with the lower prediction accuracy while 
the natural gas shows a higher accuracy but lasting 
shorter Furthermore, when considering different leads 
of the steam coal price, natural gas price shows better 
predictive ability among these factors, followed by AQI, 
which indicating the reasonability of introducing it into 
the forecasting model. 

Table 3 demonstrates the forecasting performance of 
the individual MIDAS-XGBoost with each factor after 
considering the error correction strategy. For crude 
oil, the best individual MIDAS-XGBoost is AR(0)-

Table 2. The best single MIDAS model with different leads for steam coal price.

Factors
The best MIDAS model RMSE The best MIDAS model RMSE

h = 1 h = 2
Crude oil AR(0)-BetaNN-MIDAS(2, 54) 1.3684 AR(0)-ExpAlmon-MIDAS(3, 38) 1.3691

Natural gas AR(0)-Umidas-MIDAS(6, 33) 1.2493 AR(0)-Umidas-MIDAS(6, 32) 1.2693
A-share AR(0)-Stepfun-MIDAS(5, 55) 1.3362 AR(0)-Almon-MIDAS(4, 46) 1.3505

Temp AR(4)-Stepfun-MIDAS(5, 39) 1.3272 AR(4)-Stepfun-MIDAS(5, 29) 1.3380
AQI AR(0)-Almon-MIDAS(4, 31) 1.3286 AR(4)-Umidas-MIDAS(6, 30) 1.3255

h = 3 h = 4
Crude oil AR(0)-BetaNN-MIDAS(2, 59) 1.3802 AR(0)-BetaNN-MIDAS(2, 58) 1.3791

Natural gas AR(0)-Umidas-MIDAS(6, 31) 1.2796 AR(0)-Umidas-MIDAS(6, 31) 1.3019
A-share AR(0)-Almon-MIDAS(4, 45) 1.3559 AR(0)-Stepfun-MIDAS(5, 52) 1.3487
Temp AR(4)-Umidas-MIDAS(6, 32) 1.3416 AR(4)-Stepfun-MIDAS(5, 36) 1.3252
AQI AR(4)-Umidas-MIDAS(6, 31) 1.3173 AR(4)-Umidas-MIDAS(6, 30) 1.3146

Note: RMSE generated the single MIDAS model with each factor when considering different leads. The bold values emphasize  
the smallest RMSEs of the best individual model with each factor.
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BetaNN-MIDAS(2, 54)-XGB for which the RMSE 
value is 0.3014 when considering the condition of  
h = 1. The forecasting accuracy of this hybrid model 
is approximately 77.46% greater than that of the single 
MIDAS with crude oil under similar conditions. For 
natural gas, the best individual MIDAS-XGBoost is 
AR(0)-Umidas-MIDAS(6, 32)-XGB for which the 
RMSE value is 0.6221 when considering the condition 
of h = 2. The forecasting accuracy of this hybrid model 
is approximately 50.20% greater than that of the single 
MIDAS with natural gas under similar conditions. 
For A-share, the best individual MIDAS-XGBoost is 
AR(0)-Almon-MIDAS(4, 46)-XGB for which the RMSE 
value is 0.2838 when considering the condition of  
h = 2. The forecasting accuracy of this hybrid model 
is approximately 78.76% greater than that of the single 
MIDAS with A-share under similar conditions. For 
temp, the best individual MIDAS-XGBoost is AR(4)-
Stepfun-MIDAS(5, 29)-XGB for which the RMSE 
value is 0.9858 when considering the condition of h 
= 2. The forecasting accuracy of this hybrid model is 
approximately 25.61% greater than that of the single 
MIDAS with temp under similar conditions. For 
AQI, the best individual MIDAS-XGBoost is AR(0)-
Almon-MIDAS(4, 31)-XGB for which the RMSE 
value is 0.3050 when considering the condition of 
h = 1. The forecasting accuracy of this hybrid model 
is approximately 76.79% greater than that of the 
single MIDAS with AQI under similar conditions.  
The empirical results show that the MIDAS-XGBoost 
model is generally better than the single MIDAS model 
with each factor, an improvement of approximately 
ranging 25.62% to 78.76%. The better performance of 
MIDAS-XGBoost indicates that there is a non-linearity 
in the steam coal price, and the addition of the XGBoost 
algorithm helps to capture this feature and improve the 
forecasting performance.

Evaluation of the Forecasts 
for Steam Coal Price

Forecast Comparison: Combination-MIDAS Model 
and Combination-MIDAS-XGBoost Model

The predictors set of the steam coal price in this 
paper show different predictive ability, for which the 
forecast performance is various under the different 
conditions discussed in section 4.2. To improve 
the stability of the predictive model under various 
conditions and achieve satisfactory performance, this 
paper constructs the combination-MIDAS model based 
on the best single model shown in Table 2. Instead of 
adopting one combination weight method to combine 
the forecast results of the best single model[48], five 
polynomial weight types are utilized in this paper as 
shown in Appendix A.2. The combination-MIDAS 
model can make full use of the information provided 
by the best single model with different factors. Thus it 
can address the misspecification bias and maintain the 
forecast ability under different conditions and structural 
breaks [41]. 

Table 4 demonstrates the out-of-sample forecast 
accuracy of the combination-MIDAS model. The 
empirical result shows that the predictive ability of the 
five weighted combination model is higher than the 
single MIDAS model, and this model maintains stability 
under different leads. In the condition of 0-step ahead, 
the combination-MIDAS model with DMSFE weight 
type reveals greater predictive power, followed by the 
MSFE and Equal weight types. In the condition of 1-step 
ahead, the combination -MIDAS model with DMSFE 
weight type reveals greater predictive power, followed 
by the MSFE and Equal weight types. Similarly, when 
considering the condition of 2-step, 3-step and 4-step 
ahead, the combination-MIDAS model with DMSFE 

Table 3. The best single MIDAS model with different leads for steam coal price.

Factors
The best MIDAS model RMSE_COR The best MIDAS model RMSE-COR

h = 1 h = 2
Crude oil AR(0)-BetaNN-MIDAS(2, 54)-XGB 0.3014 AR(0)-ExpAlmon-MIDAS(3,38)-XGB 0.3101

Natural gas AR(0)-Umidas-MIDAS(6, 33)-XGB 0.6247 AR(0)-Umidas-MIDAS(6, 32)-XGB 0.6221
A-share AR(0)-Sepfun-MIDAS(5, 55)-XGB 0.4576 AR(0)-Almon-MIDAS(4, 46)-XGB 0.2838
Temp AR(4)-Stepfun-MIDAS(5, 39)-XGB 0.9888 AR(4)-Stepfun-MIDAS(5, 29)-XGB 0.9858
AQI AR(0)-Almon-MIDAS(4, 31)-XGB 0.3050 AR(4)-Umidas-MIDAS(6, 30)-XGB 0.9654

h = 3 h = 4
Crude oil AR(0)-BetaNN-MIDAS(2, 59)-XGB 0.3083 AR(0)-BetaNN-MIDAS(2, 58)-XGB 0.3087

Natural gas AR(0)-Umidas-MIDAS(6, 31)-XGB 0.6508 AR(0)-Umidas-MIDAS(6, 31)-XGB 0.6404
A-share AR(0)-Almon-MIDAS(4, 45)-XGB 0.2871 AR(0)-Stepfun-MIDAS(5, 52)-XGB 0.4621
Temp AR(4)-Umidas-MIDAS(6, 32)-XGB 1.0294 AR(4)-Stepfun-MIDAS(5, 36)-XGB 0.9893
AQI AR(4)-Umidas-MIDAS(6, 31)-XGB 0.9610 AR(4)-Umidas-MIDAS(6, 30)-XGB 0.9561

Note: RMSE generated the single MIDAS model with each factor when considering different leads. The bold values emphasize 
the smallest RMSEs of the best individual model with each factor.
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Table 4. RMSEs generated by the combination-MIDAS model.

Weights h = 0 h = 1 h = 2 h = 3 h = 4

MSFE Type 1.2451 1.2318 1.2288 1.2251 1.2258

DMSFE Type 1.2366 1.2248 1.2243 1.2204 1.2257

AIC Type 1.3513 1.3272 1.3380 1.3416 1.3252

BIC Type 1.3513 1.3272 1.3380 1.3415 1.3252

Equal-Weights 1.2490 1.2356 1.2322 1.2282 1.2279

Note: The bold values emphasize the smallest RMSEs in the condition of different leads for the steam coal price.

Weights h = 0 h = 1 h = 2 h = 3 h = 4

MSFE Type 0.2690 0.2832 0.3019 0.3083 0.3383

DMSFE Type 0.2713 0.2998 0.3004 0.3091 0.3514

AIC Type 0.9908 0.9888 0.9858 1.0294 0.9893

BIC Type 0.9908 0.9888 0.9858 1.0293 0.9893

Equal-Weights 0.3509 0.3624 0.4901 0.4931 0.4989

Note: The bold values emphasize the smallest RMSEs in the condition of different leads for the steam coal price.

Table 5. RMSEs generated by the combination-MIDAS-XGBoost model.

Table 6. Comparing of the best individual MIDAS model for each factor vs. AR, MA and ARMA model.

Weights h = 0 h = 1 h = 2 h = 3 h = 4

Panel A: RMSE ratios of the best individual MIDAS model for each factor vs. AR(1)

Crude oil 0.9182 0.9195 0.9200 0.9274 0.9267

Natural gas 0.8386 0.8395 0.8529 0.8598 0.8748

A-share 0.9089 0.8979 0.9075 0.9111 0.9063

Temp 0.9080 0.8918 0.8991 0.9015 0.8905

AQI 0.8903 0.8928 0.8907 0.8852 0.8833

Panel B: RMSE ratios of the best individual MIDAS model for each factor vs. MA(1)

Crude oil 0.8647 0.8660 0.8664 0.8734 0.8727

Natural gas 0.7898 0.7906 0.8033 0.8098 0.8239

A-share 0.8560 0.8456 0.8546 0.8581 0.8535

Temp 0.8551 0.8399 0.8467 0.8490 0.8386

AQI 0.8385 0.8408 0.8388 0.8336 0.8319

Panel C: RMSE ratios of the best individual MIDAS model for each factor vs. ARMA(1,1)

Crude oil 0.9218 0.9232 0.9236 0.9311 0.9304

Natural gas 0.8419 0.8428 0.8563 0.8633 0.8783

A-share 0.9125 0.9014 0.9111 0.9147 0.9099

Temp 0.9116 0.8954 0.9027 0.9051 0.8940

AQI 0.8939 0.8963 0.8942 0.8887 0.8869

Note: If the RMSE ratios are less than 1, that indicating the prediction accuracy of the best individual MIDAS model for each factor 
are better than the benchmark models, e.g., AR(1), MA(1), ARMA(1,1). 
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weight type reveals greater predictive power, followed 
by the MSFE and Equal weight types.

In addition, the predictive performance of AIC 
weight type and BIC weight type are not satisfying 
when considering each step. Thus, the DMAFE has the 
ability to extracting the predictive information from 
the optimal individual MIDAS model, and the forecast 
robustness of the DMSFE weight type outperforms the 
other alternative weight types. 

Table 5 demonstrates the predictive RMSE value 
of the combination-MIDAS-XGBoost model when 
considering different leads of the steam coal price. It’s 
clear from the empirical results that the out-of-sample 
forecast accuracy of the proposed hybrid model is 
higher than that of the traditional combination-MIDAS. 
When considering the condition of 0-step ahead, 
the MSFE weight type shows the highest predictive 
power among these weight types and the RMSE value 
is 0.2690. Comparing the forecast accuracy of the 
combination-MIDAS with the MSFE weight type, 
modified combination MIDAS with 0 lead by the 
XGBoost is approximately 78.39% higher in predictive 
power. Similarly, when considering h-step leads is 1, 
2, 3, and 4, respectively, the proposed hybrid model 
with MSFE weight type shows the highest predictive 
power and forecast stability. Therefore, the XGBoost 
algorithm can improve the forecast performance of the 
individual MIIDAS and the combination-MIDAS model 
by capturing the nonlinear trends of steam coal price.   

Forecast Comparison: Individual-MIDAS Models 
vs. AR, MA, and ARMA

What’s more, the paper compares the forecast 
performance of the best individual MIDAS model 
with that of the benchmark models, e.g., AR, MA, 
and ARMA, to emphasize the predictive power of the 
MIDAS regression model. Table 6 shows the RMSE 
ratios of the best individual MIDAS model for each 
factor vs. that of AR(1), MA(1), and ARMAR(1,1). The 
empirical result shows that the forecast performance 
of the best individual MIDAS model for each factor is 
higher approximately from 7.89% to 21.02% compared 
with these traditional time series prediction models 
listed above. Taking the RMSE ratios shown in Panel 
A of Table 6 as an example, when considering the 
condition of 0-step ahead, the best individual MIDAS-
XGBoost model with natural gas shows the greater 
predictive power and the forecast accuracy of this 
model is higher approximately 16.14% than that of 
AR(1). Similarly, when considering the condition of 
1-step or 2-step ahead, the forecast accuracy of the 
best individual MIDAS model with natural gas is 
higher approximately 16.05% and 15.71% than that of 
AR(1), respectively. Generally, the daily predictor could 
provide rich forecast information for the steam coal 
price prediction, thus enhance the forecast accuracy of 
the predictive model.

Conclusions

This paper proposes combination-MIDAS-XGBoost 
models for the weekly steam price forecast in China 
with the daily various factors obtained. To realize the 
accurate forecast and improve the predictive stability, 
the proposed hybrid model takes advantage of the 
individual MIDAS model and the XGB algorithm. 
First, the individual MIDAS model utilizes the daily 
frequency factors for coal price forecast, including 
energy factors, economic factors, weather, and 
environment. More specifically, the crude oil price and 
the natural gas from the energy market, the A-share 
index from the economic market, the temp from the 
weather aspect and the AQI from the environmental 
aspect. Then, the best individual MIDAS model is 
selected by comparing the RMSE values of this model 
with different factors. Second, the XGBoost algorithm 
can capture the nonlinear characters of steam coal 
price and thus eliminate the uncertainty faced by the 
individual MIDAS model. Third, five weight types are 
utilized to construct the combination forecast model, 
which makes use full of forecast information of the 
individual models, thus address the misspecification 
bias and improve the predictive power and stability. 

Some conclusions are drawn in this paper according 
to the empirical results. 

The impact of crude oil price, A-share, temp, and 
natural gas to the steam coal price is more sustained 
than that of AQI. At the same time, energy and 
environmental factors are more predictive for the steam 
coal price than economics and weather. The steam 
price shows significantly auto-correlative in the energy 
market of China, lasting from 0 to 4 weeks. XGBoost 
algorithm is effective in modifying the individual 
MIDAS model under different conditions. At the same 
time, the forecast accuracy of the MIDAS-XGBoost 
hybrid model increases approximately ranging from 
28.61% to 78.76%, which is better than the single 
MIDAS with different factors. When constructing the 
combination-MIDAS model, the forecast robustness 
of the DMSFE weight type outperforms the other 
alternative weight types. The out-of-sample forecast 
accuracy of the combination-MIDAS-XGBoost hybrid 
model is higher than that of the benchmark models 
and the combination-MIDAS, an improvement of 
approximately 23.27% and 78.39%, respectively.

There are still some potential extensions to our 
research in the future. For example, although we focused 
on the weekly steam coal price forecast, it would have 
been straightforward to extend our analysis to the daily 
horizon with higher frequency predictors, such as the 
hourly inter-data to perform real-time forecast, if they 
are available. One could also extend our analysis to 
choose another predictive model to correct the error 
of the combination-MIDAS. Doing so would raise 
additional applications, and give more stable forecast 
performance in an uncertainty context. 
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Appendix A

A.1 Combination weights
(i) MSFE-weighted type

MSFE refers to the squared forecast error, which is 
used to combine the individual approach. The weight is 
given as:
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When δ = 1, mj,T is defined as the MSFE of the 
individual MIDAS-XGBoost with jth factor. Here,  
t – T0 + 1 indicates the number of observations in the 
out-of-sample, and yj,T+s refers to the real observation.
(ii) DMSFE-weighted type

When δ = 0.9 in the equation of MSFE discussed 
above, it refers to the discounted squared forecast error 
(DMSE)-weighted type.
(iii) AIC-weighted type

AIC refers to Akaike information criteria, and AIC-
weighted type is defined as:
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     (A.2)

(vi) BIC-weighted type
BIC refers to Bayesian information criteria, and 

BIC-weighted type is defined as:

,
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     (A.3)

(v) Equal-weighted type
The equal-weighted type refers to the average 

weight, as is simply given:

, 1 /j Tw N=                         (A.4)

A.2 Polynomial weight functions
(i) The beta density function polynomial is selected for 
constructing two forms of weight functions including 
the beta density function polynomial with zero lag 

(Beta) and the beta density function polynomial with 
non-zero lag (BetaNN), which are defined as:

1 2
1 2 3 3

1 21

( , , )
( ; ) ( ; , , )

( , , )
i

K
ik

f x
w k w k

f x
θ θθ θ θ θ θ

θ θ
=

= = +
∑ (A.5)

...where xi = k/K, 
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Here, w(k;θ) refers to the beta polynomial (Beta). When 

θ1 = 0, 2 3 2 2 31
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Here, w(k;θ) refers to the beta polynomial with non-zero 
lag (BetaNN).
(ii) The exponential Almon lag polynomial of order p 
(ExpAlmon) is defined as:

( )

( )

1 2
1 2

1 2
1 2

···

1 2 ···

1

( ; ) ( ; , , , )
p

p

p
p

k k k

p k k kK

k

ew k = w k
e

θ θ θ

θ θ θ
θ θ θ θ

+ + +

+ + +

=

⋅ ⋅ ⋅ =
∑

(A.6)

(iii) The Almon lag polynomial of order p (Almon) is 
defined as:
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(vi) Polynomial specification with step function 
(Stepfun) is defined as:
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...where α0 = 1<α1<α2<...<αp<K.
(v) Unrestricted MIDAS (UMIDAS) with the 
autoregressive items generalizes to:
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