Original Research

Heavy Metals Occurrence, Seasonal Variation and Enrichment in Urban Soils Augmented with Industrial Waste

Muhammad Zubair^{1*}, Usama Anwar¹, Muhammad Ashfaq¹, Muhammad Nadeem Zafar¹, Mujahid Farid², Fayyaz Ahmad³, Waqar Ahmad¹, Shafaqat Ali^{4,5**}, Muhammad Rizwan⁴, Abdulaziz Abdullah Alsahli⁶, Mohammed Nasser Alyemeni⁶, Leonard Wijaya⁶

¹Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
²Department of Environmental Sciences, University of Gujrat, Gujrat 50700, Pakistan
³Department of Statistics, University of Gujrat, Gujrat 50700, Pakistan
⁴Department of Environmental Sciences and Engineering, Government College University, 38000 Faisalabad, Pakistan
⁵Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
⁶Department of Botany and Microbiology, College of Science, King Saud University, 11451-Riyadh, Saudi Arabia

Received: 18 October 2020 Accepted: 10 January 2021

Abstract

Present study was planned on the basis of prior field survey with main objective to determine concentrations of selected metals temporally (winter, spring, summer) in the industrial waste sediments, accumulate and enrich in the soils of Gujranwala city. Initially, physiochemical properties of samples pH (>8) colour (grey to black), odour (phenolic) and textures (amorphous to granular) were studied. Moisture contents 0.15-31% with RSD 0.17-16.87 shows variation because of seasonal effect. Overall, ICP-OES analysis reveals concentrations of thirteen selected metals in the range 0.40-379200 mg/kg with lowest of Ag and highest of Al. Statistically, RMANOVA was applied to reveal significant variations within the metals and between the seasons, showing significant metals effect seasonally. Environmental risk was estimated using geo-accumulation index and enrichment factor comparing reference crustal values (Bn) of metals in soil and Fe as reference metal. Aluminium accumulates very strongly and contaminate the soils more than Fe having no contamination in soil. Enrichment factor of Al also found highest indicating the highest enrichment level in the top soil. Overall, Fe and Al among thirteen elements found highest in quantity in the soil samples establishing significant impact in the soil due to their higher concentration. Finally, estimations are supporting the conclusion that metals may have a significant effect in soils where industrial waste is disposed.

Keywords: environment, waste, metals, contamination, seasonal

^{*}e-mail: muhammad.zubair@uog.edu.pk *e-mail: shafaqataligill@yahoo.com

Introduction

Intense urbanization and industrialization result in the production of large waste in urban environments. Dumping of solid industrial waste is normally managed in landfills in developed countries, whereas in developing countries it is thrown away on open land places [1]. Several toxic metals release from the industrial waste have severe synergistic effects on the environment and health [2, 3]. Toxic metals not only affect biological life but also transmit biochemical changes in soil environments and plants. Heavy metals concentration effect the enzymatic action of soil biota, which largely influence the microbial life and reduce the soil microorganism [4]. The concentration of the heavy metals is increasing in the environment due to various anthropogenic activities [5]. Poor waste management adversely affects the urban environment and human health of community living there, which is more evident in developing countries having rapid population growth and less resources [6]. Major sources of heavy metals accumulation and enrichment in urban soils are industries disposing waste along weathered materials generates through various anthropogenic actions [7]. Major industrial processes that are responsible for contributing to the concentration of heavy metals, include foundries, smelters, piping, combustion of raw waste material, and mining activities [8]. Gujranwala, the fourth most populated city of Pakistan, is located 32.16, 74.02 north east from the equator and 60 km towards north of Lahore, the capital city of the province of Punjab. It has well customary industrial operations for the production of variety of locally and globally needed household items, sanitary wares, fan wings and electric motors, electric wires, and windings. During the production of these useful articles, a substantial amount of metal concentrated waste is produced. Mostly these industries do not follow criteria and legal protocols for disposing waste comprising heavy toxic metals on open places in city areas [9]. This malpractice is resulting in significant increase in metallic waste and then contamination of urban soils and groundwater. Despite the unlawful discharge of a large amount of metal-enriched industrial waste, the level of heavy metals in the waste of this urban area has not been previously determined. Therefore, it is a matter of prime importance to determine the concentration of metals and their risk the larger population. According to the 2017 census, the total population of the Gujranwala division is 5.01 million, 2.06 million of which is urban and 2.9 million of which is rural. This mismanaged increase of industrial waste has become an environmental problem for administrative waste management policy makers, due to the lack of municipal amenities. The population of developing countries is another factor that adversely affects the environmental because the increasing population, damages the environment by using natural resources and creating pollution. In a situation like Pakistan's, urban population grows with

the highest proportion, about 40% faster than South Asian countries [10]. Unlike the common solid waste of Asian cities, up to 80% of which is composed of organic matter [11] the industrial waste chosen for the present research study is comprising heavy metals of different toxic potential. Uncontrolled toxic wastes from industries after mixing with municipal wastes create potential risks to human health. Specifically, the heavy metals present in the bulk enters the environment and food chain [12]. Taking into account the dumping of industrial waste on urban soils bearing heavy metals, the present study was planned to (1) assess the occurrence and seasonal variation of selected elements (Fe, Al, Mn, Cu, Zn, Ba, B, Cr, Pb, Ni, Cd, Ag, and Tl) in samples of industrial waste dumped on soils in Gujranwala, Pakistan, and (2) evaluate the environmental pollution risk of analyzed metals. This is one of the key study planned for the metals concentrations, and their risk assessment in urban soil of Gujranwala polluted with metal industrial waste. The results of study will be helpful for generating baseline data for future policy making and planning by the administrative framework.

Material and Methods

Chemicals and Reagents

All the reagents used in research work were of high purity analytical grade, purchased from Merck, Sigma Aldrich and BDH, without any further purification. Pyrex glassware such as beakers, volumetric flasks, and measuring cylinders were used for conducting experimental work in the laboratory. Deionized water was obtained from Ittehad Chemical Industries, Lahore, Pakistan, for preparing solutions. Material decontamination procedures were followed. Glassware was thoroughly washed with detergents and aqua regia to remove all contaminants. The sampling material contains toxic elements, so all safety measures regarding personal protective equipment were taken. Used materials were disposed off according to standard procedures.

Sampling

Gujranwala is one of the most populated cities and is located 32.16, 74.02 north east with respect to the equator. A systematic composite sampling strategy (triplicate) was adopted from 15 different locations (Fig. 1) in three different seasons of the year on November 2016 (Season 1, winter), March 2017 (Season 2, spring), and July 2017 (Season 3, summer). The details of the sampling points can be found in Table S1 of the supplemental information (S1). Sampling sites were divided into five zones of Gujranwala with major industrial activities: Sanat Zar Road, Kousar Fan Street, Sialkot Road, Alam Chowk, and Canal Road, as shown in the GIS map in Fig. 1. Geospatial sampling

Fig. 1. Sampling points (n = 15) of potential sites of industrial waste of Gujranwala city.

was performed from an upper layer up to a 40 cm depth of the dumping area. Samples were taken into clean, irradiated aseptic plastic falcon tubes of 150 g to avoid any kind of contamination. After collection, samples were preserved under cold conditions (<4°C) to avoid any kind of chemical and physical change, until sample preparation and analysis. The moisture content and pH of the waste were measured using standard protocols and are found in Table S2.

Sample Preparation and ICP-OES Analysis

A weighed quantity (2.0 g) of each dried sample of sediments was digested in a digestion flask using 5.0 mL concentrated nitric acid (HNO3). The mixture was heated on a hot plate at about 80°C for 2-3 h. After cooling, 3.0 mL of hydrogen peroxide (H₂O₂) was added into the digested mixture and heated again at 160-170°C to oxidize carbon contents. After filtration of digested material was diluted to 25 mL adding deionized water. Samples were then analyzed using a simultaneous inductively coupled plasma optical emission spectrophotometer (ICP-OES) model (Thermo Scientific iCAP 7000 Series), employing conditions of a flush pump rate 35 rpm, an analysis pump rate of 20 rpm, a stability time of 20 sec, an RF of 1250 KV, an auxiliary gas flow of 1.0 L/min, a nebulizer flow of 0.65 L/min, and a coolant gas flow of 15 L/min, with a radial view height of 8.0 mm. The detection limit of the method was 0.001 ppm. A standard solution of multielement concentration (1000 ppm) was used, purchased

from Accu standards. Calibration was performed using five different concentrations: 10, 20, 30, 40, and 50 ppm.

Geo Accumulation Index

The geo accumulation index of metals in soil was calculated following a reported method [13, 14]:

$$Igeo = \log_2(Cn/1.5Bn)$$
(1)

...where

Cn = Measured concentration of the metal in the sample, Bn = Geochemical background value in the Earth's crust (Table S4) [15].

The factor 1.5 introduced in Equation (1) to minimize the effect of possible lithogenic variations in the background metal concentration.

Enrichment Factor

The enrichment factor of the investigated metals was calculated according to the following equation as also used previously [16]:

$$EF = Mx \times Feb / Mb \times Fex$$
 (2)

...where Mx and Fex represent the concentrations of a particular metal and iron in the sediment sample, while Mb and Feb represent background concentrations of a particular metal and iron, respectively [17]. In common practice, to calculate the metal enrichment in soil,

Fig. 2. Variation in pH of n = 15 samples of n = 3 seasons in comparison to control soil pH.

the concentration of reference metals, preferably Fe or Al, is used [18-20]. In the present study, the enrichment factor was estimated for metals by taking Fe as a reference metal because Fe has the least toxicity relative to its occurrence in sediments.

Statistical Analysis

Statistical data are reported as ranges and means $(n = 3 \times 3)$. RMANOVA was applied to reveal significant variations within the metals and between the seasons, showing significant metals effect seasonally. Seasonal variation in metal concentrations is evaluated using the LSD test.

Results and Discussion

Physiochemical Parameters

For the present study, 15 composite samples were picked from critical points (Fig. 1) to assess the soil pollution of heavy metals present in industrial waste. Of the samples, physical parameters such as color, texture, moisture, and pH were determined and are presented in Tables S1 and S2 and Fig. 2. A notable variation in sample color from grey to black was present, which supports the results of metals analysis showing a major aluminium concentration [21]. Grey was also an indication of the abundance of aluminum, whereas black indicates the oxidation of metals and complexation with organic matter under suitable environmental conditions such as salinity and pH. Apparent variations in the particle size of different samples as presented in Table S1 clearly range from amorphous to granular. In the preliminary examination for moisture and solid mass contents, there was significant variation depicting a maximum relative standard deviation (RSD) of 16.87% in the sample SR1 and a minimum of 0.17% in KFS2 (Table S2). Variation in the moisture may be due to the difference in climatic conditions of dry and wet seasons as well as the nature of the disposed waste. The pH of the samples was investigated to identify the chemical nature of the different samples of soil sediments. All the samples were found to be basic in nature with mean values of 8.72, 9.11, and 8.76 in all three seasons, respectively (Fig. 2); however, no statistically significant seasonal variability in pH is apparent. Results from RMANOVA showed significant effect of season, location and their interaction on the soil pH similarly, in another research study it a level of pH greater than 7.0 in domestic landfills comprising organic waste is reported [22]. The basic pH found in our samples representing the formation basic oxides and hydroxides of metals present in metallic waste. The toxicity and mobility of heavy metals depends preferably on their chemical natures and sole distribution of their total concentrations in soil sediments; however, it is not sufficient to recognize the severity of the environmental damage caused by them [23, 24]. Soil pH influenced the heavy metal adsorption and mobility. Several studies have revealed that soil characteristics are linked to the adsorption and mobility of heavy metals; a pH increase brought an increase in the metal adsorption

Fig. 3. Average concentration of metals corresponding to three seasons.

and influenced heavy metal precipitation. It is evident from the from the numerous literature data, that the increase in pH up to 10 results in a significant decrease in the concentration of zinc in plants. However, there is a general consideration that low soil pH prompts a high metal mobility [25]. As shown by the graphical representation, the pH of our samples mostly lies in and above the safety range of 8.0, which indicates that the mobility of the soil's heavy metals is retarded, which may lead to a greater accumulation and hence become toxic. With a low acidic pH (<5), the oxides of Al and Fe are depleted because of the resulting release of metals into the soluble phase. When metal waste is left at the soil's top layer, then the oxidation of sulfides may generate a low acidic pH, which provokes increasing solubility for heavy metals [26]. Our research results showed high concentrations of Al and Fe among limited amounts of other transition heavy metals. In addition, the pH values of the sediment soil samples also have a higher pH of more than 8.0, which supports the retardation of metal mobility and solubility. From the retardation aspect, it may be concluded that more concentrations of heavy metals could be toxic to life and the environment.

Elemental Analysis

Thirteen metals (Al, Fe, Cu, Zn, Mn, Pb, Ba, B, Ni, Cr, Cd, Ag, and Tl) reported in the literature as toxic and have their effects, were chosen for analysis using ICP-OES. After experiencing working of industries, it was found that metals are extensively used in domestic housewares. Waste of these industries is dumped on open land available as indicated sampling points on map. Table S3 showing the range mg/kg (Min-Max) of three seasons (spring, summer, winter) and Fig. 3 showing the average concentration of metals in each season. Aluminium (Al) is highest in concentration found 379,200 mg/kg in season one and more than 35000 mg/kg average of three seasons. High concentration of aluminium represents its leading use in industrial metal wares, various kinds of domestic items and commercial articles such as electrical fans and motorcycle parts. Following aluminium, iron (Fe) is second most abundant metal, with a concentration 45,000 mg/kg of highest in season-3 and an average concentration 18415 mg/kg. Evaluation of the metal concentrations in the samples of three different seasons has revealed a significant seasonal variability in the concentration of major elements (Fig. 4). Fig. 5 presents a comparison of the determined average concentrations of metals in the samples of three seasons, with reference threshold concentration in soils obtained from the literature. Green points on the vertical lines representing a safe level of metal that is not harmful to the environment, whereas other indicators represent the metal concentrations of seasons. The line connecting the green points is not a trend line, but represents the control line for the metals. The values of metals on the y-axis are represented in log10 to control the large difference of values in the graphical presentation. It can be clearly seen in the figure that the Fe, Mn, and Ag values are in a safe limit, whereas other metals have higher concentrations of metals in soil samples.

Fig. 4. Seasonal variation of metals in n = 15 sample analyzed with ICP-OES.

Greater concentrations of metals over the safer limit may affect the soil environment through accumulation, adsorption, and enrichment. Enrichment of metals in the soil may lead to toxic implications. Control background values or crustal values 1 to 35,000 mg/kg on average of metals used for comparison with determined were taken from literature which are considered as reference metal concentration in different research studies from [27-31]. These values have reciprocating effects and important to discuss that the lowest value of reference metal means that it has a higher contamination than highest concentration in the soil. As per the reported values, Tl has the highest potential of contamination, with only 1.0 mg/kg, whereas Fe has the least potential, with a value of 35,000 mg/kg. Fe has no contamination in the soil, whereas Ag, Pb, and Cd have a potential for contamination even with lower concentrations (Table S3). Aluminium concentrations are high in the samples, indicating a source of food and medicine packing material from where aluminium is extracted. A similar research study was conducted on effect of seasonal flooding on elemental contents of Al, Cd, Cr, Ni, Cu, As, Pb and Zn in a Chinese delta. The results of concentration of Al (33,774.12 mg/kg) and Cr (84 mg/kg), were in support of our results [21]. The mean concentrations of aluminium were 35,459.12 mg/kg, 24,232.4 mg/kg, and 16,177.43 mg/kg during Season 1, Season 2, and Season 3 respectively. The threshold value of aluminium was 10 mg/kg, whereas the average measured concentrations of Al in all seasons were above the toxic range. In statistical analysis repeated measures MANOVA was calculated to predict the significant variations among the metals in different seasons (Table 1). SPSS analysis prints out partial eta-squared as an effect size index (partial etasquared: .01 = small, .06 = medium, .14 = large). Based on index values as shown Table 1, the effect size (partial eta-squared = .749) was large in our heavy metals dataset. Moreover, we analyzed the effect of seasons on the set of dependent variables (Fe, Al, Mn, Zn, Cu, Ba, B, Cr, Pb, Ni, Cd, Ag, Tl) was statistically significant, Wilks' lambda = .749, F(39, 96) = 7.024, p<0.001. A one-way repeated measures multivariate analysis of variance (RMANOVA) was used to determine whether there are any differences in selected metal concentrations (Fe, Al, Mn, Zn, Cu, Ba, B, Cr, Pb, Ni, Cd, Ag, Tl) over three seasons (Table 2). The estimated parameters and

Fig. 5. Seasonal metals concentrations (mg/kg of Log10) vs. reference threshold values.

4877

	Effect	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
	Pillai's Trace	1.972	4.722	39	96	.000	.657
Sancon	Wilks' Lambda	.016	7.024	39	89	.000	.749
Season	Hotelling's Trace	14.160	10.408	39	86	.000	.825
	Roy's Largest Root	11.284	27.776 ^b	13	32	.000	.919

Table 1. Repeated measures MANOVA to identify significant seasonal variation.

a. Design: Season

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

effect sizes (Partial Eta Squared) exist small or large over seasons. For example, Fe has large effect (0.456) over season 1 and no effect (0.007) over season 2. Table 1 RMANOVA estimation reveals that there is not on average a significant variability in the concentration of metals. There is no seasonal effect on the metals it may be discussed that metals are not decomposed or distribute with in sediment environment however they are constantly depositing in the waste disposed from the industries. Table 2 RMANOVA indicated interesting fact of metals effect with respect to each

season. Metals has significant effect in three seasons. Large quantities and limited information about, metallic waste has made it an environmental challenge. A study was conducted in Xiamen, China, on the occurrence and variations of 52 metals, and the concentrations of commonly used industrial metals were in the range of 125–53,500 mg/kg, which are close to our results of waste metals analysis of 15 different metals [32]. In another study of metal concentration from drilling waste discharges in Khyber Pakhtunkhwa, Ba, Zn, Ni, Mn, Cr, Cd, and Pb concentrations analysed by Atomic

Table 2. Repeated measures (RMONOVA) for parameter (Metals & Seasons) estimates.

Dependent	Demonstration	D	Gi I Earrain		G	95% Confid	ence Interval	Partial Eta
Variable	Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	Squared
	[Season = 1]	17187.347	2894.783	5.937	0.000	11345.439	23029.255	0.456
Fe	[Season = 2]	1597.767	2894.783	0.552	0.584	-4244.141	7439.675	0.007
	[Season = 3]	16183.207	2894.783	5.590	0.000	10341.299	22025.115	0.427
	[Season = 1]	35459.120	16603.628	2.136	0.039	1951.643	68966.597	0.098
Al	[Season = 2]	24232.480	16603.628	1.459	0.152	-9274.997	57739.957	0.048
	[Season = 3]	16177.440	16603.628	0.974	0.335	-17330.037	49684.917	0.022
	[Season = 1]	941.873	250.681	3.757	0.001	435.979	1447.767	0.252
Mn	[Season = 2]	72.153	250.681	0.288	0.775	-433.741	578.047	0.002
	[Season = 3]	708.273	250.681	2.825	0.007	202.379	1214.167	0.160
	[Season = 1]	3518.493	743.722	4.731	0.000	2017.602	5019.385	0.348
Zn	[Season = 2]	15.540	743.722	0.021	0.983	-1485.351	1516.431	0.000
	[Season = 3]	981.087	743.722	1.319	0.194	-519.805	2481.978	0.040
	[Season = 1]	3858.573	1188.119	3.248	0.002	1460.853	6256.294	0.201
Cu	[Season = 2]	773.413	1188.119	0.651	0.519	-1624.307	3171.134	0.010
	[Season = 3]	677.820	1188.119	0.570	0.571	-1719.900	3075.540	0.008
	[Season = 1]	344.707	557.979	0.618	0.540	-781.341	1470.755	0.009
Ba	[Season = 2]	2559.453	557.979	4.587	0.000	1433.405	3685.501	0.334
	[Season = 3]	239.747	557.979	0.430	0.670	-886.301	1365.795	0.004
	[Season = 1]	244.280	107.050	2.282	0.028	28.244	460.316	0.110
В	[Season = 2]	208.913	107.050	1.952	0.058	-7.123	424.950	0.083
	[Season = 3]	69.040	107.050	0.645	0.522	-146.996	285.076	0.010
	[Season = 1]	105.807	230.020	0.460	0.648	-358.392	570.005	0.005
Cr	[Season = 2]	138.293	230.020	0.601	0.551	-325.905	602.492	0.009
	[Season = 3]	464.280	230.020	2.018	0.050	.081	928.479	0.088

	[Season = 1]	446.187	903.162	0.494	0.624	-1376.468	2268.842	0.006
Pb	[Season = 2]	1855.160	903.162	2.054	0.046	32.505	3677.815	0.091
	[Season = 3]	2044.107	903.162	2.263	0.029	221.452	3866.762	0.109
	[Season = 1]	182.487	64.454	2.831	0.007	52.412	312.561	0.160
Ni	[Season = 2]	91.867	64.454	1.425	0.161	-38.208	221.941	0.046
	[Season = 3]	59.400	64.454	0.922	0.362	-70.674	189.474	0.020
	[Season = 1]	3.707	2.108	1.758	0.086	548	7.962	0.069
Cd	[Season = 2]	12.640	2.108	5.995	0.000	8.385	16.895	0.461
	[Season = 3]	3.700	2.108	1.755	0.087	555	7.955	0.068
	[Season = 1]	2.127	0.664	3.204	0.003	0.787	3.466	0.196
Ag	[Season = 2]	3.546	0.664	5.342	0.000	2.206	4.886	0.405
	[Season = 3]	5.073	0.664	7.642	0.000	3.734	6.413	0.582
	[Season = 1]	0.000	1.140	0.000	1.000	-2.300	2.300	0.000
TI	[Season = 2]	13.067	1.140	11.465	0.000	10.767	15.367	0.758
	[Season = 3]	12.979	1.140	11.388	0.000	10.679	15.279	0.755

Table 2. Contunued.

Absorption Spectrometric methods, have close metal concentrations as in our study, so soil contamination potential may be equal. High concentrations of heavy metals, especially Pb and Ba, were also detected in the surrounding soil samples [33]. Our research is relevant to another study on the metal (Pb, Ni, Fe, Zn, Cd, and Cu) concentrations in water, soil and waste after sludge and floatation at Kishnica mines in Kosovo. Regarding the concentration of these heavy metals, it was presented that the order of growth of such chemical elements was Pb>Cu>Fe>Cd>Ni and Zn [34, 35]. The specific hazards associated with these metals (Pb, Ni, Fe, Zn, Cd, and Cu) in the environment are not the only pollution but also their persistence in nature and

bioaccumulation through food chain [36]. A study was conducted in Kaduna state, Nigeria, on heavy metal content and physicochemical properties of soils from solid waste dumpsites and concentrations of 7 different heavy metals were in the range of 19.0-5741.0 mg/kg, which are in close agreement with our results of analysis of 15 different metals [37].

Geo Accumulation Index

The geo-accumulation index was calculated using the measured concentration (Cn) of the metal in the samples and the geochemical background (Bn) value in the earth's crust, as presented in Table S4. Results

Fig. 6. Geo-accumulation index of different metals of n = 15 sample in three seasons.

of calculated values in the range of 0-6 having no contamination to very strong contamination in soil below which harmful effects are unlikely to be observed and above that severe toxicity may arise [38] (Table S4). The geo-accumulation index also reveals that samples are strongly contaminated by Al (Fig. 6). In addition to aluminum, other metals such as Cd, Cu, and Pb cause high contamination, whereas some are moderately contaminating, such as Zn and Ni, and the remaining are non-contaminating on the basis of their accumulation in the soil, such as Ag, Fe, Mn, and Ni. Mn is also one of the heavy metals that have shown toxicity in the environment. Another aspect of Mn is that it is not an element that produces soil contamination, because it is an important plant nutrient and an essential crop micronutrient. A similar research study was conducted to evaluate grain size characteristics, the seasonal and spatial variations of heavy metals (Mn, Cr, Ni, Fe, Pb, Zn, Fe and Cu) in Yangtze Estuary, China and the results obtained are in a close agreement with our results [39]. Table 3 depicts the numerical calculation of Igeo values in percentages for the classification of metals with respect to contamination. According to an overview of the values, they are classified as uncontaminated, moderately contaminated, or strongly contaminated. Ag, Fe, Mn, and Zn fall into Class 1, Ba, Cd, Cr, Cu, Ni, Pb, and Tl in Class 2, and Al in Class 3. In a similar study of the occurrence and distribution of metals in a municipal landfill waste in Guangzhou, China, it was found that Cr and Pb were dominant metals in soil contamination, with 2.82 and 4.50 mg concentrations, respectively [40], and it was found that their concentration in soils was controlled by the particle size, as accumulation is inversely related to particle size. Finer particles as found in our study, due to their large surface area, adsorb more heavy metals, so particle size fractions on heavy metal concentrations are very important because the particles themselves are pollutants that influence particle transportability [41, 42]. A study on risk assessment of heavy metals (Zn, Mn, Fe, Cr, Pb, Cd, Cu) in soils of Zhejiang province, China, indicated that there is a seasonal variation in geo accumulation index and enrichment factor concentrations of heavy metals. Cd and Cr showed random distribution in both (winter and summer) seasons. The values of mean concentration of heavy metals ranging from 5.09 to 10351.83 mg/kg, were in close agreement with our results [43]. In another research study, the impact of seasonal water logging on selected metals (Ba, Cr, Ni, As, Pb, Co, Cs) and metal oxides (Al_2O_3 , Fe_2O_3) was investigated in the soil samples taken from the eastern Ganges basin. The average concentrations of these metals were higher in the seasonally waterlogged soil than the seasonally nonwaterlogged soil. Higher content of metals in the upper layers of soil was due to clay fractions and absorption of elements by the soil [44].

Enrichment Factor

The normalized enrichment factor (EF) is a wellestablished common approach to estimate the potential metal concentrations above uncontaminated of background levels in sediments. In the method of estimating the enrichment factor, the measured heavy metal concentration is normalized by the concentration of the sample's reference metal, such as Fe or Al [45]. Commonly, the concentration of reference metals such as Fe and Al are used as a "proxy" for the clay content [18-20]. In the present study, the enrichment factor was estimated for 12 determined metals, which were present in the sediment samples and presented as a range of three seasons, by keeping Fe as a reference (Table 4). Iron has a concentration that is high enough to contaminate the soils; hence, since it has the lowest toxicity relative to its occurrence in sediments, it was selected as a reference metal. The enrichment values of 12 metals calculated using Equation (2) revealed a significant potential for all three seasons. Aluminum showed a high level of enrichment in all three seasons, following tellurium in Season 2 and Season 3, and the remaining metals also showed enough enrichment to pollute the soil environment. Khalilova and Mammadov also calculated the maximum, minimum and mean values of

Seasons	Levels	Ag	Al	В	Ва	Cd	Cr	Cu	Fe	Mn	Ni	Pb	Tl	Zn
	Uncontaminated	100	7	-	73	40	80	7	100	100	93	60	-	20
Season 1	Moderate	-	-	13	20	60	20	67	-	-	7	27	-	47
	Strong	-	93	87	7	-	-	27	-	-	-	13	-	33
	Uncontaminated	100	-	-	-	7	73	-	100	100	73	53	-	100
Season 2	Moderate	-	-	20	67	67	27	67	-	-	27	27	53	-
	Strong	-	100	80	33	27	-	33	-	-	-	20	47	-
	Uncontaminated	100	-	-	67	7	67	7	100	100	100	60	-	27
Season 3	Moderate	-	-	20	33	93	27	67	-	-	-	20	53	60
	Strong	-	100	80	-	-	7	27	-	-	-	20	47	13

Table 3. Seasonal accumulation (%) of metals in soil calculated from Igeo values.

EF of Cd, Cr, Cu, Hg, Pb, Zn and Mn in sediment and soil samples from different study sites, and these EF values are in close agreement with those reported in our study [38]. Overall, the enrichment level of heavy levels decreases in the order of Cr, Pb>Zn, Cu>As, Cd>Hg. The increased levels of Pb are due to various industrial products and deposition of atmospheric emissions. In a similar research study, seasonal and spatial variations of heavy metals (Zn, Cu, Cd, Mn, Ni, Pb) were assessed in sediments of China's Tiaozi River. The results showed that the minimum concentrations of these heavy metals occurred in summer and the maximum in winter. Assessment of pollution concluded that the sediment was slightly contaminated with Cd, Cu, Zn and Ni. The concentrations of metals were in the order of Mn>Zn>Cu>Ni>Pb>Cd [46, 47].

Many researchers have calculated the normalized metal enrichment factor to obtain environmental sustainability control through heavy metals at different times and from different sources. Rolka et al. determined the contents of heavy metals in soil along Sielska Street in Olsztyn and described that the analysis of variance showed that significant changes have taken place with respect to Cr and Fe only [48]. Fe metal shows a relatively high natural abundance and is therefore not expected to be enriched from anthropogenic sources in sediments. In a similar research study enrichment in reference to Al and Fe to differentiate between natural and anthropogenic metal sources in Texas estuaries sediments also calculated [49]. In another research study, the content of heavy metals (Pb, Cd, Mn, Zn, Fe, Cu and Cr) in soil was determined and it was concluded that the concentrations of heavy metals did not exceed the respective international permissible limits [50]. All the studies have discuss criteria for calculating metal enrichment in sediments and soils and then followed in the present study and found significant enrichment of heavy metals in the soils. Brady et al. and Pandey et al. determined the enrichment factor values of lead (average EF 13) and zinc (average EF 2.7), which were in close agreement with our results [51, 52].

Conclusions

The present study aims to evaluate the occurrence, seasonal variations of various metals in waste sediment samples which is dumped by industries, accumulate and contaminate soils. A number of 15 different potential points of Gujranwala shown in map (Fig. 1) were chosen. The metal concentrations obtained after analysis in sediment samples of industrial waste were used to calculate environmental risks as geo-accumulation (Igeo) and enrichment factor. The analysis of samples of all three seasons showed variable concentrations of metals in three seasons showing significant seasonal variation of some heavy and toxic metals. Overall, the average concentration of Al, Cu, B,

	ree seasons.
5	Ē
	Ш
-	ples
	o san
	-
	netals
	tedr
-	selec
¢	5 OT
	tactor range
	nment
Ţ	Ö
۰ ۲	Enri
ļ	÷
	ЧГ (Л
-	Ĕ
5	a
	_

	Toluor	Al	Mn	Zn	Cu	Ba	Cr	Pb	Ni	Cd	Ag	IT	Total Enrichment	STDE
2		0.66-15.27	0.02-5.18	0.02-6.31	0.12-5.57	0.14-15.26	0.02-9.75	0.04-25.86	0.34-3.78	1.50-6.56	1.21-6.62	0.41-4.44	19.19-87.37	1.68-7.
LS*	DEV-standard	Deviation												

> 8

Cr, Cd, Tl and Zn for all sample in three seasons were found higher than the average crustal value (ACV). The presence of higher concentrations of metals in waste samples than earth crust values is a clear indication metal pollution and their effect in the soil. Afterward, the various risk factors like geo-accumulation index (Igeo), and enrichment factor calculated to estimate the metal pollution in the urban soil because of industrial waste in urban sites. The result reveals that uncontrolled waste from metal industries have high level of heavy metals concentration which may cause soil pollution. It has made the understanding of the research team with certain understanding that a higher risk of environmental contamination of soil is present by the heavy metals added by the industries through unmanaged waste. It may be assumed on the findings that there is need of proper disposal criteria for the metal industrial waste. Law enforcement agencies of the country in general and Environmental Protection Agency (EPA) in specific should take serious action to regulate metal industrial waste through sustainable management. Samples analysis has revealed that a considerable amount of metals is present in the samples therefore, a sustainable and economical solution of converting the potential of metals in the waste into energy linked application is worth applicable. It may be advocated that preventive measures are necessary for the management of industrial waste enriched with heavy metals, to reduce the risk on environment for sustainable living. It is obvious that industrial waste is enriched in some metals, therefore for sustainable management, metallic waste may be converted into pooled metals electrodes for various applications.

Acknowledgements

Present research work was performed by an MS student of Department of Chemistry, UOG. Field sampling was carried out with the support of District Office of Environment Protection Agency, Gujranwala, Punjab Pakistan. ICP-OES facility was provided by Ittehad Chemical industries, Gujranwala, Pakistan. Mr. Shahid Kareem lecturer of geography in the Govt. College University Lahore supported our study through map development.

Funding: The authors would like to extend their sincere appreciation to the research supporting Project Number (RSP-2020/236), King Saud University, Riyadh, Saudi Arabia.

Conflict of Interest

The authors declare no conflict of interest

References

1. INOUE K. Heavy metal toxicity. J Clinic Toxicol S, 3, 2161, 2013.

- ASSAMOI B., LAWRYSHYN Y. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Management, 32 (5), 1019, 2012.
- KRISHNA A., GOVIL P. Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environmental Geology, 47 (1), 38, 2004.
- DUZGOREN-AYDIN N., WONG C., AYDIN A., SONG Z., YOU M., LI X. Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environmental geochemistry and health, 28 (4), 375, 2006.
- 6. DOABI S.A., KARAMI M., AFYUNI, M. YEGANEH M., Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and environmental safety, **163**, 153, 2018.
- WUANA R.A., OKIEIMEN F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011, 2011.
- AL-KHASHMAN O.A., Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmospheric environment, 38 (39), 6803, 2004.
- REHMAN W., ZEB A., NOOR N., NAWAZ M. Heavy metal pollution assessment in various industries of Pakistan. Environmental Geology, 55 (2), 353, 2008.
- MINALLAH M., GHAFFAR A., RAFIQUE M., MOHSIN M., Urban growth and socio-economic development in gujranwala, pakistan: a geographical analysis. Pakistan Journal of Science, 68 (2), 176, 2016.
- NARAYANA T. Municipal solid waste management in India: From waste disposal to recovery of resources? Waste Management, 29 (3), 1163, 2009.
- ALAM P., AHMADE K. Impact of solid waste on health and the environment. International Journal of Sustainable Development and Green Economics (IJSDGE), 2 (1), 165, 2013.
- SALEEM M., IQBAL J., SHAH M.H Study of seasonal variations and risk assessment of selected metals in sediments from Mangla Lake, Pakistan. Journal of Geochemical Exploration, 125, 144, 2013.
- 14. IQBAL J., SHAH M.H. Occurrence, risk assessment, and source apportionment of heavy metals in surface sediments from Khanpur Lake, Pakistan. Journal of Analytical Science and Technology, 5 (1), 28, 2014.
- LIDE D.R. CRC handbook of chemistry and physics. CRC press. 85, 2004.
- ABRAHIM G.M., PARKER R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess, 136 (1-3), 227, 2008.
- KOCH R., SALOMONS W., FÖRSTNER U. Metals in the Hydrocycle. Berlin – Heidelberg – New York – Tokyo: Springer Verlag, 1984, 349 S., 149 Abb., DM 98. –. Acta hydrochimica et hydrobiologica, 13 (2), 267, 1985.
- JIANG J., WANG J., LIU S., LIN C., HE M., LIU X. Background, baseline, normalization, and contamination

of heavy metals in the Liao River Watershed sediments of China. Journal of Asian Earth Sciences, **73**, 87, **2013**.

- WINDOM H.L., SCHROPP S.J., CALDER F.D., RYAN J.D., SMITH JR R.G., BURNEY L.C., LEWIS F.G., RAWLINSON C.H. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science & Technology, 23 (3), 314, 1989.
- 20. DIN Z.B. Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin, **24** (10), 484, **1992**.
- ZHANG G., BAI J., ZHAO Q., JIA J., WEN X. Heavy metals pollution in soil profiles from seasonal-flooding riparian wetlands in a Chinese delta: Levels, distributions and toxic risks. Physics and Chemistry of the Earth, Parts A/B/C, 97, 54, 2017.
- 22. AHMAD A., ARIF M.S., YASMEEN T., RIAZ M., RIZWAN M., SHAHZAD S.M., ALI S., RIAZ M.A., SAROSH M. Seasonal variations of soil phosphorus and associated fertility indicators in wastewater-irrigated urban aridisol. Chemosphere, 239, 124725, 2020.
- YANG K., ZHU Y., SHAN R., SHAO Y., TIAN C. Heavy metals in sludge during anaerobic sanitary landfill: Speciation transformation and phytotoxicity. Journal of environmental management, 189, 58, 2017.
- 24. TANG Q., BAO Y., HE X., ZHOU H., CAO Z., GAO P., ZHONG R., HU Y., ZHANG X. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Science of the Total Environment, 479, 258, 2014.
- 25. ADAMCZYK-SZABELA D., MARKIEWICZ J., WOLF W.M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water, Air, & Soil Pollution, 226 (4), 106, 2015.
- 26. BRAVO S., AMORÓS J., PÉREZ-DE-LOS-REYES C., GARCÍA F., MORENO M., SÁNCHEZ-ORMEÑO M., HIGUERAS P. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). Journal of Geochemical Exploration, **174**, 79, **2017**.
- CHEN M., MA L.Q. Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27 (6), 1294, 1998.
- 28. CEPA C.E.P.A. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.
- 29. ENVIRONMENT C.C.O.M.O.T. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. 2, **2002**.
- 30. PARTH V., MURTHY N. SAXENA P.R. Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. Journal of Environmental research and management, **2** (2), 027, **2011**.
- ALFARO M.R., MONTERO A., UGARTE O.M., DO NASCIMENTO C.W.A., DE AGUIAR ACCIOLY A.M., BIONDI C.M., DA SILVA Y.J.A.B. Background concentrations and reference values for heavy metals in soils of Cuba. Environmental monitoring and assessment, 187 (1), 4198, 2015.
- 32. SUANON F., SUN Q., YANG X., CHI Q., MULLA S.I., MAMA D., YU C.-P. Assessment of the occurrence, spatiotemporal variations and geoaccumulation of fiftytwo inorganic elements in sewage sludge: A sludge management revisit. Scientific Reports, 7 (1), 5698, 2017.

- 33. HUSSAIN QAISER M.S., AHMAD I., AHMAD S.R., AFZAL M., QAYYUM A. Assessing Heavy Metal Contamination in Oil and Gas Well Drilling Waste and Soil in Pakistan. Polish Journal of Environmental Studies, 28 (2), 785, 2019.
- 34. NOROUZI S., KHADEMI H., AYOUBI S., CANO A.F., ACOSTA J.A. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmospheric Pollution Research, 8 (4), 686, 2017.
- 35. PAL D., MAITI S.K. Seasonal variation of heavy metals in water, sediment, and highly consumed cultured fish (Labeo rohita and Labeo bata) and potential health risk assessment in aquaculture pond of the coal city, Dhanbad (India). Environmental Science and Pollution Research, **25** (13), 12464, **2018**.
- 36. AMJAD A., RANDHAWA M.A., JAVED M.S., MUHAMMAD Z., ASHRAF M., AHMAD Z., MURTAZA S. Dietary intake assessment of pyrethroid residues from okra and eggplant grown in peri-urban areas of Punjab, Pakistan. Environmental Science and Pollution Research, 1, 2019.
- WUNZANI D., DAUDA M., WYASU G., DAVID D. Assessments of physicochemical properties and heavy metals content in soils from selected solid waste dumpsites in kaduna metropolis, kaduna state, nigeria. Science World Journal, 15 (1), 76, 2020.
- KHALILOV H., MAMMADOV V. Assessing the Anthropogenic Impact on Heavy Metal Pollution of Soils and Sediments in Urban Areas of Azerbaijan's Oil Industrial Region. Polish Journal of Environmental Studies, 25 (1), 159, 2016.
- 39. XUE-FENG H., YAN D., JIAN-WEI F., SHENG-QIONG F., XIAO-JIANG G., SHI-YUAN X. Spatial and seasonal variations of heavy metals in wetland soils of the tidal flats in the Yangtze Estuary, China: Environmental implications. Pedosphere, 23 (4), 511, 2013.
- 40. DENG M., KUO D.T.F., WU Q., ZHANG Y., LIU X., LIU S., HU X., MAI B., LIU Z., ZHANG H. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China. Environ Pollut, 236, 137, 2018.
- IZAH S.C., BASSEY S.E., OHIMAIN E.I. Geo-accumulation index, enrichment factor and quantification of contamination of heavy metals in soil receiving cassava mill effluents in a rural community in the Niger Delta region of Nigeria. Molecular Soil Biology, 8 (2), 7, 2017.
- WANG X.-S., QIN Y., CHEN Y.-K. Heavy meals in urban roadside soils, part 1: effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50 (7), 1061, 2006.
- 43. HASHMI M.Z., YU C., SHEN H., DUAN D., SHEN C., LOU L., CHEN Y. Risk assessment of heavy metals pollution in agricultural soils of siling reservoir watershed in Zhejiang province, China. BioMed research international, 2013. 2013.
- 44. RAJMOHAN N., NAGARAJAN R., JAYAPRAKASH M., PRATHAPAR S. The impact of seasonal waterlogging on the depth-wise distribution of major and trace metals in the soils of the eastern Ganges basin. Catena, 189, 104510, 2020.
- RAVICHANDRAN M., BASKARAN M., SANTSCHI P.H., BIANCHI T.S. History of trace metal pollution in Sabine-Neches estuary, Beaumont, Texas. Environmental science & technology, 29 (6), 1495, 1995.

- 46. DONG D., LIU X., GUO Z., HUA X., SU Y., LIANG D. Seasonal and Spatial Variations of Heavy Metal Pollution in Water and Sediments of China's Tiaozi River. Polish Journal of Environmental Studies, 24 (6), 2371, 2015.
- 47. ZAHRA A., HASHMI M.Z., MALIK R.N., AHMED Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470, 925, 2014.
- ROLKA E., ŻOŁNOWSKI A.C., SADOWSKA M.M. Assessment of Heavy Metal Content in Soils Adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Polish Journal of Environmental Studies, 29 (6), 4303, 2020.
- 49. LUOMA S.N. Processes affecting metal concentrations in estuarine and coastal marine sediments. Heavy metals in the marine environment, **124**, **1990**.
- SO. RÓŻYŁO K., ANDRUSZCZAK S., KWIECIŃSKA-POPPE E., RÓŻYŁO R., KRASKA P. Effect of Three

Years' Application of Biogas Digestate and Mineral Waste to Soil on Phytochemical Quality of Rapeseed. Polish Journal of Environmental Studies, **28** (2), 833, **2019**.

- BRADY J.P., AYOKO G.A., MARTENS W.N., GOONETILLEKE A. Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine pollution bulletin, 81 (1), 248, 2014.
- PANDEY P., SWATI P., HARSHITA M., SHRADDHA M.Y., TIWARI A. Nanoparticles accelerated in vitro biodegradation of LDPE: A review. Advances in Applied Science Research, 6 (4), 17, 2015.
- GUPTA S., JENA V., MATIC N., KAPRALOVA V., SOLANKI J. Assessment of geo-accumulation index of heavy metal and source of contamination by multivariate factor analysis. International Journal of Hazardous Materials, 2 (2), 18, 2014.
- 54. RUDNICK R., GAO S. Composition of the continental crust. The crust, **3**, 1, **2003**.

Supplementary Material

100001.0000000000000000000000000000000	type $(n = 15)$ IDs. Locations and Physical Characteristics (Colour. Te	exture).
--	---	----------

Samples #	Sample ID	Colour	Texture	Sampling Site
Sample-1	SZ1	Blackish Grey	Amorphous Powder	Sanat Zar Road 1
Sample-2	SZ2	Light Grey	Amorphous Powder	Sanat Zar Road 2
Sample-3	KFS1	Blackish Grey	Small Granular	Kousar Fan Street 1
Sample-4	KFS2	Blackish Grey	Small Granular	Kousar Fan Street 2
Sample-5	KFS3	Shiny Grey	Granular powder	Kousar Fan Street 3
Sample-6	SR1	Light Brown	Fine granular powder	Sialkot Road 1
Sample-7	SR2	Brown	Granular	Sialkot Road 2
Sample-8	SR3	Grey	Large granules	Sialkot Road 3
Sample-9	SR4	Blackish	Small Granular	Sialkot Road 4
Sample-10	SR5	Greyish Yellow	Granular	Sialkot Road 5
Sample-11	AC1	Blackish Grey	Fine Granular	Aalam Chowk 1
Sample-12	AC2	Grey	Amorphous Powder	Aalam Chowk 2
Sample-13	CR1	Black	Granular ash	Canal Road 1
Sample-14	CR2	Brown	Granular powder	Canal Road 2
Sample-15	CR3	Grey Black	Granular	Canal Road 3

Table S2. Range of moisture (%) of different samples (n = 15) in three seasons.

Sample	Range	Mean	Median	RSD (%)
SZ1	1.50-3.11	2.37	2.50	0.81
SZ2	0.60-5.00	2.22	1.05	2.42
KFS1	9.70-14.70	13.0	14.6	2.86
KFS2	0.20-0.50	0.30	0.20	0.17
KFS3	0.90-5.00	2.45	1.45	2.23
SR1	1.05-31.00	11.5	2.50	16.87
SR2	0.15-27.90	9.67	1.00	15.76
SR3	0.40-3.00	1.54	1.21	1.33
SR4	2.30-9.60	5.03	3.20	3.98
SR5	1.35-10.00	4.52	1.35	4.77
AC1	15.00-35.20	21.8	15.00	11.58
AC2	2.35-7.50	4.79	2.35	2.58
CR1	1.20-17.70	7.95	1.20	8.65
CR2	1.50-9.72	4.82	1.50	4.33
CR3	1.50-3.62	2.66	1.50	1.07

RSD-Relative Standard Deviation

$\widehat{\mathbf{m}}$	
<u> </u>	
Ŀ	
IS	
5	
JS.	
ő	
S	
Ē	
- E	
E.	
Ξ	
P	
of	
<u> </u>	
15	
ΞÌΓ΄	
Ë,	
s (
ē	
đ	
Ξ	
sa	
- C	
·=	
S	
al	
et	
7	
_	
C	
ts (1	
ents (1	
nents ()	
ements ()	
elements ()	
it elements ()	
ent elements ()	
erent elements ()	
fferent elements ()	
different elements ()	
f different elements ()	
of different elements ()	
g) of different elements ()	
kg) of different elements ()	
g/kg) of different elements ()	
mg/kg) of different elements ()	
(mg/kg) of different elements ()	
on (mg/kg) of different elements ()	
tion (mg/kg) of different elements ()	
ration (mg/kg) of different elements ()	
ntration (mg/kg) of different elements ()	
centration (mg/kg) of different elements ()	
ncentration (mg/kg) of different elements ()	
oncentration (mg/kg) of different elements ()	
Concentration (mg/kg) of different elements ()	
3. Concentration (mg/kg) of different elements ()	
S3. Concentration (mg/kg) of different elements ()	
e S3. Concentration (mg/kg) of different elements ()	
ble S3. Concentration (mg/kg) of different elements (h	
able S3. Concentration (mg/kg) of different elements ()	

Season 2Season 3ge*MeanMedianDF (%)Range*MeanMedian 1114 1598 1359 100 $1154-45000$ 16133 7228 55250 24232 4135 100 $634-73250$ 16177 3380 233 72.1 43.3 100 $634-73250$ 16177 3380 $23372.143.3100634-7325016177338023372.143.310055.5-3484981512255677344410051.5-24496783192800255971010051.5-24496783192800255971010051.5-24496783192800255971010051.5-24496783192800255971010051.5-24496783192800255971010051.5-24496783192800255971010032.1-83524092.91960255971010010.20169.044.27530188574.529.426.87530185574.51005.3-1800204484.178.774.529.438.27503.501005.0-596146.4$							1				1		
Mean Median DF (%) Range* Mean 1598 1359 100 1154-45000 16183 1598 1359 100 634-73250 16177 155 4135 100 634-73250 16177 155 11.1 100 634-73250 16177 15.5 11.1 100 634-73250 16177 15.5 11.1 100 634-73250 16177 15.5 11.1 100 634-73250 16177 15.5 11.1 100 634-73250 16177 15.5 11.1 100 55.5-3484 981 773 444 100 51.5-2449 678 773 444 100 32.1-835 240 710 100 32.1-835 240 138 52.6 100 10.0-201 69.0 138 52.6 100 59.3-1800 2044 12.6 3.50 1000	Season 1	Season 1	son 1			·	Seas	son 2		•	Seas	10	on 3
14 1598 1359 100 $1154-45000$ 16183 72 5250 24232 4135 100 $634-73250$ 16177 333 55 72.1 43.3 100 $55-3493$ 708 21 55 15.5 11.1 100 $55.5-3484$ 981 51 55 15.5 11.1 100 $55.5-3484$ 981 51 56 773 444 100 $51.5-2449$ 678 31 56 773 444 100 $51.5-2449$ 678 31 800 2559 710 100 $51.5-2449$ 678 31 800 2559 710 100 $51.5-2449$ 678 31 800 2559 710 100 $51.5-2449$ 678 31 800 2559 710 100 $51.5-2449$ 678 31 800 2559 710 100 $32.1-835$ 240 92 960 209 57.9 100 $10.2-201$ 69.0 444 88 91.9 52.6 100 $29.3-11800$ 2044 84 88 91.9 52.0 100 $5.3-1880$ 59.4 38 88 91.9 52.0 100 $5.30-298$ 59.4 33 88 91.9 3.50 100 $1.80-8.30$ 3.70 3.3 50 3.50 3.50 100 $1.00-15.3$ 5.22 4.0 <th>Range* Mean Median DF (%) Range</th> <th>Mean Median DF (%) Range</th> <th>Median DF (%) Range</th> <th>DF (%) Range</th> <th>Range</th> <th>*0</th> <th>Mean</th> <th>Median</th> <th>DF (%)</th> <th>Range*</th> <th>Mean</th> <th>Med</th> <th>lian</th>	Range* Mean Median DF (%) Range	Mean Median DF (%) Range	Median DF (%) Range	DF (%) Range	Range	*0	Mean	Median	DF (%)	Range*	Mean	Med	lian
55250 24232 4135 100 $634-73250$ 16177 3380 233 72.1 43.3 100 $159-3493$ 708 211 35.5 15.5 11.1 100 $55.5-3484$ 981 512 35.5 15.5 11.1 100 $55.5-3484$ 981 512 35.5 15.5 11.1 100 $55.5-3484$ 981 512 35.5 173 444 100 $51.5-2449$ 678 319 2580 279 710 100 $32.1-835$ 240 92.9 2800 2559 710 100 $32.1-835$ 240 92.9 1960 209 57.9 100 $10.0-201$ 69.0 44.2 719 138 52.6 100 $6.50-5961$ 464 56.8 5300 1855 74.5 100 $2.9.3-11800$ 2044 84.1 5300 1855 74.5 100 $5.30-298$ 59.4 38.2 5300 1855 74.5 100 $5.30-298$ 59.4 38.2 5300 12.6 3.50 100 $1.80-8.30$ 3.70 3.300 55.8 3.10 100 $1.0-8.30$ 3.70 3.30 55.8 3.10 100 $1.0-15.3$ 5.22 4.00 55.8 3.10 100 $1.0-15.3$ 5.22 4.00 55.8 3.10 100 1.00 $4.30-23.1$ 11.9 <td>2695-33250 18415 19150 100 515-4</td> <td>18415 19150 100 515-2</td> <td>19150 100 515-2</td> <td>100 515-2</td> <td>515-4</td> <td>1114</td> <td>1598</td> <td>1359</td> <td>100</td> <td>1154-45000</td> <td>16183</td> <td>7228</td> <td>~</td>	2695-33250 18415 19150 100 515-4	18415 19150 100 515-2	19150 100 515-2	100 515-2	515-4	1114	1598	1359	100	1154-45000	16183	7228	~
-233 72.1 43.3 100 $159-3493$ 708 211 -35.5 15.5 11.1 100 $55.5-3484$ 981 512 -3556 773 444 100 $51.5-2449$ 678 319 2556 773 444 100 $51.5-2449$ 678 319 2559 710 100 $51.5-2449$ 678 319 2579 710 100 $51.5-2449$ 678 319 12800 2559 710 100 $32.1-835$ 240 92.9 -1960 257.9 100 $100-201$ 69.0 44.2 5719 138 57.9 100 $32.1-835$ 240 92.9 5719 138 52.6 100 $6.50-5961$ 464 56.8 5719 138 52.6 100 $5.30-2981$ 94.9 5730 1855 74.5 100 $5.30-298$ 59.4 38.2 5.30 91.9 52.0 100 $5.30-298$ 57.4 38.2 5.30 3.50 100 $1.80-8.30$ 3.70 3.300 5.52 3.10 100 $1.0-15.3$ 5.22 4.00 5.53 3.10 100 $1.0-15.3$ 5.22 4.00 5.53 3.10 100 $1.0-15.3$ 5.22 4.00 5.53 3.10 100 $1.0-15.3$ 5.22 4.00 5.53 5.23 1.00 $5.22.1$ 100 <td>962-379200 13614 10950 100 1449-</td> <td>13614 10950 100 1449-</td> <td>10950 100 1449-</td> <td>100 1449-</td> <td>1449-</td> <td>155250</td> <td>24232</td> <td>4135</td> <td>100</td> <td>634-73250</td> <td>16177</td> <td>3380</td> <td></td>	962-379200 13614 10950 100 1449-	13614 10950 100 1449-	10950 100 1449-	100 1449-	1449-	155250	24232	4135	100	634-73250	16177	3380	
-35.515.511.110055.5-3484981512-255677344410051.5-2449678319-2800255971010032.1-83524092.912800255971010032.1-83524092.9-196020957.910010.0-20169.044.2-571913852.610010.0-20169.044.2-571913852.610029.3-11800204484.1-538891.952.01005.30-29859.438.2-42.912.63.501001.80-8.303.703.300-7.503.553.101001.00-15.35.224.00-55.813.111.41004.30-23.113.011.9	140-5350 1009 530 100 21.4	1009 530 100 21.4	530 100 21.4	100 21.4	21.4	t-233	72.1	43.3	100	159-3493	708	211	
2556 773 444 100 51.5-2449 678 319 12800 2559 710 100 32.1-835 240 92.9 12800 2559 710 100 32.1-835 240 92.9 -1960 209 57.9 100 10.0-201 69.0 44.2 5-719 138 52.6 100 6.50-5961 464 56.8 5-719 138 52.6 100 29.3-11800 2044 84.1 5-388 91.9 52.0 100 29.3-11800 29.4 38.2 -3388 91.9 52.0 100 29.3-11800 29.4 38.2 -3388 91.9 52.0 100 5.30-298 59.4 38.2 -42.9 12.6 3.50 180.8 3.70 3.300 -7.50 3.55 3.10 1.00 5.22 4.00 -5.58 13.1 100 4.30-23.1 13.0 11.9	180-16450 3770 1820 100 4.20	3770 1820 100 4.20	1820 100 4.20	100 4.20	4.2(-35.5	15.5	11.1	100	55.5-3484	981	512	
12800 2559 710 100 100 32.1-835 240 92.9 -1960 209 57.9 100 10.0-201 69.0 44.2 5719 138 52.6 100 6.50-5961 464 56.8 5719 138 52.6 100 6.50-5961 464 56.8 15300 1855 74.5 100 5.3-11800 2044 84.1 -3388 91.9 52.0 100 23.3-11800 2044 84.1 -3388 91.9 52.0 100 23.3-1800 2044 38.2 -42.9 12.6 3.50 100 5.30-298 59.4 38.2 -42.9 12.6 3.50 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 1.80-8.30 3.70 3.300 -7.55.8 13.1 100 1.80-8.30 3.70 3.300	160-8450 1228 289 100 175	1228 289 100 175	289 100 175	100 175	175	-2556	773	444	100	51.5-2449	678	319	
-1960 209 57.9 100 10.0-201 69.0 44.2 5-719 138 52.6 100 6.50-5961 464 56.8 15300 1855 74.5 100 6.50-5961 464 56.8 15300 1855 74.5 100 5.9.3-11800 2044 84.1 7-388 91.9 52.0 100 5.30-298 59.4 38.2 7-388 91.9 52.0 100 5.30-298 59.4 38.2 -42.9 12.6 3.50 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.80-8.30 3.702 3.300 -7.51 3.55 3.10 100 1.10-15.3 5.22 4.00 -5.58 13.1 11.4 100 4.30-23.1 13.0 11.9	1.60-2605 369 142 100 449	369 142 100 449	142 100 449.	100 449	449.	-12800	2559	710	100	32.1-835	240	92.9	
5-71913852.61006.50-596146456.815300185574.510029.3-11800204484.17-38891.952.01005.30-29859.438.2-42.912.63.501001.80-8.303.703.300-7.503.553.101001.10-15.35.224.00-5.5813.111.41004.30-23.113.011.9	20.0-2052 256 43.1 100 14.5	256 43.1 100 14.5	43.1 100 14.5	100 14.5	14.5	-1960	209	57.9	100	10.0-201	69.0	44.2	
15300 1855 74.5 100 29.3-11800 2044 84.1 7-388 91.9 52.0 100 5.30-298 59.4 38.2 -42.9 12.6 3.50 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.80-8.30 3.70 3.300 -7.55 13.1 11.4 100 1.30-15.3 5.22 4.00	1.40-550 113 60.8 100 21	113 60.8 100 21.	60.8 100 21	100 21.	21.	.6-719	138	52.6	100	6.50-5961	464	56.8	
7-388 91.9 52.0 100 5.30-298 59.4 38.2 -42.9 12.6 3.50 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.10-15.3 5.22 4.00 -5.5.8 13.1 11.4 100 4.30-23.1 13.0 11.9	14.5-3725 478 96.0 100 23.4	478 96.0 100 23.4	96.0 100 23.4	100 23.4	23.4	-15300	1855	74.5	100	29.3-11800	2044	84.1	
-42.9 12.6 3.50 100 1.80-8.30 3.70 3.300 -7.50 3.55 3.10 100 1.10-15.3 5.22 4.00 -5.58 13.1 11.4 100 4.30-23.1 13.0 11.9	17.5-1580 195 44.7 100 14.	195 44.7 100 14.	44.7 100 14.	100 14.	14.	7-388	91.9	52.0	100	5.30-298	59.4	38.2	
-7.50 3.55 3.10 100 1.10-15.3 5.22 4.00 -25.8 13.1 11.4 100 4.30-23.1 13.0 11.9	1.30-11.6 3.94 2.65 100 1.50	3.94 2.65 100 1.50	2.65 100 1.50	100 1.50	1.50	-42.9	12.6	3.50	100	1.80-8.30	3.70	3.300	
-25.8 13.1 11.4 100 4.30-23.1 13.0 11.9	0.400-6.80 2.24 1.75 100 1.10	2.24 1.75 100 1.10	1.75 100 1.10	100 1.10	1.10	-7.50	3.55	3.10	100	1.10-15.3	5.22	4.00	
	BLD BLD BLD 4.80	BLD BLD BLD 4.80	BLD BLD 4.80	BLD 4.80	4.80	-25.8	13.1	11.4	100	4.30-23.1	13.0	11.9	

*Range given in three season represent the 15 samples analyzed. BLD-Below Limit of Detection DF-Degree of Freedom

Table S4. Geo-accumulation index classification [53].

Igeo	Geo accumulation intensity	Index, Igeo
>5	6	Very strong
>4-5	5	Strong to very strong
>3-4	4	Strong
>2-3	3	Moderate to strong
>1-2	2	Moderate
>0-1	1	Uncontaminated to moderate

Table S5. Bn the concentration of a given element in upper continental crust [54].

Metal	Bn (mg kg ⁻¹)*	Metal	Bn (mg kg ⁻¹)*
Al	8.23E+04	Sb	4.00E-01
Fe	5.63E+04	Hf	5.30E+00
Р	2.33E+04	Re	1.98E-01
Са	4.15E+04	Tl	9.00E-01
K	2.09E+04	Pd	5.40E-04
Mg	1.05E+03	Ag	5.30E-02
Na	2.36E+04	Au	1.50E-03
Mn	9.50E+02	Ru	3.40E-04
W	1.90E+00	Ir	2.20E-05
Ti	5.70E+03	Pt	5.00E-04
Ba	6.28E+02	Ce	6.30E+01
Sr	3.20E+02	Nd	2.70E+01
Zn	6.70E+01	La	3.10E+01
Cu	2.80E+01	Y	2.10E+01
Sn	2.10E+00	Pr	7.10E+00
Ni	4.70E+01	Sc	1.40E+01
Cr	9.20E+01	Sm	4.70E+00
Ga	1.75E+01	Gd	4.00E+00
Pb	1.70E+01	Dy	3.90E+00
V	9.70E+01	Er	2.30E+00
Со	1.73E+01	Yb	1.96E+00
As	4.80E+00	Eu	1.00E+00
Rb	8.40E+01	Но	8.30E-01
Nb	1.20E+01	Tb	7.00E-01
Мо	1.10E+00	Tm	3.00E-01
Cd	9.00E-02	Lu	5.00E-01