
Introduction

The electricity supply chain is very sensitive to 
climate variability [1]. Rising temperatures associated 
with global warming are likely to lead to an increase 
in electricity consumption during periods when air 
conditioning is required [2]. It has been suggested that 
the impacts of climate change on the electricity sector 
may account for the majority of economic damages by 
the end of the century [3, 4]. The temperature variability 
caused by climate variability may cause the short-term 

fluctuation of regional electricity consumption, and 
the temperature rise caused by climate change may 
also increase the social electricity demand in the long 
term [5-9]. The global greenhouse gas emission level 
has been rising in the past 150 years and has reached 
a level not seen in at least 400 thousand years [10]. By 
2012, the earth’s surface temperature level had risen by 
0.85ºC compared with that before industrialization [11]. 
At the same time, due to the lag of the response of the 
earth’s climate system to greenhouse gas, the global 
temperature may continue to rise by at least another  
0.5ºC even if the current level of greenhouse gas in the 
atmosphere is no longer rising [12, 13]. As greenhouse 
gas emissions continue to rise [14, 15], the future 
climate change may further drive a substantial impact 
on electricity demand [16].
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In current economies over the world, electricity is 
the most indispensable form of energy in households 
and firms [17]. How to understand the impacts of 
climate variability on electricity consumption is an 
ambitious question that needs to be answered. More 
efforts may also be needed to study the significance 
of future changes in electricity supply chain caused by 
climate change. It is certainly no surprise that numerous 
studies have emerged to address how climate variability 
affects the electricity sector. Almost all scholars 
suggest that the electricity sector is sensitive to climate 
variability, especially in regional electricity demand [18-
21]. Generally, climate variability may affect electricity 
consumption in many ways [22, 23]. 

In order to further explore the relationship between 
climate change and electricity consumption, how to 
select appropriate climate factors and how to measure 
the degree of climate change should be figured out first. 
Climate variability is mainly manifested in temperature 
rise, and the energy-temperature relationship is usually 
hypothesized as a U-shaped curve in most literature. 
According to Gupta [24], the U-shaped curve of power-
temperature response function can be displayed in 
Fig. 1, where the minimum point is the threshold, 
determined by the balance temperature for requirement 
cooling and requirement heating. In most empirical 
studies, the temperature variable is generally measured 
by the conception of heating degree days (HDD) and 
cooling degree days (CDD). HDD is used to quantify 
the heating demand degree defined as the aggregate 
degrees below the threshold over a period, and CDD 
is used to quantify the demand for refrigeration degree 
defined as the aggregate degrees above the threshold 
over a period. Kaufmann et al. [25] considered 65ºF 
(18.3ºC) as the threshold in their research, while 
the actual threshold should be specific to the local 
characteristics such as living habits of residents and 
building insulation. Therefore, the threshold should 

be determined according to specific local conditions 
when to investigate the impact of climate variability on 
electricity consumption in a specific region. 

How climate change affects electricity consumption 
in specific regions has also caused many researchers’ 
attention. Zachariadis and Hadjinicolaou [26] assessed 
additional electricity demands and the associated costs 
caused by climate variability in the Mediterranean 
island of Cyprus through an interdisciplinary approach 
that combines economics with climate science. 
Hollanda et al. [27] incorporated climate uncertainty 
into a long-term electricity demand forecasting method 
and projected the electricity demand in Brazil under 
different climate scenarios. And their results indicated 
that the annual average electricity consumption in Brazil 
would continue to increase until peaking in 2060. Fan 
et al. [28] estimated the impacts of climatic factors on 
electricity consumption in China by using panel data of 
30 provinces from 1995-2016, and the empirical results 
showed the potential effects of climate variability on 
China’s annual electricity consumption. Burillo et 
al. [29] analyzed the impacts of climate variability 
on the electricity consumption of Los Angeles, and 
they pointed out that annual electricity demand was 
projected to increase by 4-8% in 2060 due to rising air 
temperatures from climate change.

According to the above literature review, developing 
a comprehensive understanding of the impacts of 
climate change on the electricity supply chain is 
critical for building a reliable electricity supply system. 
Therefore, it is worthy to study this significant and 
complex issue from multiple perspectives. The paper 
aims to investigate the impacts of climate change on a 
specific region’s monthly electricity consumption. The 
possible and contributions of this study are as follows.  
This paper proposes a feasible methodological 
framework to evaluate the impact of climate change 
on regional electricity demand, which can reasonably 

Fig. 1. The relationship between electricity consumption and temperature.
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eliminate the influence of other factors, such as GDP, 
technological progress, et al. The method proposed in 
this paper is on the monthly scale, which can both assess 
the short-time impact of seasonal cycle temperature 
change on electricity consumption and the long-
term impact of climate change on electricity demand 
comprehensively. By taking Tianjin as the study area of 
the empirical analysis, this paper may provide valuable 
experience for other urban electricity departments 
in North China to cope with climate change.  
The paper may enable a better understanding of the 
severe impacts on the frequency and intensity of 
monthly peak electricity demand caused by climate 
change, which is valuable to maintaining reliable 
electricity systems.

The remainder of this paper is organized as follows: 
Section 2 elaborates on Material and Methods. Section 
3 presents the Results and Discussion, followed by some 
conclusions of the paper in Section 4.

Material and Methods

Explanatory Variables

Following other studies [30-32], the variables used 
in this research are carefully selected with regard to 
data availability and economic theory. Considering the 
aim of our research, this study divides the influencing 
factors into climatic factors and non-climatic factors.

Climatic Variables Selection and Processing 

Figuring out how to select appropriate climate 
factors and how to measure the degree of climate 
variability. Then we can further consider how to 
construct climate indicators to establish the relationship 
between climate change and electricity demand. At 
present, the linear climate-power load response model 
usually assumes that there is a transient variability from 
heating required environment to the cooling required 
environment for infinitesimal deviation from the 

balance point temperature. This is an ideal assumption. 
In reality, there is a temperature range, and during this 
interval, the electricity consumption may not respond 
to the temperature change [33]. Therefore, there are 
studies trying to improve the linear V-shaped model 
by introducing the temperature comfort zone gradually, 
which can keep the indoor temperature at the desired 
level without heating or cooling load [34]. 

Then how to obtain a reasonable comfort zone 
threshold becomes very important. Wu et al. (2015) [35] 
used nationwide temperature comfort data supplied by 
the Ministry of Housing and Urban-Rural Development 
of China, and they found when air temperature 
ranges from 11ºC and 17ºC, approximately 40% of 
residents feel comfortable, and 10% of residents feel 
uncomfortable. On the basis of previous studies, we 
first find out the lowest electricity consumption month 
in the region before summer in the past 15 years. Then, 
we take the average daily temperature of the first ten-
day period of the month as the balance point for space 
heating, and take the average daily temperature of the 
last ten-day period of this month as the balance point 
for space cooling. The linear model schematic of the 
power-temperature response function considering the 
temperature comfort zone is shown in Fig. 2.

As shown in Fig. 2, the right minimum point is the 
threshold value of the balance point for space cooling, 
and the left minimum point is the threshold value of the 
balance point for space heating. Social and economic 
factors such as GDP and living habits of local residents 
may affect the horizontal position and slope of the 
power-temperature response function [31, 36, 37]. 
According to the widely used variables in many studies, 
we also use heating degree days (HDD) and cooling 
degree days (CDD) as proxy variables of temperature 
to measure the nonlinear relationship between power 
demand and temperature. Following Ahmed et al. 
(2018) [38], the HDD and CDD can be defined by  
Eq. (1) and Eq. (2).

     (1)

Fig. 2. Linear model schematic of the relationship between temperature and electricity consumption.
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      (2)

...where d is the number of days in the research scale,  
Tbn represents the balance point for space heating, Ti 
represents the daily average temperature on day i, and 
Tbc represents the balance point for space cooling.

Non-Climatic Variables Selection 
and Processing

Electricity is an indispensable input for national 
production and daily life. Many studies have proved that 
economic growth and the rising national income may 
increase the demand for electricity [39, 40]. In addition 
to these factors, there are many other social factors that 
affect the electricity demand of an area. Among the 
above-mentioned non-climatic factors, some factors 
such as economic growth and national income that have 
a positive impact on electricity consumption, and some 
factors including technological progress have a negative 
impact on electricity consumption [41]. And there are 
some other factors such as living habits of residents that 
are hard to identify whether it is a positive or negative 
impact on region electricity demand. However, it is too 
difficult to gain a quantitative measure for those non-
climatic factors because of their complexity. Although 
these variables are difficult to quantify effectively, they 
also change very little in a short period of time [42-44]. 
Considering the importance and data accessibility, we 
select economic development as the non-climatic factor 
in this study, and the district level GDP is taken as the 
proxy variable of economic development. 

Methodological Framework and Model 
Specification

In order to eliminate the influence of these hardly 
quantified non-climatic factors on the evaluation 
results, this paper conducts the research on the monthly 
scale to use the characteristic that these variables 
are almost unchanged in a short time. Specifically, 
we incorporate climatic factors into the electricity 
demand model by establishing an econometric model to 
evaluate the impacts of climate variability on monthly 
electricity consumption using panel data of 12 months 
in many years. Elaborated by this approach, this 
research can explore the impacts of long-term climate 
change on electricity demand in a specific region from a 
microscale perspective.

The modeling steps used to investigate the impacts 
of climate change on monthly electricity consumption 
in a specific region are as follows. 
1.	 Testing the trends of study region’s temperature with 

the help of Mann-Kendall trend test method.
2.	 Computing the local HDD and CDD data based on 

the daily average temperature data of the region.
3.	 Elaborating the panel data regression model based 

on the data availability and econometric theory.

4.	 Assessing the long-term impacts of climate change 
on monthly electricity demand based on the 
constructed model with the help of monthly panel 
data. In this step, the fixed-effects model, random-
effects model, and mixed model are all constructed 
for panel data model estimation, while an F-test 
and a Hausman test would be undertaken to explore 
which model is the most appropriate model in the 
specific case.

5.	 Combining results from the empirical model and 
future predictions of climate change to simulate 
future changes in monthly electricity demand under 
different climate change scenarios.

Mann-Kendall Trend Test

Aiming to explore the impact of climate change 
on regional electricity consumption in the paper, we 
should grasp the changing trend of the local climate 
firstly. There are two classes of approaches to detect 
the trend in time series variables: parametric methods 
and nonparametric methods. Parametric methods are 
suitable for independent and normally distributed data, 
while the nonparametric methods can be used in the 
data that is only independent.

Because the variables used in this study are not 
normally distributed data, the nonparametric method 
should be used in the paper. Mann-Kendall test method 
is a classical nonparametric statistical method proposed 
by Mann [45] and Kendall [46]. Its advantage is that the 
detected data do not need to follow a certain distribution 
and cannot be easily interfered by a few abnormal 
values. Mann-Kendall trend test can effectively identify 
whether a natural phenomenon is being in natural 
fluctuation or varying in a significant trend, which 
has been recommended by the World Meteorological 
Organization and widely used in the analysis of climate 
variability trends such as temperature [47]. In view of 
the above, we use Mann-Kendall trend test to detect the 
trend of climatic variables. 

The Mann-Kendall test statistic S is calculated as

           (3)

...where n is the number of data points in time series 
X, xk and xj are time series values at the kth and jth 
time instances in the time series X respectively, and  
sgn(xj – xk) is the sign function as:

      (4)

The statistical parameter for the Mann-Kendall 
trend test is the value Z, and Z is given as:
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                 (5)

...where Var(S) is variance of statistic S. And when the 
number of data points in time series X is big (usually 
bigger than 10 [47]), the Var(S) can by computed as:

    (6)

...where n is the number of data points in time series X, 
m is the number of tied groups in time series X, ti is the 
number of ties of extent i, and a tied group is a set of 
data having the same value.

Based on the Mann-Kendall method, a positive value 
of Zs means an increasing trend while the negative Zs 
value indicates a decreasing trend. The changing trend 
is considered significant at the specific α significance 
level when |Zs|>|Z1–α/2|, and the needed |Z1–α/2| can be 
obtained from the standard normal distribution table. 
Significance levels α = 0.01 and α = 0.05 would be 
used in this study. And if |Zs|>2.576 or |Zs|>1.96, the 
null hypothesis of no trend is rejected at the 1% or 5% 
significance level respectively.

Electricity Consumption Regression Model

The monthly level panel data from many years are 
used in this study to reflect the essential relationship 
between electricity consumption and climate variability. 
There are two main reasons for using the monthly 
panel data. One is to eliminate the influence of other 
hardly quantitative measuring non-climatic factors 
because they change very little at a monthly level [48]. 
And the other reason is that monthly panel data can be 
used to comprehensively assess the short-time impact 
of seasonal cycle temperature variability on electricity 
consumption and the long-term impact of climate 
change on electricity consumption because daily 
temperatures not only vary with seasonal changes in a 
year but also vary with long-term climate change. 

In addition, in order to eliminate the influence of 
different days of each month, the monthly data used in 
the model are divided by the number of days included 
in the current month. Specifically, the data of January, 
March, May, July, August, October and December are 
divided by 31, and the data of April, June, September 
and November are divided by 30, and the data of leap 
year February are divided by 29 and other February 
are divided by 28. Before panel regression, in order to 
avoid pseudo regression and ensure the validity of the 
estimation results, the Levin-Lin-Chu (LLC) unit root 
test [49] and ADF - Fisher unit root test [50] would be 
conducted on all the variables. In order to guarantee 
the reliability of the study, the fixed-effects model 
(FEM), random-effects model (REM), and mixed 

model (MM) are all constructed for panel data model 
estimation. And then an F-test and a Hausman test [51, 
52] were undertaken to explore which model is the most 
appropriate method in this case. The panel data model 
is defined in Eq. (7).

   (7)

...where ECit represents the regional electricity 
consumption for month i of year t. c represents the 
intercept term. αi represents the specific cross-section 
effect, which represents the influence of different 
individuals in the same cross-section on the value of 
the intercept term in the panel data regression model. 
γt represents the temporal point fixed effect, reflecting 
the temporal difference of electricity consumption in 
the model. β1, β2, and β3 are regression coefficients. εit 
is the random error term of the model. GDPit represents 
the monthly gross domestic product of the study region. 
HDDit and CDDit are the climatic variables as mentioned 
in the above paper.

Simulations on the Impacts of Future 
Climate Change

In order to explore the impacts of future climate 
change on electricity demand, we combine the results 
of the econometric model with the predicted climate 
changes. The paper uses simulations of the IPCC’s 
Representative Carbon Pathway (RCPs) scenarios [53, 
54], i.e. RCP2.6, RCP4.5 and RCP8.5, to define a range 
of possible future temperature anomalies and add those 
anomalies to the historical temperature range from local 
weather stations. This approach could give us a set of 
projected time series of climate variables for the study 
region. We then use the coefficients derived from the 
estimated model to predict future monthly electricity 
demand under different climate change scenarios. 
In order to investigate percentage changes, we also 
compare the estimated results with a baseline scenario 
in which no warming happens.

Results and Discussion

Study Area and Data Collection

Tianjin City

The authors of the paper chose Tianjin as the 
study area of the empirical analysis. We use city 
boundary lines for Tianjin to define local areas for 
electricity consumption and air temperature because 
the geopolitical boundaries reasonably frame the 
existing electricity infrastructure, and the public data 
are generally accessible in that format. Tianjin is one of 
the four municipalities in China, which is located in the 
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northeast part of North China Plain (38°34’-40°15’N, 
116°43’-118°04’E) [55]. The geographical location and 
temperature situation of Tianjin are shown in Fig. 3. 
Tianjin has a large-scale electricity infrastructure, and 
its climate could be representative of the surrounding 
areas. 

In recent years, the electricity load of Tianjin keeps 
on breaking the new record in hot weather usually 
in July every year [56]. It is very important to assess 
the impacts of climate change on Tianjin’s electricity 
demand for dealing with the temporary electricity 
shortage caused by climate change. Therefore, in this 
paper, Tianjin is chosen as an interesting case to provide 
experience for other urban electricity departments in 
North China to cope with climate change.

Variable Description and Data Sources

As elaborated in Section 3, the monthly electricity 
consumption, GDP, HDD, and CDD data are needed 
in this study. Among them, the monthly electricity 
consumption data for the period 2000-2018 were 
collected from the Tianjin municipal government 
information disclosure column website, which was 

issued monthly by the Tianjin Municipal Bureau 
of Statistics. Because monthly regional level Gross 
Domestic Production data in Tianjin have not been 
released ever, we take the corresponding quarterly 
GDP data divided by 3 as the monthly GDP. In order 
to get the monthly HDD and CDD data for the period  
2000-2018, we collected the daily average temperature 
data of Tianjin from the National Meteorological 
Information Center of China. The reason why we chose 
the daily average temperature here is that the daily 
average temperature is the average value of hourly 
observations in a day, which could better represent the 
temperature of a day than the daily max temperature. 
The descriptive analysis of each variable used in this 
study has been summarized in Table 1. 

Empirical Results and Discussion

Changing Trends in the Temperature 
of Tianjin

Because climate variability is mainly manifested 
in temperature rise and the temperature is the main 
climatic factor affecting electricity consumption, 

Fig. 3. The geographical location and climate situation of Tianjin (temperature is year average in 2010). Sources: National Meteorological 
Information Center of China.

Table 1. Descriptive statistics of variables used in the study.

Variables Description Unit N Mean Median Max Min S.D

EC Monthly electricity consumption 100 million kWh 228 45.96 46.56 85.76 13.35 19.74

GDP Monthly regional GDP billion RMB Yuan 228 76.07 59.67 171.53 11.82 52.24

HDD Monthly heating degree days ºC*day 228 103.32 4.15 511.60 0.00 142.08

CDD Monthly cooling degree days ºC*day 228 110.43 28.85 392.80 0.00 131.98

Note: N and S.D are the numbers of observation and standard deviations of the variables respectively.
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we should make clear the changing trend of the local 
temperature first. The Mann-Kendall trend test method 
has been applied to the time series of daily average 
temperature in Tianjin. In this study, we tested the daily 
average temperature change trend on the overall scale 
and the monthly scale in the study period. The overall 
scale is to test the time series of all daily temperature 
data during the study period. And the monthly scale is 
to test the time series composed of daily temperature 
data of the same month in every year (For example, the 
changing trend of daily temperature in January is to test 
the time series composed of daily temperature data in 
all Januaries in the period 2000 to 2018).

The results of trend tests for the daily average 
temperature of overall scale and monthly scale in 
Tianjin over the period 2000-2018 are presented in 
Table 2. There are significant increasing trends in 
Tianjin’s daily average temperature for the overall scale 
and 12 monthly scales at 1% or 5% significance levels. 
On the overall scale, Tianjin’s daily average temperature 
existed a significant increasing trend at 1% significance 
level from 2000 to 2018. Moreover, on the monthly 
scale, each month showed a significant increasing trend 
at 1% or 5% significance levels during the study period. 
The comprehensive results indicate that the daily 
temperature in Tianjin has a significant rising trend, and 
we should pay attention to the impacts of this climate 
variability on the regional electricity demand.

Changes in HDD and CDD of Tianjin

Based on the daily average temperature data, we 
computed the monthly HDD and CDD in Tianjin from 
2000 to 2018. For visual display, we list seven equal 
time span representative HDD and CDD, where Fig. 4 
and Fig. 5 reflect the change trends of the monthly HDD 
and CDD data respectively.

As shown in Fig. 4, the monthly HDD data of 
Tianjin shows a U-shaped curve, existing a downward 
trend from January to April, an upward trend from 
October to December, and almost zero from May 
to September. During the investigated 19 years,  
the U-shape curve of HDD is becoming flatter, 
which also intuitively shows that although there are 
fluctuations, it does exist a downward trend of monthly 
HDD in Tianjin from 2000 to 2018. It can also be seen 
that the downward trend is more obvious in January 
and December (specifically, the monthly HDD in 
January has dropped from 511.68ºC * day in 2000 
to 306.8ºC * day in 2018). 

The monthly CDD data of Tianjin shows an inverted 
U-shaped curve with an upward trend from April to 
July, a downward trend from August to October, and 
almost zero from January to March and November to 
December every year. From 2000 to 2018, the U-shape 

Table 2. Mann-Kendall trend test results of the daily average 
temperature for overall scale and monthly scale over the period 
2000 to 2018.

Variable series Zs

Overall scale 2.8225***

January 4.8636***

February 2.5809***

March 1.9643**

April 1.9608**

May 2.5958***

June 2.2591**

July 2.0166**

August 4.7121***

September 3.8916***

October 2.9160***

November 2.7672***

December 3.5557***

Note: Zs is the Mann-Kendall trend test statistical parameter. 
** Denote that there is a statistically significant trend at the 
5% significance level. *** Denote that there is a statistically 
significant trend at the 1% significance level.

Fig. 4. The monthly HDD in Tianjin from 2000 to 2018.
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curve of HDD is becoming higher and fatter, which also 
indicates intuitively that although there are fluctuations, 
it does exist a significant upward trend of monthly CDD 
in Tianjin. It can also be seen that the upward trend in 
July and August is particularly obvious (specifically, 
the monthly CDD in July has increased from  
300.6ºC * day in 2000 to 392.8ºC * day in 2018).

Panel Data Model Estimation

Before panel data regression, in order to avoid 
spurious regression and ensure the validity of the 
estimation results, the Levin-Lin-Chu (LLC) unit root 
test [49] and ADF - Fisher unit root test [50] were 
conducted on the panel data to test for whether all the 
individuals time series are being stationary or not. The 
stationary test results are shown in Table 3. The results 
of both LLC test and ADF - Fisher test showed that all 
variables used in the analysis are stationary at levels, 
and there is no need to conduct panel co-integration 
tests.

Thereafter, a panel data regression analysis of 
Tianjin over the period 2000 to 2018, is undertaken for 
monthly electricity consumption against GDP, HDD, 
and CDD. In this study, the fixed-effects model, random-
effects model and mixed model are all constructed for 
panel data model estimation. And then an F-test and  

a Hausman test are undertaken to explore which model  
is the most appropriate method in this case. The 
summary of panel data regression results is shown in 
Table 4. Specifically, when making a choice among 
the mixed model and fixed-effects model, the null 
hypothesis is rejected at the 1% significance level 
based on the F-test results, so the fixed-effects model 
should be more suitable. Similarly, when making a 
choice between the fixed-effects model and the random-
effects model, the null hypothesis is rejected at the 
1% significance level based on the results of Hausman 
test, which indicates that the basic hypothesis of the 
random-effects model is not satisfied. Therefore, in 
this empirical study, it should better to use the fixed-
effects model to estimate the coefficient of the panel 
data regression equation. Additionally, a comparison 
of the three models’ results indicates that the estimated 
coefficients of the three models are close to each other, 
which also indicates the reliability of the regression 
results.

The results in Table 4 show that GDP has a 
significant impact on electricity consumption in 
Tianjin. Specifically, one unit increase in GDP would 
result in about 0.32 unit increase in monthly electricity 
consumption (at the 1% significance level), which 
indicates that economic development would increase 
the energy demand significantly. A comparison of the 

Fig. 5. The monthly CDD in Tianjin from 2000 to 2018.

Table 3. The stationary test results.

Details
Levin-Lin-Chu unit root test ADF – Fisher unit root test 

Remarks
Statistic Probability Statistic Probability

EC -2.86401*** 0.0021 26.4574** 0.0239 I(0)

GDP -9.40362*** 0.0000 45.5071*** 0.0051 I(0)

HDD -6.20569*** 0.0000 48.5915*** 0.0000 I(0)

CDD -3.04867*** 0.0011 45.6846*** 0.0001 I(0)

** Denote that there is a statistical significance at the 5% level. *** Denote that there is a statistical significance at the 1% level.
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coefficients of GDP and climatic variables (HDD and 
CDD) shows that the elasticity coefficient of GDP is 
much higher than those climatic factors, which indicates 
that impact of the economic growth on the electricity 
demand was greater than the impact of climate 
variability. This result is consistent with the studies by 
Ruth and Lin (2006) [57], and Fan et al. (2019) [28], who 
also demonstrated that the macroeconomic variables 
have a greater impact on electricity consumption than 
climatic variables.

The regression results could suggest, accordingly, 
that HDD and CDD significantly influence Tianjin’s 
electricity consumption. Specifically, both HDD 
and CDD play a positive role in electricity demand. 
If HDD increase one unit, the monthly electricity 
consumption would expect to increase 0.065 unit 
(at the 1% significance level). And if CDD increase 
one unit, the monthly electricity consumption would 
expect to increase 0.094 unit (at the 1% significance 
level). Interestingly, the elasticity coefficient of CDD 
is higher than HDD, which indicates that the cooling 
demand behaviors may have a greater influence on 
electricity consumption than heating demand behaviors. 

In other words, a hot temperature could have a greater 
marginal influence on electricity consumption than a 
cold temperature. This may be mainly attributed to the 
current heating and cooling mode in Tianjin, where the 
heating system is mainly derived from coal and natural 
gas, and electrical equipment is only used as auxiliary 
heating equipment [58], but the refrigeration system is 
mainly equipped by electrical equipment such as air 
conditioners.

Impacts of Climate Change on Monthly Electricity 
Consumption

This part shows the results revealing the impacts 
of climate change on monthly electricity demand in 
Tianjin. We estimate the climatic variables response 
function for monthly electricity demand according 
to the panel data regression results listed in Table 4. 
When the non-climatic variable is controlled, Fig. 6 
illustrates the response function of monthly electricity 
consumption to HDD and CDD, which is relative to 
the omitted benchmark month (April), a month with 
the least HDD and CDD. The stacked area chart of 

Table 4. Summary of panel data regression results.

Variables/ coefficients FEM REM MM

GDP (β1)
0.320450*** 0.360048*** 0.360212***

(0.012204) (0.007033) (0.008020)

HDD (β2)
0.064964*** 0.005425* 0.015738***

(0.018432) (0.007409) (0.003710)

CDD (β3)
0.094146** 0.018094** 0.023257***

(0.029823) (0.008279) (0.003990)

Constant
17.41151*** 15.78034*** 14.01929***

(2.737129) (1.841507) (1.059469)

Cross-section fixed effect Yes None None

Period fixed effect None None None

Cross-section random effect None Yes None

Period random effect None None None

Observations 228 228 228

R-squared 0.968383 0.956706 0. 959923

Adjusted R-squared 0.963676 0.955590 0. 958582

F-test
7.695094***

[0.0000]

Hausman test
17.447359***

[0.0006]

Note: FEM represents the fixed-effects model; REM represents the random-effects model; MM represents the mixed model.  
The standard error of each coefficient is in brackets. The probability values of F-test and Hausman test are in the corresponding 
square brackets respectively. * Denote that there is a statistical significance at the 10% level. ** Denote that there is a statistical 
significance at the 5% level. *** Denote that there is a statistical significance at the 1% level.
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the HDD and CDD distribution is also plotted on the 
same figure to illustrate the support of the data used to 
identify the curve statistically.

As shown in Fig. 6, the height of the blue line at each 
month represents the differences in monthly electricity 
consumption relative to April, which has the least sum 
of HDD and CDD. HDD in January is the highest, and 
electricity consumption in January is 20.5% higher than 
that in April. While CDD is the highest in July, and 
electricity consumption in July is 26% higher than that 
in April. Controlling non-climatic factors, electricity 
consumption is predominantly driven by the extent 
to which an area need heats or cools with electricity. 
Tianjin has a nearly symmetric response function for 

electricity consumption across HDD and CDD. While 
compared with HDD, CDD has a higher load response 
resulting from cooling demand. This difference is 
consistent with the different elasticity coefficients of 
HDD and CDD. 

It is also worth to note that the EC curve is always 
in the red HDD area but it can exceed the green CDD 
area in July and August with the most cooling demand. 
The difference in the relative shape of EC curve has 
particular implications for climate change. At the same 
time, in Tianjin, from 2000 to 2018, the annual growth 
rates of monthly electricity consumption in January and 
July are 8.3% and 9.6% respectively. The growth rate 
of electricity consumption in the hottest month (July) is 

Scenarios Variables 2050 2099

RCP2.6

Temperature +0.5ºC +1.3ºC

HDD -6.0% -14.9%

CDD +5.6% +14.3%

EC +372 million kWh (0.4%) +1017 million kWh (1.2%)

RCP4.5

Temperature +0.9ºC +2.3ºC

HDD -11.4% -28.0%

CDD +10.9% +27.8%

EC +762 million kWh (0.9%) +2210 million kWh (2.6%)

RCP8.5

Temperature +2.0ºC +5.2ºC

HDD -25.4% -59.9%

CDD +25.0% +66.2%

EC +1939 million kWh (2.2%) +7935 million kWh (9.2%)

Note: The timescale on which results are based is a year, and the numbers in brackets are projected percentage change of  
corresponding variables compared to the benchmark year. Changes in temperature are sourced from [54, 60, 61], and changes 
in all the variables are based on the 2018 benchmark. 

Fig. 6. Response function of monthly electricity consumption to HDD and CDD. Note: EC represents electricity consumption, which is 
corresponding to the left primary axis, while the CDD and HDD data correspond to the right secondary axis.

Table 5. Simulated results of future temperature projections’ impacts on HDD, CDD, and electricity consumption in Tianjin under the 
three climate scenarios.
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higher than that in the coldest month (January). Hence 
it can be reasonably predicted that climate change may 
further aggravate the peak electricity demand in July.

Simulations of Climate Change-Driven Impact 
on Electricity Demand

In order to evaluate the impact of future climate 
change on electricity consumption, we combine results 
from the empirical model and future predictions 
of climate change to simulate changes in monthly 
electricity demand in Tianjin by end-of-century.  
The study predicts end-of-century climate under the 
three climate scenarios (RCP2.6, RCP4.5 and RCP8.5) 
with 2000-2018 as the benchmark by adding the 
downscale changes to the historical baseline of daily 
temperature variation [59]. Specifically, the paper 
used a set of climate projections from the IPCC’s 
Representative Carbon Pathway (RCPs) scenarios and 
downscaled the climate projections using a statistical 
downscaling technique, which is applied on the 
assumption that the climate is in smooth and steady 
change rate. We then add the downscaled climate 
change projections to the historical daily temperature 
observed by the local weather stations. This method 
can yield a simulated time series of daily temperature 
data adjusted for changes in the RCP scenarios and 
retaining representative daily variance in historical 
daily temperatures. The projected daily temperatures 
are then used to calculate the monthly HDD and 
CDD, which are used as input in the estimated 
empirical model for the investigation of future changes 
in electricity consumption. For visual display, we 
aggregate the monthly results to a whole year, and the 
simulated results of electricity demand in Tianjin under 
three climate scenarios are listed in Table 5. It needs 
to caution that the results are meant to demonstrate 
the changes in electricity demand driven by climate 
change in a business-as-usual setting, which has been 
used in many modeling contexts [3]. Importantly, 
economic growth, technology, adaptation, and current 
infrastructure are held constant, when we estimate the 
reduced-form model.

The results indicate that electricity demand 
in Tianjin would increase under the three climate 
scenarios, which reflects the substantial impact of 
climate change on electricity demand. The top third  
of Table 5 shows the summary of results under the 
lower-emissions scenario, RCP2.6. Comparing with 
2018, the growth of electricity demand in 2099 caused 
by climate change under RCP2.6 scenario would be 1017 
million kWh, representing 1.2% of the total electricity 
consumption in Tianjin in 2018. The middle third 
of Table 5 simulates results for the modest warming 
RCP4.5 scenario. The growth of electricity demand in 
2099 caused by climate change under RCP4.5 scenario 
would be 2210 million kWh, representing 2.6% of  
the total electricity consumption in Tianjin in 2018.  
The bottom third of Table 5 summarizes the results 

under the higher-emissions scenario, RCP8.5. The 
growth of electricity demand in 2099 caused by 
climate change under RCP8.5 scenario would be 
7935 million kWh, representing 9.2% of the total 
electricity consumption in Tianjin in 2018. The apparent 
differences in electricity demand under the three climate 
change scenarios indicate that the regional electricity 
system may be strongly vulnerable to climate change 
when lacking climate policy intervention. Of particular 
note are that the impacts of CDD on Tianjin’s electricity 
demand are much greater than HDD under the three 
climate scenarios. And if climate change continues, the 
cost for regional electricity systems to adapt to climate 
change would be further increased.

Next, we explore the impact of climate change on 
monthly electricity demand distribution in Tianjin by 
end of century. To capture this impact, Fig. 7 plots the 
predicted monthly electricity demand under RCP2.6, 
RCP4.5 and RCP8.5 scenarios obtained by combining 
the empirical model with the ensemble of climate 
predictions. In Fig. 7, we plotted the distribution of 
monthly electricity demand in 2018 (in blue) and 
the distribution of monthly electricity demand in 
2099 under RCP2.6 (in red), RCP4.5 (in green) and 
RCP8.5 (in purple) scenarios without economic 
growth and technological progress. The height of the 
lines at each month represents the electricity demand  
(in 100 million kWh). In all scenarios, except for the 
RCP8.5 scenario, the monthly electricity consumption 
in Tianjin shows a downward trend from January to 
April, an upward trend from April to July, a downward 
trend from July to October, and an upward trend 
from October to December, with a peak in July. As 
for RCP8.5 scenario, by end of century, the monthly 
electricity consumption in Tianjin shows a downward 
trend from January to February, an upward trend 
from February to July, a downward trend from July 
to November, and an upward trend from November to 
December, with an extremely high peak in July. 

The difference in the shape of the four distribution 
lines shows particular implications of climate change. It 
is expected, even absent economic growth, that climate 
change would increase July’s electricity consumption 
by 1481, 655, and 342 million kWh under RCP8.5, 
RCP4.5 and RCP2.6 scenarios respectively, by the 
year 2099. The above-mentioned increased electricity 
demands represent about 16.1%, 7.3% and 4.0% of 
2018 July consumption. In the benchmark scenario, 
the electricity consumption in the months with more 
heating load demand are always higher than the three 
simulation scenarios, and in the months with more 
cooling load demand are always lower than the three 
simulation scenarios. And the RCP8.5 scenario’s 
monthly electricity consumption is much higher than 
RCP2.6 and RCP4.5 scenarios in the months needing 
cooling load demand. Affected by climate change, 
the monthly peak electricity consumption in winter is 
becoming more and more inapparent, but the monthly 
peak electricity consumption in summer is becoming 
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more and more prominent. It is also worth mentioning 
that, unlike other scenarios, the month with the lowest 
electricity demand is November in the RCP8.5 scenario 
and electricity consumption in July was 56% higher 
than that in November. The findings support the early 
prediction that climate change may further aggravate 
the peak electricity demand in hot months.

Our simulations only refer to the impact of climate 
change on electricity consumption and the impacts of 
technological progress and macroeconomic factors are 
not considered. Overall, if the region experiences the 
warmer climate that scientists predict for the future, 
our study shows that much greater generation capacity 
would be needed in Tianjin. As such, even absent 
economic growth, climate change may drive significant 
changes to the electricity supply chain.

Conclusions

In this paper, a methodological framework has been 
proposed to investigate the impacts of climate change 
on the region’s monthly electricity consumption. We 
applied our proposed models to Tianjin and predicted 
end-of-century changes in monthly electricity demand 
of Tianjin by combining the empirical results with 
an ensemble of climate predictions under three 
Representative Concentration Pathways (RCPs). 
This study is essential for governments and public 
utilities to assess the vulnerability of the electricity 
sector to climate change and to formulate long-term 
adaptation plans and policies. The paper is concluded 
by summarizing the findings and corresponding 
implications, and discussing potential adaption options 
to climate change.

The panel data regression analysis revealed that 
the monthly electricity consumption in Tianjin is 
significantly influenced by climatic factors. The 
empirical results show that the elasticity coefficients of 

HDD and CDD are 0.065 and 0.094 respectively, which 
could suggest that both HDD and CDD significantly 
influence the monthly electricity consumption in 
Tianjin. Interestingly, the elasticity coefficient of CDD 
is higher than HDD, which indicates that the cooling 
demand behaviors may have a greater influence on 
electricity consumption than heating demand behaviors. 
Hence, if climate change continues, the cost for 
electricity systems to adapt to climate change may be 
further increased.

The simulation results showed that climate change 
would increase electricity consumption by 1017, 2210 
and 7935 million kWh under RCP2.6, RCP4.5 and 
RCP8.5 scenarios respectively, by the year 2099. The 
apparent differences in electricity demand under the 
three scenarios indicate that the regional electricity 
system is extremely vulnerable to climate change 
when lacking climate policy intervention. The RCP8.5 
scenario monthly electricity demand is much higher 
than RCP2.6 and RCP4.5 scenarios in the months with 
cooling load demand. The different distribution of 
monthly electricity demand in Tianjin under RCP2.6, 
RCP4.5 and RCP8.5 scenarios shows particular 
implications of climate change. Affected by climate 
change, the monthly peak electricity consumption 
in winter may be more and more inapparent, but 
the monthly peak electricity demand in summer is 
becoming more and more prominent. Specifically, 
electricity consumption in July is 56% higher than  
that in November by end-of-century, under RCP8.5 
scenario, which means that climate change may further 
aggravate the disparity between monthly electricity 
consumption.

Climate change may drive substantial changes to 
the electricity supply chain, and our study is indicative 
of a need for adaptive strategies. Development in air 
conditioning technologies could mitigate the aggravating 
disparity of monthly electricity consumption. Although 
continuing climate change may incentive greater 

Fig. 7. Monthly electricity demand distribution in Tianjin under RCP2.6, RCP4.5, and RCP8.5 scenarios.



Impacts of Climate Change on Monthly Electricity... 3939

adoption of air conditioners, it may also drive the 
development of more energy-efficient air conditioning 
technologies. Advances in air conditioning technologies 
would smooth the monthly electricity consumption 
distributions displayed in Fig. 7. Especially, both 
average demand and peaks would diminish when air 
conditioning technology is more efficient, which should 
be the focus of future research and financing.

The increasing penetration of renewable 
technologies is also a potential adaptation strategy 
for climate change. Increases in renewable generation 
could supply for some of peak demand caused by 
climate change and its abatement emissions could also 
further mitigate climate change. Facing the problem 
of short-term overload caused by climate changes, the 
implementation of renewable distributed microgrid may 
be the most cost-effective way to meet the temporary 
high electricity demand related to heat waves. 
Additionally, Tianjin is rich in solar and wind resources, 
and the renewable energy microgrid in Tianjin has great 
development potential.

Finally, it is essential to support electricity 
enterprises to upgrade the capacity of generation units 
and power networks in time to maintain a secure 
electricity system under any future climate change. 
Various forms of demand-side management, such as the 
adoption of time-varying prices, are also necessary to 
reduce or transfer the peak load. 

In conclusion, several changes to the electricity 
supply chain could be reasonably envisioned to mitigate 
the impacts caused by climate change. But we do not 
intend for these suggestions to be exhaustive nor 
strongly advocate any particular option, the study is 
intended to advance the discourse of this significant 
and complex topic in a relatively clear and structured 
manner.
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