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Abstract

Influent quality and quantity were important factors that caused the abnormal operation of WWTP. 
In this study, the prediction models of influent quality and quantity were established based on four 
machine learning methods of Linear Regression, Ridge Regression, ElasticNet Regression and Lasso 
Regression. The meteorological conditions (precipitation and air temperature) and influent indicators 
(influent quantity, COD, and NH3-N) were used as training data. The influent quantity prediction of 
the models were evaluated using the historical data obtained from a WWTP located in western China, 
and the results showed that the normal rates of influent quantity were ranged from 98.9%-100%.  
The highest accuracy was obtained with Ridge method which was 86.19% .

For influent quality (COD) prediction, Ridge method is relatively ideal, with 82% accuracy.  
For influent quality (NH3-N) prediction, because of higher data normality rates, Lasso and ElasticNet 
method were more ideal, both with 74% accuracy. Further, in view of the reason of low prediction 
accuracy, this paper puts forward the idea of model improvement from the three directions of data 
fluctuation, correlation and amount. It is expected that this study will provide reference for similar 
research and provide a reference and thought for similar research.
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Introduction

The activated sludge process was invented at 
Lawrence Sewage Test Station in Manchester in 
1913, and it has become the most widely used method 
in municipal wastewater treatment plant (WWTP). 
WWTP is a complex biological system, and is usually 
regarded as a typical black box [1, 2]. It is known that 
influent fluctuation would exert an adverse effect on the 
performance of WWTP [3, 4]. According to 335 surveys 
conducted by Love N.G., a professor from Virginia 
Tech University, 90% of the sewage plants surveyed 
in the United States experienced abnormal biological 
treatment of wastewater. Seventy percent of wastewater 
treatment plants failed due to the influent fluctuation 
[5]. O 'Brien G J et al. pointed out that when influent 
and environmental conditions were suddenly changed 
(due to the impact of toxic substances or a sharp change 
in pH, etc.) the performance of wastewater treatment 
will be greatly affected [6,7].

For a long time, to meet the criterion for sewage 
discharge, operators rely mostly on their own experience 
and data (such as COD, ammonia, influent flow, etc.) 
obtained from online detection equipment to regulate 
the WWTP. However, during sudden abnormal influent, 
there is often hysteresis by means of manual controls, 
which makes it difficult to deal with the emergency in a 
timely manner [8, 9]. Faced with more stringent sewage 
discharge standards, this undoubtedly aggravates the 
potential risks and uncertainty in the sewage treatment 
operation process.

There is some regularity of influent quality and 
quantity from WWTP. For example, the concentration 
of influent pollutants is relatively high in winter and 
lower in summer, while the influent quantity is the 
opposite [10]. In order to grasp the dynamic changes 
of influent quality and quantity of WWTP in real time, 
the machine learning, mathematical modeling and other 
forecasting methods are increasingly being used to 
assist WWTP operation and management. For instance, 
influent prediction models were built with autoregressive 
integrated moving average (ARIMA), nonlinear 
autoregressive network (NAR) and support vector 
machine (SVM) regression time series algorithms, and 
the prediction effect was evaluated using the historical 
influent flow data of a sewage treatment plant (STP) 
as training data [11]. Hamid Zare Abyaneh studied the 
predictive effects of multiple linear regression (MLR) 
and artificial neural network (ANN) models on two 
major wastewater parameters for a sewage treatment 
plant. The correlation coefficient (R), root mean square 
error (RMSE) and bias values were used to evaluate the 
performance of the neural network model [12].

However, it should be pointed out that current 
researches were mainly focused on predicting either 
influent quantity or quality [13-16], while fewer studies 
concerned about influent quantity and quality prediction 
simultaneously, and there is still a lack of systematic 
research on dynamics and correlation between influent 

quantity and quality. And there was also no separation 
of rain and sewage in many countries, and influent 
quality and quantity are easily affected by precipitation, 
air temperature and other factors [17, 18]. Most studies 
only used historical WWTP influent quantity and (or)
quality data for machine learning training data and did 
not consider the influence of external factors such as 
weather and temperature on influent [11, 19]. The models 
in previous studies have used historical influent quality 
and quantity as the only reference, ignoring the effects 
of meteorological factors such as precipitation, and have 
been built only based on present temporal fluctuations 
in influent quality and quantity with a higher accuracy, 
which is hard to predict the influent quality and quantity 
under the unconventional meteorological conditions 
such as heavy rainfall, continuous high temperature and 
drought weather, inducing to the limitations for actual 
applications.

Based on these issues, a more comprehensive model 
that takes into account more possible factors is needed 
to facilitate the auxiliary operation of sewage treatment 
facilities and effectively improve the warning ability of 
WWTP risk under special meteorological conditions. 
In this study, four linear regression methods (Linear 
Regression, Ridge Regression, ElasticNet Regression 
and Lasso Regression) were used to construct influent 
prediction models. To further improve the applicability 
of the models for influent quality and quantity prediction 
in WWTP, besides influent indicators (influent flow, 
COD, NH3-N), local precipitation and air temperature 
that may affect the influent quality were also taken into 
account for model building and prediction evaluation. 
The results of this paper are more applicable to the 
actual operation management requirements of auxiliary 
operation of sewage treatment facilities, and also lay 
a foundation for the development of intelligent sewage 
treatment plants.

Materials and Methods

Determination of COD and NH3-N

COD was determined by “Water quality-
determination of the chemical oxygen demand-
dichromate method” (HJ 828-2017) [20]. Ammonia 
nitrogen was determined by “Water quality – 
determination of ammonia nitrogen – Nessler’s reagent 
spectrophotometry” (HJ 535-2009) [21].

Data Acquisition and Classification

This study selected the Gongxian WWTP 
(104°43′52.09″E,28°28′55.86″N), in Yibin City of 
Sichuan Province, China as the research area, with 
a capacity of 20000 m³/d, used Anaerobic-Anoxic-
Oxic (AAO) process. The five main record indicators 
include precipitation, temperature, influent flow, COD, 
and ammonia. Data were obtained for January 1,  
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2015 December 31, 2018. January 1 of the year was 
recorded as day 1, December 31 was day 366 (2016), 
and there were 365 days each year (2015, 2017, 2018). 
The WWTP location was shown in Fig. 1.

Analysis of Temperature and Precipitation

According to Fig. 2 and 3, there was little change 
on the local temperature and precipitation of Gongxian 
county from 2015 to 2018. higher temperature (>30ºC) 
days appeared in 2016 and 2017, while lower temperature 
(<10ºC) days happened in 2018. Meanwhile, there  
was no record of temperature below 0ºC in successive 
years. The local precipitation was mostly below 10 mm 
(24-hour precipitation), and more than 315 days (86%) 
were within this range during 2015-2018. Besides, 
the occurrence of rainstorm (the rainfall is equal to 
or greater than 50 mm in 24 hours), according to the 
Chinese meteorological department [22] is rare, with no 

more than seven days in consecutive years from 2015 
to 2018.

Analysis of Influent Quality and Quantity

As shown in Figs 4-6, there was no drastic change 
for influent quantity during 2015-2018, and the average 
influent flow from 2015-2016 was slightly higher than 
that from 2017-2018, and the highest one-day inflow 
occurred in 2018. From 2015 to 2017, the average 
influent COD value was stable. However, it decreased 
by 16.6% in 2018. The highest value in 2018 was 
higher than any of the previous years, and the lowest 
COD value was much lower, indicating a significant 
fluctuation of influent indicators in 2018 compared with 
other years. The average values of influent NH3-N were 
basically stable from 2015 to 2018, while the maximum 
increased. Compared with 2015, the maximum NH3-N 
concentration in 2018 was three times of that of 2015, 

Fig. 1. The location of Gongxian WWTP.



Wang R., et al.4270

and the minimum was only half of that in 2015, 
reflecting increased volatility in incoming NH3-N.

Model Building 

Linear Regression

The simplest linear regression is a straight line used 
to fit a series of points on a two-dimensional plane. 
The purpose of linear regression is to summarize the 
distribution rule or trend of all training samples, and 
finally to predict the new sample points. The general 
form of the equation for a line in a two-dimensional 
plane is expressed as y = Ax + B. After training the 
model using data from the training set, the optimal 
values of the two parameters A and B in the equation 
can be determined and used to predict newly observed 
samples to obtain the predicted value of y. In three 

Fig. 2. Temperature variability chart of Gongxian County during 
2015 a) -2018 d).

Fig. 5. The influent COD of Gongxian WWTP during  
2015-2018: a) 2015, b) 2016, c) 2017, d) 2018.

Fig. 3. The precipitation change map of Gongxian county during 
2015-2018: a) 2015, b) 2016, c) 2017, d) 2018.

Fig. 6. The influent NH3-N of Gongxian WWTP during 
2015-2018: a) 2015, b) 2016, c) 2017, d) 2018.

Fig. 4. Influent flow of Gongxian WWTP during 2015-2018:  
a) 2015, b) 2016, c) 2017, d) 2018.
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dimensions, the parameters of a two-dimensional plane 
should be determined, and so on. In n-dimensional 
space, the parameters of an ‘n-1’ dimensional 
hyperplane should be determined.

This method is called linear regression because 
the model is composed of linear combinations of all 
features, and its basic form is shown in Formula (1) 
[23]:

 (1)

ŷ  : Represents the predicted value of a linear regression 
model
n: Represents the number of features
xj: Represents the observation of the Jth feature
θj: Represents the value of the Jth parameter

With the training data and the model, it is also 
necessary to define the appropriate cost function, which 
quantifies the error between the predicted and observed 
values. After selecting an appropriate cost function, the 
training process identifies the minimum value. For the 
linear regression algorithm, the most commonly used 
cost function is the MSE function, as shown in Formula 
(2).

     (2)

Then, the gradient descent method is used to 
train the model to obtain an optimal solution for the 
above mentioned cost function and the weight vector 
corresponding to Formula (3).

             (3)

In the general Linear Regression mentioned above, 
the assumed function is a linear equation, which is 
expressed as a straight line in the two-dimensional 
plane. However, in many cases where the equation of 
the line does not fit the data well, polynomial regression 
may be an alternative. Higher powers (such as square 
or cubic terms) applied in polynomial regression means 
the increase of the model freedom, and it may be 
helpful to the capture of nonlinear changes in the data. 
It is known that adding higher-order terms also increase 
the complexity of the model. As model complexity 
increases, the capacity and the ability of the model to 
fit data also increased, which can further reduce the 
training error but increase the risk of overfitting.

In polynomial regression, the most important 
parameter is the degree of the highest power. If the 
degree of the highest power is n and there is only one 
characteristic, the polynomial regression equation can 
be expressed as Formula (4) [24].

    (4)

Ridge Regression

When using polynomial regression, if the highest 
degree term of polynomial is large, the model is prone 
to overfitting and regularization is commonly employed. 
Ridge Regression, also known as L2 regularization,  
is a method to prevent overfitting during linear 
regression. The only difference between ridge  
regression and polynomial regression is the cost 
function. The cost function of ridge regression is shown 
in Formula (5).

                   (5)

This adds a penalty term to the original cost function 
to make the weight of the higher order term close to 
zero. Ridge regression can be considered as long as the 
data is linearly dependent and the polynomial regression 
does not fit well, so that regularization is required.

Lasso Regression

Lasso regression is very similar to ridge regression 
in that it uses different regularization terms. Constraint 
parameters are established to prevent over fitting. 
However, there is another reason why Lasso is 
important: Lasso can train the parameters of some 
features with small functions to zero and obtain sparse 
solutions. In other words, dimensionality reduction 
(feature screening) is achieved in the training model 
with this method. The cost function of Lasso is shown 
in Formula (6).

                   (6)

Elastic Net Regression

Elastic regression is used when too many 
features are sparse to zero and ridge regression is not 
regularized, or the regression coefficient attenuation is 
too slow. Therefore, ElasticNet regression can be used 
for synthesis to obtain better results. It integrates ridge 
regression and Lasso regression, and its loss function 
is shown in Formula (7), where R represents the 
proportion of the Lasso regression term.

    (7)

For the purposes of this study, x1 represents 
temperature, x2 represents rainfall, and y represents the 
predictive variable. The simplest function expression is 
shown in Formula (8).

                (8)

After sample testing and a comparison of the 
above methods, we found that the highest order of  
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the eigenvalue was line 3 with the highest accuracy, 
namely the function expression shown in formula (9).

       (9)

Furthermore, considering the correlation between 
temperature and rainfall, the accuracy was maximized 
when the function expression is shown in formula (10).

(10)

In this study, polynomial regression in linear 
regression was first used as a machine learning 
algorithm, but if the highest polynomial degree term 
was large, the model was prone to overfitting. In 
this case we added a constraint on the parameter 
to the cost function called regularization, which is 
a common way to prevent overfitting. Through L1 
and L2 regularization, Lasso regression and Ridge 
regression were obtained. L1 regularization reduces 
the complexity of the model by thinning (reducing the 
number of parameters), so that parameter values can 
be reduced to zero. L2 regularization reduces model 
complexity by reducing the numbers of parameters, 
so parameter values can only be reduced continuously 
but never to zero. ElasticNet regression, an algorithm 
considering both L1 and L2 regularization, is a good 
contraction method to handle multicollinearity and 
variable screening, with less precision loss.

Model Evaluation

Based on the platform of Python 3.7, the 
precipitation, temperature, influent flow, influent COD 
and ammonia were taken as an array to train the model. 
The time interval of the training data was from January 
1, 2015 to December 31, 2017. Machine learning 
was conducted using the Linear Regression, Ridge, 
ElasticNet and Lasso methods.

Data from January 1, 2018 to December 31, 2018 
were used as true values and compared with the values 
predicted by different methods. The prediction effect 
was evaluated by the following indicators.

Data Normal Rate

Based on common sense and relevant standards 
[25] negative values of flow rates, COD and ammonia 
that predicted by models were regarded as outliers 
by default, and those with COD values exceeding  
500 mg/L were also considered as outliers (the design 
upper limit of COD in general WWTP is 500 mg/L).

                             (11)

S: Normal rate of data
Qn: Represents the number of normal predicted values 
obtained using different prediction methods, n = 1,2,3,4, 
respectively representing Linear regression, Ridge 
regression, ElasticNet regression and Lasso regression.
Q: Represents the number of observed values counted

Average Prediction Error

                    (12)

W: Average prediction error 
KP: Prediction values based on different methods
KT: Statistical observations

Results and Discussion

In this study, four different machine learning 
methods were used to predict the influent quantity, 
COD and ammonia concentration in 2018 Gongxian 
WWTP. Results are shown in Figs 7-9 (FT represents 
the recorded inlet flow rate value, FP represents the 
predicted value; CT represents the measured value of 
influent COD, CP represents the predicted value; NT 
represents the measured value of influent ammonia, NF 
represents the predicted value).

Influent Quantity Prediction

The influent flow predicted by the four methods 
showed no significant difference on the data normal 
rate and average prediction error (Fig. 7, Table 1), and 
the data normal rates were greater than 98.9% and 
prediction accuracy ranged from 85.80% to 86.19%. 
It can be seen that the prediction effects of the four 
methods are relatively close. Hazhar Sufi Karimi et al. 

Fig. 7. Comparison of predicted and measured influent flow 
using Linear Regression a), Ridge Regression b), ElasticNet 
Regression c) and Lasso Regression d) methods. 
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have shown that Lasso has a relatively good predictive 
performance in traffic prediction [26]. In this study, 
Lasso also shows a better predictive performance, 
only slightly inferior to Ridge. Comprehensive analysis 
showed that Ridge had an ideal effect on influent flow 
prediction and can be used in WWTP.

Influent Quality Prediction

The influent COD values predicted by different 
methods are shown in Fig. 8 and Table 2. During Day 
160 to Day 260, significant differences on COD values 

were occurred between predicted and measured values 
when Linear Regression method was applied, which was 
also reflected by average prediction errors of up to 37% 
(63% accuracy). Gao et al. used Multivariate Linear 
Regression method to construct the influent prediction 
model, which was effectively applied in general 
conditions [27-29], but also found that the prediction 
accuracy of the simple linear regression model was not 
the best, which was more consistent with the conclusion 
of this study.

The prediction accuracies of three methods were 
accuracy of 78%, 78% and 82%, respectively. In 
comparison, Ridge had a slightly higher prediction 
accuracy than other two methods. In addition, the 
data normal rate predicted by the four methods were 
relatively high, all of them were greater than 96.16%. 
Overall, Ridge had the highest prediction accuracy 
with respect to influent COD values, while ElasticNet 
and Lasso had slight advantages on data normality 
rate. Influent NH3-N predicted by different methods are 
shown in Fig. 9 and Table 3. Many outliers predicted by 
Linear Regression method were obtained in the range 
of Day140-Day250, while the prediction performance 
of Regression method was even worse (outliers were 
distributed in the range of day 100 to day 270). On the 
contrary, ElasticNet and Lasso methods maintained 
higher normal data rate (100%). In terms of prediction 
accuracy, Linear Regression and Ridge methods had  
a high accuracy of 82% and 81%, while ElasticNet  
and Lasso had higher prediction errors of 26% and 
26% (74%, 74% accuracy), respectively. It should be 
noted that the lower prediction errors obtained by 
Linear Regression and Ridge methods were based on 
the elimination of many outliers (the predicted results 

Table 1. The data normality rate and average prediction error of influent flow predicted by different methods. 

Method
Influent quantity

Total number of data 
sets

Number of normal 
data sets Normal rate Average prediction 

error Accuracy

Linear Regression 365 361 98.9% 13.89% 86.11%

Ridge Regression 365 365 100% 13.81% 86.19%

Elastic Net Regression 365 365 100% 14.20% 85.80%

Lasso Regression 365 365 100% 14.02% 85.98%

Fig. 8. Comparison of predicted and measured COD values 
using Linear Regression a), Ridge Regression b), ElasticNet 
Regression c) and Lasso Regression d) methods. 

Table 2. The data normality rate and average prediction error of influent COD predicted by different methods.

Method
COD concentration of influent

Total number of data 
sets

Number of normal data 
sets Normal rate Average prediction 

error Accuracy

Linear Regression 365 351 96.16% 37% 63%

Ridge Regression 365 355 97.26% 18% 82%

ElasticNet Regression 365 365 100% 22% 78%

Lasso Regression 365 365 100% 22% 78%



Wang R., et al.4274

were negative), which as most likely the reason for their 
low prediction errors. Moreover, in terms of application 
and function of the prediction models, if the prediction 
accuracy difference is not very large, the predicted data 
normality rate should be a priority indicator. Therefore, 
ElasticNet and Lasso methods were more reasonable 
selections for influent NH3-N prediction.

Error Analysis

Compared with traditional prediction studies, the 
methods adopted in this study showed no superior 
prediction accuracy. The possible reasons for this 
phenomenon are as follows: (a) Data fluctuated: the 
observed data of influent flow, COD and NH3-N from 
2015 to 2017 were used as training data to predict the 
data of 2018, and the observed value of 2018 was used 
as a control group to evaluate the prediction accuracy. 
It can be found that the average influent flow value 
from 2015 to 2018 was closed (16345 m³/d-18328 m³/d), 
with data fluctuation of 10.8%. However, the 
minimum value of influent flow data fluctuates greatly  
(1110 m³/d-10176 m³ /d), with data fluctuation of 89.1%.
There is a fluctuation (165.85 mg/L-198.02 mg/L) 
in the average influent flow value of influent COD 

during 2015-2018, and the observed value in 2018 is 
significantly lower than that during 2015-2017. The 
mean value of the influent concentration of NH3-N 
is relatively close (21.17 mg/L-22.39 mg/L), but 
the maximum influent concentration (27.06 mg/L- 
69.28 mg/L) fluctuates to 60.9%, and the minimum 
influent concentration (4.72 mg/L-16.89 mg/L) 
fluctuates to 72.1%. Theoretically, the more regular 
the data is, the higher the prediction accuracy will be, 
and the fluctuation of the data will lead to the decrease 
of the prediction accuracy [30]. (b) Multifactorial 
influence: The influent quality of the sewage plant 
was affected by weather, drainage system, population 
density, sewage collection, pipe network and other 
factors. However, in practical application, many factors 
can only be obtained in a long-term quantitative way, 
such as population density and pipe networks, etc., so 
it is difficult to obtain reliable dynamic data to improve 
prediction accuracy by machine learning. Using a few 
variables to predict a value that is jointly determined by 
many influencing factors with no obvious quantitative 
relationship will impact the prediction accuracy [31]. 
(c) Data pool: Data is the core of machine learning, 
and the size of the data pool has a great impact on the 
accuracy of prediction [32]. In the sewage treatment 
industry, the online monitoring system is adopted to 
obtain the data of influent quality and quantity, which is 
relatively easy to obtain a large number of training data, 
and lays a foundation for the sewage treatment industry 
to adopt the machine learning method to predict the 
influent quality and quantity. However, due to the late 
application and development of online monitoring 
system in China’s environmental protection industry, 
the amount of online data stored in sewage plants is still 
small at present, only 3-5 years. This is far from enough 
for the training of a high-precision machine learning 
prediction model, which indirectly leads to the low 
prediction accuracy.

Conclusions

In most developing countries, rain and wastewater 
are still not fully separated. Ensuring the stable 
operation of WWTP is very important in the 
special weather conditions (such as heavy rain, high 

Table 3. The data normality rate and average prediction error of influent NH3-N predicted by different methods.

Fig. 9. Comparison of predicted and observed NH3-N values 
using Linear Regression a), Ridge Regression b), ElasticNet 
Regression c) and Lasso Regression d)  methods.

Method
NH3-N concentration of influent

Total number of data 
sets

Number of normal data 
sets Normal rate Average prediction 

error Accuracy

Linear Regression 365 253 69.3% 18% 82%

Ridge Regression 365 192 52.6% 19% 81%

ElasticNet Regression 365 365 100% 26% 78%

Lasso Regression 365 365 100% 26% 78%
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temperature, etc.). Influent prediction and early warning 
system of WWTP can reduce the risk of abnormal 
operation. In this study, four machine learning  
methods of Linear Regression, Ridge, ElasticNet 
and Lasso were used to predict the influent quality 
and quantity. For influent quantity prediction, the 
model constructed by the all algorithms showed a 
high accuracy (85.80%-86.19%) and a high normal 
rate of data (98.99-100%). For influent quality (COD) 
prediction, the Ridge method (normal rate: 97.26%, 
accuracy: 82%) is relatively ideal. In terms of prediction 
for NH3-N, Lasso and ElasticNet (normal rate: 100%, 
accuracy: 78%) as ideal prediction method. The results 
proved that the machine learning prediction model of 
influent quantity and quality can be used as a warning 
module assisting the operation management of WWTP, 
and also be an important component of intelligent 
sewage treatment plants.
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