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Abstract

Urban sprawl and increasing population pose a significant problem for sustainable development 
of cities. The present research focuses on analyzing urban growth and spatial patterns in Abha and 
its surrounding cities of Asir region of Saudi Arabia during the period 1990-2018. Landsat satellite 
data used to prepare LULC maps for the years 1990, 2000 and 2018 using maximum likelihood 
supervised classification. The study uses a combined approach of several spatial, urban metrics and 
landscape expansion index to quantify the growth patterns, expansion approaches and spatial extent 
of urban areas. A massive increase of +389% in built-up area is observed over temporal scale under 
investigation. The conversion of the natural landscape to built-up is observed as the leading cause of 
urbanization. It is found that the outlying method of urban expansion is the most dominant, followed  
by edge-expansion and infill. Spatial metrics show dispersion at the outlying and accumulation in 
the centre. It was observed that rate and intensity of urban expansion and sprawl is recorded to be 
higher during 2000-2018 in comparison to 1990-2000. Assessing land-use changes and urbanization 
growth trends using integrated spatial approaches are helpful in planning and resource management  
in the region for the present and future. 
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Introduction

Increased urban footprints and significant changes 
in land use land cover (LULC) are direct impacts of 
urbanization [1]. Unplanned urban growth has been the 
major challenge across the world. The drawbacks such 
as incompetency in recording of systematic changes 
in vast land cover in conventional ground-based 
techniques have resulted in large scale use of geospatial 
techniques. The availability of satellite products, spatial 
data, and geographic information system (GIS) based 
modeling has led to development of new approaches to 
analyze urban dynamics. In few studies [2-7], temporal 
analysis of LULC has been extended to future time-
period to develop prospective planning. However, 
for the assessment of urbanization and its impacts, 
urban spatial patterns need to be quantified [8]. Thus, 
integration of remote sensing and GIS has become a 
significant source of research in delineation of urban 
areas and urban planning [9]. The use of spatial 
techniques helps in accurate monitoring of urban areas 
and characterization of the changes in urban fabric. 
The advancement in GIS has resulted in plethora of 
research studies based on mapping of LULC to measure 
the urban built-up, land cover and urban sprawl [10]. 
The utilization of satellite data helps in the widespread 
spatial and cost-effective assessment of urban growth on 
temporal scale [8, 11]. The factors causing urbanization 
and urban sprawl could be easily derived using spatial 
metrics [12, 13] and LULC classification-based methods 
[13, 14]. 

Advances in geospatial techniques have made it 
much easier to evaluate the landscape and determine 
its morphological changes. Spatial (or landscape) 
metrics are an exhaustive way to describe the spatial 
characteristics or patterns of a landscape [12, 13, 15]. 
Various studies have been conducted to comprehend 
and measure the urban landscapes [16-18]. The spatial 
characteristics of natural landscapes (i.e. spatial 
metrics) are used to characterize the urban patterns [19-
23]. The metrics have proven helpful in understanding 
the evolution process of cities by explaining aggregation 
and disaggregation [24, 25]. Moreover, various 
categories of spatial metrics, known as the dispersion 
index and built-up density index, have also been used to 
analyze the cities having large scale urban landscapes 
[26]. These metrics were used to understand urban 
expansion processes, urban morphological changes, 
and to explain variability in land-use patterns. Kane et 
al. [27] assessed the urban landscapes based on shape 
complexity, diversity, fragmentation, and urban areas to 
examine urban sprawl. The spatial metrics are helpful 
in describing spatial heterogeneity in landscape [19, 28-
31]. The pattern of urban expansion can be understood 
with the help of spatial expansion approaches. Several 
metrics have been developed to include dynamic 
changes, and one such metric is the Land Expansion 
Index (LEI), developed by Liu et al [32]. In computing 
spatial patterns of urban morphological changes and 

estimating urban expansion, LEI has proven to be useful 
[32-36]. Li et al. [37] has proposed a method focused 
on geographically weighted regression (GWR) to 
differentiate the relationship between urbanization and 
landscape trends along with the spatial heterogeneity. 
Several of the studies employed gravity center method 
to identify the changing gravity center of urban land 
mass during the specified time-period [36, 38, 39]. 
Other urban growth measurement methods include map 
density [13], urban expansion intensity [36, 39], built-
up density [36], local and global entropy indices [40], 
spatial metrics combined with urban-rural gradient [41, 
42] and gradient model merged with patch matrix [30].

The capital city of Asir region, Abha and its 
surrounding areas are dominant in natural vegetation 
such as scrub and rocky terrain, however, the region has 
experienced rapid urban development in recent decades 
[18]. Therefore, determining the urbanization trend 
and growth patterns in the region becomes necessary 
for holistic development of the region inclusive of the 
natural vegetation and land cover. This paper aims to 
delineate urban morphology and utilize spatial metrics 
and landscape expansion index (LEI) to analyze patterns 
of urbanization and urban expansion approaches in Asir 
region of Saudi Arabia during last three decades i.e., 
1990-2018. We also compute the rate, the intensity, and 
the spatial patterns of urban expansion. The study would 
be useful in determining and describing changing trend 
and spatial arrangement of urban area, which would be 
beneficial for future urban planning.

The present study is significant as it defines the 
process and rate of urban expansion in a naturally 
dominated vegetative landscape of a growing city of 
Asir, the region which is less studied in terms of urban 
planning. The region under study has an arid climate, 
however, because of its topography and amicable 
climate, the city is has shown rapid urban growth. The 
impact of climate change is frequently observed over 
the region and therefore a sustainable urban planning is 
need of the region to minimize the impact of climate 
change.

Study Area

The capital city of Asir region, Abha and its 
surrounding cities situated on the south-western side of 
Saudi Arabia, is chosen as the study area for the present 
study. The region, lying between 17°59’21.452”N 
and 18°30’33.812”N latitude, and 42°18’56.269”E 
and 42°56’25.909”E. covers an area of 2286.59 km2. 
The topography of the study area is undulating and 
its elevation varies between 1,038 and 2,990 m with 
a mean elevation of 2180 m above sea level. It covers 
more natural vegetation in comparison to any other 
region of Kingdom of Saudi Arabia. It has one of the 
richest and most diverse floristic regions of the area. 
Jabal Al-Sooda, one of the region’s highest mountain, 
is in the north-western part of the of the study area  
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with a height of 2990 m and also has a rich flora [43]. 
The variability in climate and topography has led to the 
development of various plant species within the study 
area (Asir Province) [44]. Because of anthropogenic 
activities, high slope, fragile geology and rainfall it 
has widespread land loss problem and thus creates 
ecological imbalances. 

Among the surrounding cities, Abha city is 
presently the capital city of the Asir region. According 
to the General Statistics Authority’s 2019 census, 
Abha, Khamis Mushyet, Alwadean and Ahad Rufaida,  
2.2 million people live in these four cities, 1/3 per cent 
of whom are Saudis [45, 46]. The layout of these four 
cities typically leads to urban development in the region, 
including several topographical levels in most of its 
parts. Mountainous areas are the main drawing factors 
for tourists to those cities. The four major Asir region 
cities studied expect significant urban transformation 
growth, and address a sustainable understanding 
of urban sprawl and development that will enhance  
the quality of living for tourists and residents is a must.

Data and Method Used

Pre-processing 

Landsat satellite dataset for the years 1990, 2000, 
and 2018 were downloaded from USGS Earth Explorer 
(https://earthexplorer.usgs.gov/). The methodology 
flowchart is given in Fig. 2. The images were layer-
stacked using individual bands to form False Colour 

Composite (FCC) images of each year. The decadal 
satellite images of Landsat images acquired were 
processed at Level-1 and thus processed to standard 
parameters and distributed as scaled and calibrated 
digital numbers (DN). The images were corrected 
radiometrically and geometrically. Later, they were 
orthorectified to common Universal Transverse 
Mercator (UTM) projection. Using ERDAS Imagine 
software 9.2 the individual bands obtained were stacked 
layer for further processing. The colour balancing 
technique [47] was used to minimize differences in 
visual appearance on the mosaicked image. This was 
followed by atmospheric correction using the Dark 
Object Subtraction (DOS) model, that depends on data 
from the image itself to correct atmospheric effects. 
This model takes into account minimum DN value 
in the histogram and is deducted from all the pixels. 
Finally, the image was subset using the study area 
administrative boundary.

Image Classification and Accuracy Evaluation 

Supervised Maximum Likelihood Classification 
(MLC) algorithm has been adopted to categories the 
images into eight classes such as built-up, water bodies, 
sparse vegetation, dense vegetation, agricultural land, 
scrubland, bare soil, and exposed rocks lands. The 
training sets were chosen based on in between class 
spectral separability. This classification scheme was 
used based on best system of image classification [48]. 
The Maximum Likelihood Classification algorithm 
uses Bayesian Theorem of decision making and assigns 

Fig. 1. Location map of study area showing the topographic of the study region.
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the pixel to the possible class based on the probability 
of a pixel belonging to a class [49]. When assigning 
a pixel to one of the classes, the MLC considers the 
variances and covariance of the class training sets. 
We trained the classifier until allowable separability 
indices were obtained based on the Bhattacharya 
distance separability index. To select the best q features 
from the original n bands in an m-class problem, the 
Bhattacharyya distance is calculated between each  
m (m – 1)/2 pair of classes for each possible way of 
choosing q features from n dimensions. The best 
q features are those dimensions whose sum of the 
Bhattacharyya distance between the m (m – 1)/2 
classes is highest [50]. Accuracy assessment for the 
image of 2018 was based on 112 GCPs collected during 
field survey using a handheld Garmin GPS and high-
resolution Worldview images of the region. A stratified 
random sampling was adopted to collect the GCP’s from 
all the eight classes derived from LULC classification. 
The reference points for the image of 1990 were 
collected from the ancillary cadastral and topographic 
maps. The accuracy for the classified image of 2000 was 
assessed using google earth images for the year 2000 
[51]. The google earth images are good for assessment 
of historic images and has been advocated to be useful 
in assessing the accuracy of classification [51, 52]. On 

the basis of the reference data, we calculated the areas 
of the mapped categories for the period under analysis 
to account for errors associated with the quantitative 
assessment of areas from classified data. To test 
corresponding classes, the field sample coordinates were 
overlaid on classified maps. Statistically, for accuracy 
assessment, the confusion matrix, derived from LULC 
maps and field data (signature file), as defined by 
Jensen [49], was developed. In addition, the Kappa 
and its variance were used to measure a coefficient of 
agreement between classified data and ground reference 
data. The importance of “overall accuracy, producer’s 
accuracy, user’s accuracy, and kappa coefficient” 
indicates the classification accuracy, in addition to the 
error margin for overall accuracy at 95 % confidence 
interval.

Urban Spatial metrics 

The built-up areas are extracted from the classified 
LULC maps to examine spatial patterns in built-up  
or urban areas. With the advancement in satellite data  
and geoinformation techniques, spatial metrics have 
become a widely used technique to assess urban spatial 
patterns and quantify urban dynamics. The urban 
expansion/sprawl within a patch or region can be 

Fig. 2. Methodological Framework.
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categorized as outlying, edge expansion, and infilling. 
The use of spatial adjacency relationships among 
different patches to identify the type of expansion types 
has been stated in Forman [53]. Fragstats [54] was used 
to analyze urban dynamics using spatial metrics in this 
study. The spatial metrics used in the study are given in 
Table 1. 

Landscape Expansion Index (LEI)

LEI [32, 36] describes various urban expansion 
approaches i.e., infill, outlying and edge-expansion. LEI 
can obtain information on the establishment process 

of land expansion patterns. The spatial relationship 
between an existing builtup and new urban patches 
identifies the evolution of land use pattern. The index is 
calculated using Eq. (1) which determines phenomenon 
of urbanization during the given period. LEI was 
calculated as:

                (1)

...where Abo is the intersection area between buffer and 
occupied area of old urban land (i.e. of the previous 
year) and Abv is the intersection area between buffer and 

Table 1. Different spatial metrics used in the study to understand urban dynamics [54].

S.No Spatial metric Formula Range Description

1. “Class Area 
(CA)” CA>0, no limit

“The total sum area (m2) of all the patches 
of a class; divided by 10000 for conversion 
to hectares.” Higher value means more area 

covered by a particular class.

2. “Largest Patch 
Index (LPI)”

 A = total landscape area (m2)

0<LPI≤100

“The area of the largest patch of the 
corresponding class divided by total 

landscape area.” Higher value indicates when 
particular class covers huge continuous area. 

3. “Edge density 
(ED)” eik = total length (m) of edge of 

all patches of a class i
A = total landscape area (m2)

ED ≥ 0, no limit

“The sum of lengths (m) of all edges of all 
patches of a class divided by total landscape 
area (m2).” Higher value means increasing 

fragmentation of a particular class. 

4.
“Percentage 

of Landscape 
(PLAND)”

0<PLAND≤100
PLAND becomes 0 
when corresponding 

patch type becomes rare; 
PLAND = 100, when en-
tire landscape comprises 

of single patch types 

“It equals the percentage the total landscape 
comprised of corresponding urban patch 

type”

5. “Number of 
patches (NP)”

NP – ni 
ni = number of patches in class 

type i
NP ≥ 1, no limit

“The total number of patches of a class. 
Higher number means increase in number of 

patches of corresponding class”

6.

“COHESION
(Patch 

Cohesion 
Index)”

...where p*ij = perimeter of 
patch ij; a*ij = area of patch ij

Z = total number of cells in 
landscape

0<CONTAG≤100

“CONTAG equals minus the sum of the 
proportional abundance of each patch type 
multiplied by the proportion of adjacencies 
between cells of that patch type and another 

patch type, multiplied by the
logarithm of the same quantity, summed over 
each unique adjacency type and each patch 

type; divided by 2 times the logarithm of the 
number of patch types, multiplied by 100 

(to convert to a percentage).” Higher value 
means large continuous class.

7.
Landscape 

Shape Index 
(LSI)

...where eik
* is total length of 

edge between patch types i and 
k, A = total landscape area (m2)

LSI≥1, without limit
LSI = 1 when landscape 

comprises of single 
square patch. 

LSI increases without 
limit as it becomes more 
irregular/edge length of 
patch types increases.

It represents a standardized measure of total 
edge/ edge density.
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vacant area (Fig. 3)” The vacant area is the new urban 
land (i.e. of later year) [32].

LEI was computed using urban areas for different 
time scales. Using the vector form of new urban areas, 
buffers of 1m were created. The buffer distance of 1m 
is chosen because the study area has deserted landscape 
and therefore, the urban expansion of a minimal yet 
appropriate magnitude is intended to be captured and 
observed to assess the process of urbanization. Thus, 
1m distance was chosen as the most appropriate buffer 
distance as it can cover considerable urban expansion in 
the study region over the temporal domain. 

Urban Expansion Indices

To estimate rate, intensity and phenomenon of 
urbanization, three indices were used, i.e., Urban 
Expansion Rate (UER) [32], Urban Expansion Intensity 
Index (UEII) and Urban Growth Coefficient (UGC) 
[55,56]. Urban Expansion Rate (UER) estimates average 
annual rate of urban expansion between two time 
periods using Eq. 2.

          (2)

...where, UER is Urban Expansion Rate, Ut2 and Ut1 are 
built-up area at time-period t1 and t2, respectively. Urban 
Expansion Intensity Index (UEII) indicates mean annual 
proportion of newly increased built-up area with respect 
to total changed area [55]. UEII is calculated using Eq. 3.

               (3)

...where, Ut2 and Ut1 are built-up area at time-period t1 
and t2, respectively, TA is total area of landscape and 
t is time-period i.e., t2-t1. UEII is considered to reveal 

the possibility, intensity (speed) and future direction of 
urbanization [56]. 

To identify the pattern of urbanization i.e., sprawl 
or densification, Urban Growth Coefficient (UGC) was 
calculated using Eq. 4.

                          (4)

...where, Ur means urbanization rate and Pr is urban 
population growth. 

The value of UGC>1 indicates urban expansion as 
sprawling phenomenon and <1 as densification [55].

Results and Discussion

Accuracy Assessment

The LULC maps for years 1990, 2000 and 2018 are 
generated by classifying Landsat satellite images of 
respective years using MLC algorithm. The accuracy 
assessment of the classified LULC maps was done using 
confusion matrix. The producer’s and user’s accuracies 
values of classified LULC maps for respective years 
are given in Fig 4. The overall classification accuracy 
values for the classified LULC maps of 1990, 2000, 
and 2018 are found to be 89.74%, 88.40% and 91.21%, 
respectively. The kappa coefficient values for the 
classified LULC maps of 1990, 2000, and 2018 are 
observed to be 0.86, 0.85 and 0.90, respectively. Fig. 4 
shows that the classification accuracy of different LULC 
classes is equal to or more than 75%.  It indicates that 
the accuracy of the classified LULC maps is satisfactory 
for further analysis.

Spatio-Temporal LULC Analysis

Spatio-temporal changes in LULC of Asir region 
were analysed over a period of almost three decades 
from 1990-2018. Fig. 2 shows the classified LULC maps 
of 1990, 2000 and 2018. The quantification of area 
covered by each LULC class in classified LULC maps 
(Table 2) reveal continuous increase in built-up area of 
389.27% during 1990-2018 (Fig. 5). Spatially, the region  
has observed increase in built-up area in north and 
south-east direction. The dense and sparse vegetation 
has shown increase over the temporal scale considered 
in the study. This could be attributed to maintain the 
national park region in the north-western side of Asir, 
which constitutes mainly dense and sparse vegetation. 
The LULC features such as agricultural land, scrubland 
and bare soil have experienced a decline (Fig. 6).  
It could be attributed to human dominated activities 
leading to conversion to built-up area. The exposed rock 
region is observed to first increase and later decrease 
due to different land-use change processes.

In 1990, rocky terrain is covered with natural 
vegetation. Over the years, natural vegetation covering 

Fig. 3. Diagrammatic representation of LEI parameters.
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Fig. 5. LULC maps of Asir for different time-periods.

Fig. 4. The user and producer accuracy for different LULC classes for the classified map of year 1990, 2000 and 2018.
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Fig. 6. Spatio-temporal extent of agriculture, baresoil, builtup and dense veg. during 1990-2018.

Table 2. Area (in km2) covered by LULC classes during 1990-2018.

LULC classes 1990 2000 2018

Built-up 69.43 117.75 339.70

Water bodies 1.51 1.14 0.53

Dense vegetation 45.69 48.13 54.67

Sparse vegetation 242.52 208.25 253.50

Agricultural land 110.67 140.28 67.75

Scrubland 1048.42 801.00 842.69

Bare soil 263.58 355.74 186.91

Exposed rock 504.77 614.30 540.84
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the rocky terrain declined due to anthropogenic 
activities, leading the exposed area open or covered 
with baresoil. This has led to increase in baresoil area 
and exposed rock during 1990-2000. However, during 
2000-2018, exposed rocky terrain as well as baresoil 
area declined due to its conversion to built-up. To 
understand the changing landscape and spatial extent of 
various LULC classes over the years, spatio-temporal 
maps for each LULC are prepared separately (Fig. 6 
and 7). 

Spatial Metrics

Using the built-up class masked out from the LULC 
maps of 1990, 2000 and 2018 (Fig. 8), spatial metrics 
have been calculated on class levels to understand the 

urban areas heterogeneity (Fig. 9 and Table 3). Analysis 
at class level is useful to understand spatial arrangement 
of patches in each class [57]. As various metrics are 
redundant, the present study has chosen and employed 
eight metrics to analyze the spatial arrangement and 
structure of urban landscape.

During 1990-2018, a huge increase in the values of 
Total Class Area (CA) (6943 in 1990, 11775 in 2000 
and 33970 in 2018) is observed (Table 3). It shows that 
spatial metrics affirm the increase in the built-up area 
derived from LULC maps. The increase in values of 
Percentage of Landscape (PLAND) i.e., 1.81 in 1990 
to 3.07 in 2000 shows the increase in the abundance 
of built-up class. A higher abundance in built-up 
class is observed with higher increase in the PLAND 
values (3.07 in 2000 to 8.87 in 2018) during 2000-2018. 

Fig. 7. Spatio-temporal extent of exposed rock, scrubland, sparse vegetation and waterbodies during 1990-2018.
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Increase in the values of Largest Patch Index (LPI) 
(0.41 in 1990, 0.90 in 2000, and 5.77 in 2018) shows 
increasing dominance by the area covered by built-up 
class in the study region. 

With 5.77 value in LPI, built-up area is observed 
as a dominant LULC class in 2018. Also, it indicates 
aggregation of built-up area with time. Another metric, 
Edge Density (ED) indicates formation of new patches. 
Therefore, ED results show that the time-period  
2000-2018 experience formation of new patches of  
built-up in comparison to time-period 1990-2000. 
Similar inference can be derived from the values of 
Number of Patches (NP) i.e., 2533 in 1990, 3791 in 2000 
and 10844 in 2018. A significant increase in the number 

of patches is found during 2000-2018 in comparison 
to that of 1990-2000. The higher calculated Patch 
Cohesion Index (COHESION) values (96.52 in 1990, 
97.83 in 2000 and 99.45 in 2018) represent aggregated 
distribution built-up patches spatially. The higher 
COHESION values of built-up in 1990 indicates built-
up class to be contagious, however, built-up patches are 
observed to get more clumped and clustered in 2018. 
Landscape Shape Index (LSI) reveals about the shape 
of the class patches. An increase in LSI values (57.19 in 
1990 to 64.63 in 2000 to 95.57 in 2018) indicates higher 
irregularity in the built-up class patches. A greater 
irregularity is observed in 2018 as compared to 2000. 
Higher LSI values are also indicative of increasing edge 
lengths.

Spatial Expansion Approaches

The LEI was used to analyse spatial expansion 
methods of urban expansion i.e. outlying, edge 
expansion and infill, and determine the evolution of 
urban areas in Asir region. LEI ‘s value varies from 0 to 
100. Several attempts have been made to set appropriate 
thresholds to define various urban spatial approaches 
[32] using histogram distribution of number of patches 
and LEI values for different temporal scales. The peaks 
can provide the evidence to set the thresholds of LEI 
values for determining the urban patch growth types 
Using the calculated LEI values, a certain LEI interval 
is allotted a spatial expansion approach type based on 
visual investigation of the urban patches. The threshold 
employed for LEI for the spatial expansion during 
the period 1990-2000 was LEI = 0<21.88 signifying 
outlying: LEI>21.88 < 59.84 as edge-expansion and 
LEI>59.84<100 as infill, whereas for the period 
2000-2018 was LEI = 0<20.94 signifying outlying: 
LEI>20.94<60.50 as edge-expansion and LEI>60.50 

Fig. 8. Spatial extent of built-up during 1990-2018.

Fig. 9. Graphical representation of spatial metrics of urban area (%) during 1990-2018.
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<100 as infill. Fig. 10 shows the spatial variability of 
urban expansion approaches and area covered by edge-
expansion, outlying and infill during 1990-2000 and 
2000-2018, respectively (Fig. 11). 

Hence, these findings derived from LULC maps, 
spatial metrics and spatial expansion approach reveal 
that the initially in 1990, built-up area, located in the 
centre of the Asir region, was spatially contagious. 
Later in 2000 and 2018, the region has experienced a 
huge increase in the number of new built-up patches in 

the outskirt’s region as well as expansion in the already 
existing urban land leading to the formation of huge 
contiguous urban area. This has led urban patches to 
cause dispersion in the outskirts and aggregation in the 
centre of the study area. 

Quantification of Urban Expansion

Urban expansion is measured based on urban 
area between two specified time-periods 1990-2000 

Tbale 3. Spatial metrics of urban area during 1990-2018.

1990 2000 2018 Total

CA 6943.95 11775.24 33970.50 52689.69

% 13.18 22.35 64.47 100.00

LPI 0.41 0.91 5.78 7.10

% 5.82 12.78 81.40 100.00

ED 4.99 7.34 18.42 30.74

% 16.22 23.87 59.91 100.00

PLAND 1.81 3.08 8.88 13.77

% 13.18 22.35 64.47 100.00

NP 2533.00 3791.00 10844.00 17168.00

% 14.75 22.08 63.16 100.00

COHESION 96.53 97.83 99.46 293.82

% 32.85 33.30 33.85 100.00

LSI 57.19 64.63 95.57 217.39

% 26.31 29.73 43.96 100.00

Fig. 10. LEI maps for 1990-2000 and 2000-2018.
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and 2000-2018. The LULC maps have revealed  
the spatial extent of built-up area during different  
time-periods; thus, have provided a direct estimate of 
urban expansion in the study area. The findings derived 
from urban metrics have revealed spatial patterns  
of built-up areas, explaining the urban morphology  
of area. The LEI results have described spatial expansion 
approaches of built-up area. The rate and intensity  
of urbanization in Asir during different time periods 
are found by calculating different indices such as  
Urban Expansion rate (UER) and Urban Growth 
Coefficient (UGC) and Urban Expansion Intensity 
Index (UEII). The results of calculated indices are 
given in Table 4.

The urban indices show that Asir has recorded 
the highest rate of urban expansion during 2000-2018 
(6.06%) in comparison to 1990-2000 (5.42%). The urban 
growth coefficients (>1) during both the time-periods 
indicate sprawling phenomenon. Time-period 2000-2018 
has experience higher sprawling phenomenon (13.30) as 
compared to 1990-2000 (2.68). Also, time-period 2000-
2018 has witnessed higher intensity of urbanization 
(1.21) than 1990-2000 when intensity of urbanization 
was much lower i.e., 0.21. This demonstrates that urban 
areas have grown at a very greater extent between 
2000 and 2018. As per the categorization of UEI, i.e., 
“<0.28 (very slow urban expansion), 0.28-0.59 (slow 
expansion), 0.15-1.05 (medium expansion), 1.05-1.92 
(high expansion) and >1.92 (very high expansion)” 
[56], 1990-2000 has witnessed very slow urbanization 
speed (0.21) whereas 2000-2018 has witnessed high 
urbanization speed.  

The findings derived from urban indices are in 
agreement with that of derived from spatial metrics 
and LEI. These findings affirm the prevalence of urban 
sprawl and relatively rapid and intensive urbanization 
phenomenon is observed during 2000-2018

Urban growth, industrial advancement and 
agricultural traditions have brought about serious 
land cover changes, with large impacts on both the 
country’s ecological components and biodiversity. Since 
70% of the Saudi Arabian biome is desert, the natural 
vegetation is being altered by the extreme climate 
variation in this environment, including a scarcity 
of precipitation and high evaporation due to extreme 
heat during the day which is further enhanced due to 
increasing LULC change due to anthropogenic activity 
and is impacting the region more than natural factors. 
Due to its favourable climate the Asir region in Saudi 
Arabia has seen highest urban sprawl and expansion 
intensity during last two decades. The expanding 
economic activity and increasing population during 
the last two decades has offered opportunity for 
investment in booming sector of real estate thereby a 
massive increase in urban infrastructure. The Saudi 
Arabia Govt. offered interest free loan to certain lower 
income group people which also added to already 
increasing urbanization in the region. To provide basic 
essential needs and infrastructure to the increasing 
population several essential services such as hospitals, 
roads, schools, mosques etc were also built. Thus, with 
an urban growth rate of 6% in last two decades in the 
region needs a sustainable approach for management 
of growing cities. The Asir also comprise of major 
share of agricultural land. Over time, each of the form 
of expansion infill, outlying and edge expansion has 
grown in size, suggesting the increased compactness 
in the central part of the city and rapid consumption of 
vacant lots and fallow lands in the peripheral zones. A 
major change is observed in the natural landscape in the 
peripheral zone to build new houses and utility services. 
The urban areas in Asir are found to extend outwards 
intruding the natural vegetation and exposed rocky 
terrain. Such modification of the natural landscape 
may have destroyed the natural drainage network in 
the region and is evident by frequent flash floods in 
the downslope areas near the hills and in the city. The 
encroachment in the agricultural land and disturbance 
in drainage network would also degrade the soil quality 
of the region which in turn might also impact the 
overall agricultural productivity. The LEI maps depict a 

Fig. 11. Area covered by spatial expansion approach during 
1990-2000 and 2000-2018.

Year Total land area (km2) Total Urban land (km2) Population Time-period UER UGC UEII

1990 2286.59 69.43 1340168 1990-2018 5.42 2.68 0.21

2000 2286.59 117.75 1687939 2000-2018 6.06 13.30 1.21

2018 2286.59 339.7 1927087

Table 4. Calculated values of Urban Expansion rate (UER), (UGC), Urban Expansion Intensity Index (UEII) during different time-
periods.
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higher proportion of urbanization by edge-expansion on 
the north-eastern side during 2000-2018. The expansion 
by outlying is observed along the roads, transects, 
and in proximity to already existing urban areas. The 
results also reveal that urban expansion by outlying 
approach is found to be more dominant followed by 
edge expansion and infill during both time periods i.e., 
1990-2000 and 2000-2018. However, urban expansion in  
2000-2018 is found significantly higher in comparison 
to that of 1990-2000. The increase in CA and PLAND 
indicates and is in concurrence with LULC change 
indicating the increase in built-up area. Along with 
CA and PLAND and LPI depicts dominance of built-
up class in the region. The aggregation of built-up in 
the last two decades has taken place in the centre of 
the city as indicated by LPI values. The ED indicates 
the increase in the built-up patches at the outskirts in 
the southern direction dominated with agriculture and 
northern direction dominated with rocky terrain. In 
1990 the built-up patches were contagious whereas with 
time in recent decades the urban built-up patches got 
more clumped and clustered however the progression 
was found to be irregular. An increase in the number 
of the urban patches and thus edge density is also 
observed. The metrics reveal some clustering of urban 
patches as well. To affirm the findings derived from 
spatial metrics, LEI results reveal that urban expansion 
by outlying followed by edge expansion is observed 
during 1990-2000 as well as 2000-2018. 2000-2018 has 
witnessed comparatively more urban expansion. Urban 
expansion by infill in 2000-2018 followed by 1990-2000 
is also observed. This has resulted into clustering of 
urban patches in the centre and disaggregation of urban 
patches at the outskirts of the study area.

Conclusions

The increasing population poses pressure on natural 
resources including land. Urban sprawl is identified 
as one of the biggest threats to sustainable urban 
development. The present study targets to assess the 
urban dynamics of Asir region during 1990-2018. The 
study demonstrates comprehensive understanding 
of urbanization phenomenon using remote sensing, 
GIS, spatial metrics and landscape expansion index 
(LEI). It was found that built-up area has shown an 
increase of 389.27% over the span of two decades. The 
conversion of natural features such as exposed rock, 
scrubland, bare soil and agricultural land to built-
up is found as the main cause of urbanization. Seven 
spatial metrics were chosen to analyze the urban spatial 
patterns that revealed increase in the dominance of 
built-up class during the specified time-period. The 
findings of spatial metrics, LEI and urban expansion 
indices are in agreement with each other. Further, with 
help of urban indices, it was observed that rate and 
intensity of urbanization and sprawling phenomenon is 
higher during 2000-2018 in comparison to 1990-2000.  

This study shows that identification of spatial patterns 
over the years is helpful in understanding the evolution 
of cities spatially. Asir region in Saudi Arabia is 
dominated by natural vegetation region, which is 
experiencing urbanization in recent decades, thus this 
study shall be helpful for the decision-makers and policy 
makers in formulating future policies in line with local 
needs and socio-economic and environmental factors.
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