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Abstract

Long-term exposure to PM2.5 can lead to great adverse health effect on human health. To better 
guide public policies that aim to reduce PM2.5 population exposure, this work combined multi-source 
data to realize high-resolution PM2.5 exposure risk assessment in Nanchang urban region. The land use 
regression (LUR) model was used to simulate the seasonal-spatial variations of PM2.5 concentrations at 
100-m resolution, and building information extracted from IKONOS image was applied to spatialize 
population at 100-m resolution. An improved piece-wise population exposure approach was introduced 
to evaluate the exposure risk, and results were compared with two classical approaches. In all seasons, 
results by the absolute concentration approach are very different from the other two, showing obvious 
spatial smoothing effect. Results by population-weighted and piece-wise exposure approaches are 
similar in spring and autumn, and different in summer and winter. In winter, the area and population 
percentages divided to severity level 7 by population-weighted exposure approach are 5.21% and 2.35% 
lower than that by piece-wise exposure approach. When in summer, the area and population percentages 
divided to severity level 7 by population-weighted exposure approach are 6.77% and 24.79% higher 
than that by piece-wise exposure approach. The absolute concentration approach is disadvantageous for 
the identification of high-risk areas, the population-weighted exposure approach would underestimate 
or overestimate the population exposure when air is seriously polluted or remarkably clean, and the 
proposed piece-wise exposure approach would be more reasonable. The integrated methodology is 
effective in exposure risk assessment and can be applied to other regions and pollutants.
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High-resolution PM2.5 data is also critical for 
population exposure assessment. Traditional studies 
often use fixed-site monitors data to assess the 
population exposure. However, the number of fixed-site 
monitors is limited since the high cost, and the sparsely 
distributed monitoring sites cannot capture the large 
spatial variability of the pollutant concentrations [13-
15]. The use of average pollutant concentrations derived 
from scattered station measurements can lead to 
systematic errors in the estimate of overall population 
exposure. Several methods have been developed over the 
last decade to strengthen PM2.5 monitoring, including 
remote sensing image retrieval, spatial interpolation, 
air dispersion modeling, and land use regression (LUR) 
technology. Land use regression (LUR) technology are 
statistical regression models using predictor variables 
e.g. land use, traffic, and physical characteristics etc. to 
predict atmospheric pollutants concentration. Studies 
have proved that LUR modeling is one of the most 
important and systematic methods to simulate pollutant 
concentration at the city scale [16-18].

Evaluation of population exposure to ambient 
air pollution is a classic topic [19, 20]. The earliest 
study date back to “simulation of human air pollution 
exposures” in 1985, personal air pollution exposure 
was defined by the time that people spent in particular 
concentrations of air pollutants. Then, various 
evaluation approaches [21-27] have been proposed and 
can be divided into three categories according to the use 
of population data: absolute concentration, the intensity 
of population, and population-weighted exposure. 
Early approaches pertain to the absolute concentration 
exposure, which is calculated directly by air pollutant 
concentrations [19]. Although the approach is simple 
and effective, the result may be inconsistent with the 
actual situation because public health risk is not only 
related to PM2.5 concentration but also to exposure 

Introduction

Epidemiological studies have shown that long-
term exposure to ambient air pollution is harmful 
to human health [1-4]. Population exposure to air 
pollutants especially the fine particulate matter (PM2.5), 
will lead to significant adverse impacts on morbidity 
and mortality [5, 6]. According to the World Health 
Organization (WHO), air pollution was responsible 
for more than 7.6% of global deaths in 2015 [7].  
From 2008 to 2015, 92% of the worldwide populations 
were exposed to PM2.5 concentrations that exceeded 
the WHO Air Quality Guidelines (AQG) levels  
(10 μg/m3), and 56% of the populations lived in areas 
with PM2.5 concentrations higher than the Interim Target 
1 (IT-1) (35 μg /m3) [8]. In many Asian cities, the PM2.5 
concentrations are much higher than in U.S. or Europe, 
such as India and China, 86% of the populations 
experienced remarkably serious PM2.5 concentrations 
over 75 μg/m3 [9]. To better guide public policies that 
aim to reduce exposure risk and protect people's health, 
it is of great importance to assess the PM2.5 population 
exposure in densely populated urban areas.

High-resolution population data is essential for 
conducting researches about population exposure to 
PM2.5 at an urban scale. Previously, for large-scale
researches, administrative census-population data 
have often been evenly allocated to the region, 
which is inconsistent with the actual population 
spatial distribution. In complicated small-scale urban 
landscapes, urban residential buildings are important 
indicators of population distribution. In recent years, 
more and more studies have begun to estimate the 
spatial distribution of population with building 
information extracted from satellite imagery, since the 
information is closely related to human activities [10-
12].

Fig. 1. Geographical location of Nanchang urban region and the nation-standard air pollution monitoring sites.
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population [28]. In 2002, Kousa et al. [29] proposed 
the intensity of population exposure approach, which 
calculates the people exposure through the product of 
population density and air pollutant concentration. It 
was the first exposure approach considering the effect 
of population data. Nevertheless, population density 
often has a larger range than pollution concentration, 
resulting in the polarization of the highest and lowest 
population exposure [30]. The population-weighted 
exposure approach improved use of population data by 
employing relative population weight instead of absolute 
population density and has become the most widely 
used population exposure approach [31, 32]. In spite of 
this, it overrates the influence of population data when 
ambient air condition is remarkably clean or seriously 
polluted. Sparsely-populated regions with high pollutant 
concentration would be evaluated as low exposure risk, 
and densely-populated regions with clean air tend to be 
at high exposure risk, which are against the common 
sense of people. 

In this study, Nanchang urban region was chosen as 
the study area, LUR model was employed to simulate 
the seasonal-spatial PM2.5 concentrations at 100-m 
resolution, and building information extracted from 
IKONOS image was used to spatialize the population 
distribution at the same resolution. An improved piece-
wise population exposure approach was proposed 
for evaluating the population exposure to PM2.5, and 
the absolute concentration and population-weighted 
exposure approaches were treated as baselines. Results 
of three evaluation approaches were compared, and 
high PM2.5 exposure risk areas were identified.

Material and Methods  

Study Area

Nanchang City (28°09’N-29°11’N, 115°27’E-116°35’E), 
the capital of Jiangxi Province, is a typical city of middle 
China located in the southwest of Poyang Lake. This 
city experienced rapid urbanization in the past decade. 
The residential population had reached 5.6 million, and 
the number of vehicles had exceeded 1.07 million by 
the end of 2019. Along with the urbanization process, 
air pollutants (especially PM2.5) have become one of the 
most crucial urban issues. Thus, population exposure to 
air pollution must be effectively evaluated. The present 
work chose Nanchang urban region as the study area (as 
shown in Fig. 1), which covers a region of 562.46 km2 
and includes 2.61 million people. Eight nation-standard 
air pollution monitoring sites established by the China 
Environmental Monitoring Center (CEMC) are included 
in the study area (Fig. 1).

Population Spatialization

High spatial resolution population data, which 
are indispensable in many activities such as business 

decision-making, regional planning and development, 
exposure risk assessment, are one of the most direct 
indicators of human activity. The population density 
data in this study were acquired on basis of classification 
information of buildings from high-resolution remote 
sensing images. All people were assumed to live on 
residential land because it is the most representative 
urban land use type and people spend the longest 
time in this area, and the mobility of people was not 
considered [33, 34]. Based on this assumption, the high 
spatial resolution population density of the Nanchang 
urban region was estimated through the following four 
steps. First, residential buildings were extracted and 
divided into urban residential, rural residential, and 
student dormitory buildings by employing 1 m spatial 
resolution IKONOS remote sensing image. Among 
these buildings, the urban residential buildings were 
further divided into the four categories: low-rise (1-5 
floors), mid-rise (6-10 floors), high-rise (11-20 floors), 
and super high-rise (more than 20 floors) buildings. 
Second, the entire study area was split into three parts 
by expert consultation, and the same residential building 
type of the same part had the same population density. 
The population density of every residential building 
type was acquired by sample investigation. Third,  
100 m × 100 m grids were produced by ArcGIS. The 
population of each grid was then obtained by summing 
up the products of the area of every residential building 
type and the corresponding investigated population 
density [35]. Finally, the indexes of the overall relative 
error rate and the relative error rate of samples were 
utilized to verify the accuracy of the estimated results.

PM2.5 Concentration Estimation

The LUR model can be used to predict the 
concentration of air pollutants at a given site by 
establishing a statistical relationship between pollutant 
measurements and potential predictor variables, such as 
land use, traffic, and physical characteristics [17, 36].

The LUR model is expressed

     (1)

...where dependent variable y is the pollutant 
concentrations, independent variables X1...Xn are the 
potential variables, β1...βn are the associated coefficients, 
ε is the constant intercept.

Following the work of Yang et al. [37], this study 
applied the LUR model to realize PM2.5 simulation 
across the study area. Four classes of independent 
variables, including five meteorological factors, 
three traffic-related factors, three land use factors, 
and population density were adopted. Specifically, 
relative humidity, air pressure, water vapor pressure, 
temperature, and wind speed were used to characterize 
the meteorological conditions. Monthly average 
values of the meteorological data were collected from  
the Chinese Meteorological Data Share Service System 
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(http://data.cma.cn/). The intensity of main roads, 
secondary roads, and all roads were adopted to indicate 
the traffic conditions. Traffic-related data were obtained 
from the Transportation Map of Nanchang Urban 
Master Planning. The land use situation was reflected by 
ecological land proportion, industrial land proportion, 
and distance to large ecological space, whose data were 
derived from the Nanchang Land Use Map and satellite 
remote sensing images. The population density data 
were presented in Section 2.2.

Seasonal average PM2.5 concentrations were 
simulated rather than annual average data considering 
the variation of PM2.5 concentrations in different 
seasons. The 12 months were categorized into spring 
(March to May), summer (June to August), autumn 
(September to November), and winter (December to 
February). 75% of the samples in every season were 
used to develop the LUR models based on the backward 
model-building algorithm. Every seasonal modeling 
was repeated three times to avoid priori division of 
samples, and the best fitting model was chosen last. The 
adjusted R2 values of seasonal LUR models, average 
relative error and Root Mean Square Error (RMSE) 
of the other 25% of samples were used to indicate the 
effectiveness of the results. After the model validation, 
100 m × 100 m grids were produced by ArcGIS, and the 
PM2.5 concentrations of each grid were obtained by final 
seasonal LUR models.

PM2.5 Population Exposure Evaluation

Absolute Concentration PM2.5 Exposure 
Evaluation

Absolute concentration is one of the most commonly 
used risk evaluation indicators for exposure to air 
pollution, and it ignores the spatial distribution of 
population in the assessment unit. It is defined as 

                                 (2)

...where Ea is the absolute concentration population 
exposure at grid point i, ci is the concentration of PM2.5 
at grid point i.

Population-weighted PM2.5 Exposure 
Evaluation

The population-weighted exposure evaluation is 
proposed by Fu et al. [31], which mainly considers 
population as weights at different exposure to PM2.5 
concentrations. Now, it has been extensively used to 
reflect the actual total impact of PM2.5 on the population 
under normalized population conditions for different 
regions [32]. The population-weighted PM2.5 pollution is 
defined as

                               (3)

...where Ep is the population-weighted exposure at grid 
point i, ci is the concentration of PM2.5 at grid point i 
and ωi is the weight of population at grid point i to the 
average population density in the whole study area. The 
ωi is calculated as

                               (4)

...where pi is the population at grid point i and n is the 
total number of grids in the study area.

Piece-wise PM2.5 Exposure Evaluation

The piece-wise exposure approach was introduced 
to evaluate the population exposure to PM2.5 in this 
subsection. The proposed approach can be calculated 
via the following three steps. First, health and severity 
thresholds of PM2.5 concentrations were defined as 
c0 and cmax, based on certain air quality guidelines. 
Second, the population exposure at grid point i was 
consequently set as Δci when ci≤ c0 or >cmax. Third, the 
population exposure at grid point i was determined by 
an incremental population-weighted function, when 
PM2.5 concentrations were between ci and cmax. The 
piece-wise exposure approach is defined as 

   (5)

...where Ep–w is the population exposure at grid point 
i, ci is the concentration of PM2.5 at grid point i, ωi is 
the weight of population at grid point i to the average 
population density at the whole study area and Δci is 
the difference between ci an c0. The ωi is calculated as 
Equation (4). The Δci is calculated as

                              (6)

In order to show the population exposure risks for 
different PM2.5 concentrations, the results by above three 
approaches were converted into risk levels according 
to some air quality standards, show as Table 1. In this 
study, c0 and cmax were respectively set to 15 μg/m3 and 
75 μg/m3, according to the air quality standards of the 
WHO and China [38, 39]. 

Results and Discussion 

Spatial Population Intensity

Fig. 2 shows the estimated population density of 
the Nanchang urban region at 100-m spatial resolution. 
Results show the effectively high-resolution population 
estimation with the overall relative error of 12.58% and 
the average relative error of the 20 verification samples 
lower than 15%. Spatial distribution with suburban-
urban-downtown differences in population density is 
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generally present. Representatively, the most densely 
populated areas are the student dormitory lands of 
universities, with population densities larger than 
1,000 people/hm2. Typical student dormitory lands 
of universities are distributed in several districts (e.g., 
Nanchang county, Qingshanhu district, and Xinjian 
county). Some areas in Donghu and Xihu districts have 
population densities that ranging from 600 people/hm2

to 1,000 people/hm2. Most areas in Donghu, Xihu, 
and Qingyunpu districts have the population densities 
between 400 and 600 people/hm2. The overall 
population density of North Qingshanhu district is 
smaller than that of South Qingshanhu district. Most 
of the rural residential lands have population densities 
of 51-100 people/hm2. The largest proportion is area 
with population densities of 0-25 people/hm2, mainly 
included water bodies, surrounding farmlands, and 
forests distributed on the borders.

Seasonal and Spatial PM2.5 Concentration

Fig. 3 shows the seasonal and spatial variations in 
PM2.5 concentrations simulated by the LUR modeling. 
The seasonal adjusted R2 is 0.803, 0.605, 0.874, 
and 0.786 in spring, summer, autumn, and winter, 
respectively. The average relative error of verification 
samples in four seasons is 15.43%, 16.29%, 10.15% and 
8.53%, with RMSE of 3.38, 1.49, 1.93, and 2.38 μg/m3,
respectively. The indexes reveal the reliability of the 
simulated result. PM2.5 concentrations of Nanchang 
urban region in four seasons are all higher than the 
WHO IT-3 (15 μg/m3), and their temporal distribution 
is high in winter and low in summer. The minimum 
value of PM2.5 concentrations in winter is greater than 
the WHO IT-1 (35 μg/m3), and the maximum value 
exceeds the seriously polluted threshold (75 μg/m3). 
Air quality is evidently better in summer, and the PM2.5 

Table 1. Exposure levels and the corresponding conditions of the piece-wise exposure approach.

Exposure level
Corresponding conditions

Reference standard
Ep–w Ep and Ea

Health (level 1) ≤0 ≤15 WHO IT-3 (15 μg/m3)

Low risk (level 2) (0,5] (15,20]

Low-and-middle risk (level 3) (5,10] (20,25] WHO IT-2 (25 μg/m3)

Middle risk (level 4) (10,20] (25,35] WHO IT-1 (35 μg/m3)

Middle-and-high risk (level 5) (20,35] (35,50]

High risk (level 6) (35,60] (50,75]

Severity (level 7) >60 >75 WHO IT-1 daily average (75 μg/m3)

Fig. 2. Spatial distribution of population density in Nanchang urban region.
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concentrations of most areas are lower than 35 μg/m3. 
The air quality in spring and autumn is between that 
in summer and winter, and the corresponding PM2.5 
concentrations are almost between 25 and 55 μg/m3. 
A discernible spatial variation in PM2.5 concentrations 
is observed in the study area. High-value areas are 
always located in the center of the study area, while 
low concentration areas are mainly distributed on city 
borders. Most of the high-value areas are commercial 
zones (e.g., Bayi business circle, Hongcheng business 

circle), and industrial zones (e.g., Economic and 
Technological Development Zone, High-Tech Industrial 
Development Zone, East Nanchang Industrial Zone, 
and South Nanchang Industrial Zone). Some of these 
areas even experienced PM2.5 concentrations of more 
than 75 μg/m3 in winter. The majority of low-value 
areas are forests (e.g., Meiling National Forest Park in 
the northwest), and farmlands (e.g., Yangtze Island in 
the north, Luojia town in the southeast and Shengmi 
town in the southwest). PM2.5 concentrations of Meiling 

Fig. 3. LUR-based PM2.5 concentrations of Nanchang urban region: in a) Spring; b) Summer; c) Autumn; d) Winter. (e) the land use map 
of Nanchang urban region.
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National Forest Park remained the lowest in the entire 
study area, which is less than 20 μg/m3 in summer. 

Result Comparisons of Population 
Exposure to PM2.5

Figs 4, 5, 6, and 7 show the spatial distribution of 
population exposures to PM2.5 based on the piece-
wise exposure approach and baselines in four seasons. 
Two characteristics can be summarized. First, 
spatial characteristics by the absolute concentration 
exposure approach are totally different from those 
by the population-weighted and piece-wise exposure 
approaches. The absolute concentration exposure 
result concentrates on a few exposure levels, while the 
two other exposure results usually cover most of the 
exposure levels. This finding illustrates that population 
data considerably affect the exposure results. Second, 
spatial characteristics of population-weighted and piece-
wise exposure results are respectively approximate 
in spring and autumn and different to some extent 

in summer and winter. The area of severity level 
7 in summer by the piece-wise exposure approach 
is remarkably smaller than that by the population-
weighted exposure approach. In winter, the difference is 
mainly distributed in areas where PM2.5 concentrations 
exceed the severity level threshold (75 μg/m3), such as 
the Economic and Technological Development, High-
Tech Industrial Development, East Nanchang Industrial, 
and South Nanchang Industrial Zones. The above-
mentioned areas are divided into severity level 7 by 
the piece-wise exposure approach while health level 1 
by the population-weighted exposure approach. The 
result by the proposed approach is consistent with the 
goal that population exposure should be independent of 
population density when the pollutant concentrations 
exceed a severity threshold.

These figures also show the percentage cumulative 
distribution of the population (0%-100%) at different 
PM2.5 exposure thresholds. In four seasons, nearly 100% 
of the populations are exposed to PM2.5 concentrations 
that exceed the WHO AQG (10 μg/m3), and the 

Fig. 4. Spatial distribution of population exposure in spring based on evaluation approaches: a) absolute concentration exposure; b) 
population-weighted exposure; c) piece-wise exposure. d) the cumulative percentages of the population at different PM2.5 exposure levels.
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percentages of populations for IT-3 (15 μg/m3) are over 
97%. In winter, when PM2.5 pollution is the highest of 
four seasons, over 98% of the populations by the piece-
wise and population-weighted exposure approaches are 
exposed to PM2.5 concentrations that exceed the WHO 
IT-1 (35 μg/m3). Even in summer when PM2.5 pollution 
is the lowest of four seasons, there are still more 
than 88% of the populations by the two approaches 
exposed to PM2.5 concentrations that surpass the WHO 
IT-1. These results highlight the severity of the PM2.5 
exposure problem in Nanchang urban region.

Table 2 describe the numerical result comparisons of 
the piece-wise exposure approach and baselines in four 
seasons. An evident feature is that area percentages 
obtained by the absolute concentration exposure 
approach cover a few exposure levels and always 
concentrate on two certain exposure levels or less, such 
as level 5 in spring, levels 3 and 4 in summer, levels 4 
and 5 in autumn, and level 6 in winter. By comparison, 
area percentages obtained by the population-weighted 
and piece-wise exposure approaches over all exposure 

levels and usually concentrate on health level 1. Hence, 
the population-weighted and piece-wise exposure 
approaches would be more effective than the absolute 
concentration exposure approach for identifying the 
high exposure risk areas.

The population-weighted and piece-wise exposure 
approaches are then compared. The following three 
points can be concluded. First, in all four seasons, the 
area and population percentages of health level 1 in 
all four seasons by the population-weighted exposure 
approach are larger than those by the piece-wise 
exposure approach. This finding suggests that health 
level 1 by the piece-wise exposure approach is more 
stringent than that of the population-weighted exposure 
approach. Second, the area and population percentages 
of severity level 7 in spring, summer and autumn by 
the piece-wise exposure approach are all smaller than 
those by the population-weighted exposure approach, 
while the situation is opposite in winter. This result 
further illustrated the characteristic in Figure 7. This 
figure shows that additional areas and populations 

Fig. 5. Spatial distribution of population exposure in summer based on evaluation approaches: a) absolute concentration exposure; b) 
population-weighted exposure; c) piece-wise exposure. d) the cumulative percentages of the population at different PM2.5 exposure levels.
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would be divided to severity level 7 by the piece-wise 
exposure approach than population-weighted exposure 
approach, when the PM2.5 concentration is relatively 
high such as in winter (64.46 ± 6.75 μg/m3). Third, 
the area and population percentages in summer, which 
are divided into health level 1 and severity level 7 
by piece-wise exposure approach, are smaller than 
those by population-weighted exposure approach. The 
obtained results by the piece-wise exposure approach 
tend to distribute in the middle levels when the PM2.5 
concentration is relatively low but higher than the health 
threshold.

Comprehensive Discussion

Numerous epidemiological studies have proven 
the significant association between exposure to 
PM2.5 and adverse health effects. It is of significant 
importance to assess the PM2.5 population exposure 
in urban areas. Three kinds of population exposure 
approaches, including absolute concentration, intensity 

of population, and population-weighted exposure had 
been proposed to examine the adverse health influence. 
This study claims that population data should always be 
considered, except in cases of clean and high morbidity 
air conditions. The piece-wise approach, which can 
combine characteristics of the absolute concentration 
and population-weighted exposure approaches, is then 
put forward. 

High spatial resolution population data is necessary 
to obtain reliable exposure evaluation results at the 
intra-urban scale. The commonly used methods for 
population spatialization include areal weighting, 
dasymetric mapping, and statistics regression models 
[40, 41]. In this study, residential buildings were 
screened and classified on the basis of high-resolution 
remote sensing images. The population densities of 
different residential building types were obtained 
through investigation, and population spatialization 
data were calculated through areal weighting method. 
The overall relative error is 12.58% based on the census 
population data, and the average relative error of sample 

Fig. 6. Spatial distribution of population exposure in autumn based on evaluation approaches: a) absolute concentration exposure; b) 
population-weighted exposure; c) piece-wise exposure. d) the cumulative percentages of the population at different PM2.5 exposure levels.
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investigation is less than 15%. This finding indicates 
the reliability of the estimated population result. 
However, the population result does not incorporate 
human mobility; for example, people working, relaxing, 
and commuting. The temporal factors can be added to 
improve the precision of population data in future work 
[42]. 

High-resolution PM2.5 concentration data is also 
crucial for exposure evaluation [43]. Many approaches, 
including spatial interpolation, dispersion modeling, 
satellite-derived modelling and LUR, have been 
developed to cope with the challenge. The LUR model 
has received increasing attention in recent years and has 
been proven to be a valid and cost-effective alternative 
for the simulation of the intra-urban pollutant 
concentration [33, 44]. Therefore, the LUR models were 
employed to simulate the spatial PM2.5 concentration 
of four seasons in the Nanchang urban region. 
The adjusted R2, average relative error and RMSE 
demonstrated the effectiveness of LUR modeling. A 
uniform standard regarding the number of monitoring 
sites for LUR modeling is currently unavailable [17]. 

Although the number of monitoring sites in the study 
area is small, eight monitoring sites cover a region of 
562.46 km2, resulting in a monitoring site for every 70 
km2. The spatial coverage of the monitoring sites in this 
study is comparable with other LUR models reported in 
the literature [14, 18]. 

Absolute concentration and population-weighted 
exposure approaches were selected as the baselines 
in the case study rather than the intensity of 
population exposure approach. This selection is due 
to the following: the absolute concentration exposure 
approach, a typical approach disregard population 
factor; the population-weighted exposure approach, 
a state-of-the-art approach and the most widely used 
at present considered the population data; while the 
intensity of population exposure approach easy produces 
the polarization problem, thus limiting its application to 
cities with low concentrations of pollutants [30].

In all seasons, exposure results by the absolute 
concentration approach focused on a few exposure 
levels, the obvious spatial smoothing effect is 
disadvantageous for the identification of high-risk areas 

Fig. 7. Spatial distribution of population exposure in winter based on evaluation approaches: a) absolute concentration exposure; b) 
population-weighted exposure; c) piece-wise exposure. d) the cumulative percentages of the population at different PM2.5 exposure levels.
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and the implementation of targeted corrective measures. 
Hence, the population-weighted and piece-wise exposure 
approaches would be more effective than the absolute 
concentration approach for public pollution exposure 
evaluation. The results obtained by population-weighted 
and piece-wise exposure approaches are similar in 
spring and autumn. The calculation equations, the PM2.5 
concentration in the study area, and threshold setting 
in the case study jointly contribute to this result. First, 
the second segment of Equation (5) is an incremental 
population-weighted function. This segment determines 
that the result of the piece-wise exposure approach 
would be similar to that of the population-weighted 

exposure approach. Second, all areas in Nanchang 
urban region have PM2.5 concentrations between 15 
(c0) and 75 μg/m3 (cmax) in spring and autumn. Thus, 
the final exposure levels are mostly calculated by the 
second segment of Equation (5) rather than its first or 
third segment. 

The results by the population-weighted and piece-
wise exposure approaches are different in summer and 
winter, and the differences in winter are considerably 
large. The PM2.5 concentration in winter is higher 
than those in the three other seasons, and some areas 
even have PM2.5 concentrations higher than 75 μg/m3.
The areas with PM2.5 concentrations >75 μg/m3 but 

Season Exposure Level
Absolute  concentration Population-weighted Piece-wise

Area (%) Population (%) Area (%) Population (%) Area (%) Population (%)

Spring

Health level 1 0 0 72.79 0.98 66.36 0

Level 2 0 0 1.29 0.56 4.15 0.35

Level 3 0 0 1.61 0.93 2.45 0.71

Level 4 7.66 0.19 2.19 1.59 4.29 2.52

Level 5 88.15 94.96 4.75 4.75 5.67 5.58

Level 6 4.19 4.85 1.73 2.44 2.40 3.96

Severity level 7 0 0 15.64 88.76 14.68 86.88

Summer

Health level 1 0 0 75.60 2.42 66.36 0

Level 2 0.02 0 1.75 1.20 8.26 2.00

Level 3 46.14 21.92 2.48 2.29 4.94 3.90

Level 4 53.79 78.06 3.32 3.52 4.58 5.20

Level 5 0.05 0.02 1.51 2.36 3.79 9.73

Level 6 0 0 2.33 5.36 5.84 21.11

Severity level 7 0 0 13.01 82.85 6.24 58.06

Autumn

Health level 1 0 0 73.18 1.13 66.36 0

Level 2 0 0 1.47 0.70 4.64 0.46

Level 3 0 0 1.84 1.15 2.69 0.91

Level 4 28.92 2.75 2.41 2.01 4.68 3.16

Level 5 71.08 97.25 4.19 4.36 5.14 5.38

Level 6 0 0 1.71 2.66 2.63 4.99

Severity level 7 0 0 15.20 87.99 13.86 85.10

Winter

Health level 1 0 0 71.16 0.49 62.41 0

Level 2 0 0 0.96 0.26 2.26 0.09

Level 3 0 0 0.93 0.32 1.57 0.18

Level 4 0 0 1.70 0.81 2.33 0.54

Level 5 0.41 0 2.55 1.67 3.26 1.44

Level 6 90.86 82.80 5.13 5.01 5.39 3.95

Severity level 7 8.73 17.20 17.58 91.44 22.79 93.79

Table 2. Numerical comparisons of the piece-wise exposure approach and baselines in four seasons.
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low population densities, such as the Economic and 
Technological Development and South Nanchang 
Industrial Zones, are evaluated as severity level 7 by 
the piece-wise exposure approach, which is equivalent 
to the absolute concentration exposure approach. 
However, these areas are still divided into health level 
1 by the population-weighted exposure approach due 
to the low population density. The place should be 
designated as a severity area (severity level 7) despite 
the population density once PM2.5 concentration exceeds 
75 μg/m3 to protect public health effectively. Similarly, 
once the PM2.5 concentration ≤WHO IT-3 (15 μg/m3), 
the place should be designated as a health area (level 
1) without considering the population density. Hence, 
the population-weighted exposure approach would 
underestimate or overestimate the population exposure 
when the air is seriously polluted or remarkably clean, 
and the proposed piece-wise exposure approach would 
be more reasonable than the population- weighted 
exposure approach.

The thresholds setting of c0 and cmax have 
considerable influence on the result. Fig. 3 shows that 
the WHO IT-3 (15 μg/m3) is exceeded in all regions 
of four seasons, while the WHO IT-1 (35 μg/m3)
is exceeded in all regions of winter, most areas of 
spring and autumn, and small areas of summer. If the 
c0 is reset (e.g., 35 μg/m3), then the result comparisons 
would be distinctly different. Take summer for example. 
Areas with PM2.5 concentration ≤35 μg/m3 would be 
determined as health level 1. Thus nearly 100% of the 
populations would be divided into health level 1 by 
the piece-wise exposure approach. By comparison, 
less than 5% of the populations were divided to health  
level 1 by the population-weighted exposure approach. 
c0 is still set to 15 μg/m3 in this study, because the 
WHO AQG (10 μg/m3) is an overly-high standard for 
China at present and the WHO IT-1 (35 μg/m3) is an 
unsafe threshold for many developed countries.

 Conclusions

The evaluation of population exposure to PM2.5 is of 
considerable importance because long-term exposure 
would have significant adverse effects on public health. 
In this study, we combined multi-source data to realize 
high-resolution PM2.5 exposure risk assessment in 
Nanchang urban region. The population and PM2.5 
data were estimated using the areal weighting method 
and LUR models, respectively. An improved piece-
wise exposure approach was proposed to evaluate the 
population exposure to ambient air pollution. The 
proposed approach has improved the use of population 
data. The absolute concentration exposure approach 
ignoring the population data in all cases, result of which 
would has clear theoretical bias and lead to obvious 
spatial smoothing effect, which is disadvantageous 
for the identification of high-risk areas and  
the implementation of targeted corrective measures. 

The population-weighted exposure approach employing 
the population data in all air pollution conditions,  
result of which can reveal the spatial microcosmic 
difference of the exposure risk in the study area, 
but it would underestimate or overestimate the 
population exposure when the air is seriously polluted 
or remarkably clean. The proposed approach takes 
population into account merely when air pollutant 
concentrations are between the health and the severity 
thresholds, result of which is more helpful to reveal the 
spatial variation of exposure risk accurately and would 
be more responsible according to the people-oriented 
principle. The integrated methodology is effective in 
exposure risk assessment and can be applied to other 
regions and pollutants.

Acknowledgements

The research was supported by the National Nature 
Science Foundation of China (NO.62066021), Jiangxi 
Social Science Foundation of China (NO.20GL42), 
Science and Technology Project in Jiangxi Provincial 
Education Department of China (NO.GJJ190919), 
and Jiangxi Youth Science Foundation of China 
(NO.20202BAB212005). The authors greatly appreciate 
the thorough review and valuable comments of 
the anonymous reviewer that helped improve this 
manuscript.

Conflict of Interest

The authors declared no conflict of interest.

References

1.	 BEELEN R., HOEK G., VAN DEN BRANDT P.A., 
GOLDBOHM, R.A., FISCHER P., SCHOUTEN 
L.J., JERRETT M., HUGHES E., ARMSTRONG B., 
BRUNEKREEF B. Long-term effects of traffic-related 
air pollution on mortality in a Dutch cohort (NLCS-AIR 
study). Environ. Health Persp., 116, 196, 2008.

2.	 ANNA S., JOANNA D., MALGORZATA C., EWA M. 
Correlation between Length of Life and Exposure to Air 
Pollution. Pol. J. Environ. Stud, 29, 1361, 2020.

3.	 CHEN H.L., LI C.P., TANG C.S., LUNG S.C.C., 
CHUANG H.C., CHOU D.W., CHANG L.T. Risk 
assessment for people exposed to PM2.5  and constituents 
at different vertical heights in an urban area of Taiwan. 
Atmosphere, 11, 1145, 2020.

4.	 DOLORES HUETE-MORALES M., JOSÉ-MANUEL 
QUESADA-RUBIO, ESTEBAN NAVARRETE-
ÁLVAREZ, JESÚS ROSALES-MORENO M., JOSÉ DEL-
MORAL-ÁVILA M. Air Quality Analysis in the European 
Union. Pol. J. Environ. Stud, 26, 1113, 2017.

5.	 KHANIABADI Y.O., GOUDARZI G., DARYANOOSH 
S.M., BORGINI A., TITTARELLI A., DE MARCO A. 
Exposure to PM10, NO2, and O3 and impacts on human 
health. Environ. Sci. Pollut. R, 24, 2781, 2017.



High-resolution Population Exposure to PM2.5... 4813

6.	 GUERREIRO C., HORALEK J., DE LEEUW F., 
COUVIDAT F. Benzo(a)pyrene in Europe: Ambient air 
concentrations, population exposure and health effects. 
Environ. Pollut, 214, 657, 2016.

7.	 World Health Organization (WHO). Ambient air pollution: 
a global assessment of exposure and burden of disease, 
WHO: Geneva, Switzerland, 2016.

8.	 Zhang X., Fan Y.S., Wei S.H., WANG H., ZHANG 
J.X., Spatiotemporal distribution of PM2.5 and its correlation
with other air pollutants in winter during 2016~2018 in 
Xi’an, China. Pol. J. Environ. Stud, 30, 1457, 2020.

9.	 MAJI K.J., DIKSHIT A.K., ARORA M., DESHPANDE 
A. Estimating premature mortality attributable to PM2.5 
exposure and benefit of air pollution control policies in 
China for 2020. Sci. Total Enviro, 612, 683, 2018. 

10.	 WANG S.X., TIAN Y., ZHOU Y., LIU W.L AND LIN C.X. 
Fine-Scale Population Estimation by 3D Reconstruction of 
Urban Residential Buildings. Sensors, 16, 1775, 2016.

11.	 LI L., LI J., JIANG Z., ZHAO L., ZHAO P. Methods 
of population spatialization based on the classification 
information of buildings from China’s first national 
geoinformation survey in urban area: A case study of 
Wuchang district, Wuhan city, China. Sensors, 18, 2558, 
2018.

12.	WANG H., LI J., GAO Z., YIM S.H., SHEN H., HO H.C., 
LI Z., ZENG Z., LIU C., LI Y., GUICAI N., YUANJIAN 
Y. High-spatial-resolution population exposure to PM2.5 
pollution based on multi-Satellite retrievals: a case study 
of seasonal variation in the Yangtze River Delta, China in 
2013. Remote Sens, 11, 2724, 2019.

13.	 CHEN C.H., LIU W.L., CHEN C.H. Development of 
a multiple objective planning theory and system for 
sustainable air quality monitoring networks. Sci. Total 
Enviro, 354, 1, 2006.

14.	 LIN C., LI Y., LAU A.K., DENG X., TIM K., FUNG J.C., 
LI C., LI Z., LU X., ZHANG X., YU Q. Estimation of 
long-term population exposure to PM2.5 for dense urban 
areas using 1-km MODIS data. Remote Sens. Environ, 
179, 13, 2016.

15.	 WANG, M.S., CAO, J.L., GUI, C.L., XU, Z.F., SONG, 
D.Y. The characteristics of spatiotemporal distribution of 
PM2.5 in Henan Province, China. Pol. J. Environ. Stud, 26, 
2785-2791, 2017

16.	 JONES R.R., HOEK G., FISHER J.A., 
HASHEMINASSAB S., WANG D., WARD M.H., 
SIOUTAS C., VERMEULEN R., SILVERMAN D.T. 
Land use regression models for ultrafine particles, fine 
particles, and black carbon in southern California. Sci. 
Total Environ, 699, 134234, 2020.

17.	 OLVERA H.A., GARCIA M., LI W.W., YANG H., 
AMAYA M., Myers O., BURCHIEL S., BERWICK 
M., PINGITOREJR N. Principal component analysis 
optimization of a PM2.5 land use regression model with 
small monitoring network. Sci. Total Environ, 425, 27, 
2012.

18.	 ROSS Z., JERRETT M., ITO K., TEMPALSKI B., 
THURSTON G.D. A land use regression for predicting 
fine particulate matter concentrations in the New York city 
region. Atmo. Environ, 41, 2255, 2007.

19.	 SINGH V., SOKHI R.S., KUKKONEN J. An approach 
to predict population exposure to ambient air PM2.5 
concentrations and its dependence on population activity 
for the megacity London. Environ. Pollut, 257, 113623, 
2020.

20.	ALGHAMDI M.A. Characteristics and risk assessment of 
heavy metals in airborne PM10 from a residential area of 

northern Jeddah City, Saudi Arabia. Pol. J. Environ. Stud, 
25, 939, 2016.

21.	 AUNAN K., MA Q., LUND M.T., WANG S. Population-
weighted exposure to PM2.5 pollution in China: An 
integrated approach. Environ. Int, 120, 111, 2018.

22.	KARVOSENOJA N., KANGAS L., KUPIAINEN K., 
KUKKONEN J., KARPPINEN A., SOFIEV M., TAINIO 
M., PAUNU V.V., AHTONIEMI P., TUOMISTO J.T., 
PORVARI P. Integrated modeling assessments of the 
population exposure in Finland to primary PM2.5 from 
traffic and domestic wood combustion on the resolutions of 
1 and 10 km. Air Qua. Atmos. Hlth, 4, 179, 2011.

23.	TAYLOR J., SHRUBSOLE C., DAVIES M., BIDDULPH 
P., DAS P., HAMILTON I., VARDOULAKIS S., 
MAVROGIANNI A., JONES B., OIKONOMOU E. The 
modifying effect of the building envelope on population 
exposure to PM2.5 from outdoor sources. Indoor Air, 24, 
639, 2014.

24.	EHRLICH D., MELCHIORRI M., FLORCZYK A.J., 
PESARESI M., KEMPER T., CORBANE C., FREIRE S., 
SCHIAVINA M., SIRAGUSA A. Remote sensing derived 
built-up area and population density to quantify global 
exposure to five natural hazards over time. Remote Sens, 
10, 1378, 2018.

25.	NYHAN M., KLOOG I., BRITTER R., RATTI C., 
KOUTRAKIS P. Quantifying population exposure to 
air pollution using individual mobility patterns inferred  
from mobile phone data. J. Expo. Sci. Env. Epid, 29, 238, 
2019.

26.	BURKE J.M., ZUFALL M.J., OZKAYNAK H. A 
population exposure model for particulate matter: case 
study results for PM2.5 in Philadelphia, PA. J. Expo. Sci. 
Env. Epid, 11, 470, 2001.

27.	 PARK J., JO W., CHO M., LEE J., LEE H., SEO S., 
LEE C., YANG W. Spatial and temporal exposure 
assessment to PM2.5  in a community using sensor-based 
air monitoring instruments and dynamic population 
distributions. Atmosphere, 11, 1284, 2020.

28.	LI Z., CHE W., FREY H.C., LAU A.K., LIN C. 
Characterization of PM2.5 exposure concentration in 
transport microenvironments using portable monitors. 
Environ. Pollut, 228, 433, 2017.

29.	 KOUSA A., KUKKONEN J., KARPPINEN A., AARNIO 
P., KOSKENTALO T. A model for evaluating the 
population exposure to ambient air pollution in an urban 
area. Atmo. Environ, 36, 2109, 2002.

30.	ZOU B., PU Q., LUO Y.P., TIAN Y., ZHANG W.J., 
HUNAN P.E.M.C. On the complex indicative system based 
on the spatially divided urban areas for PM2.5 pollution and 
control J. Saf. Environ, 16, 337, 2016 [In Chinese].

31.	 FU Y., KAN H. Air pollution dispersion model and 
assessment of population weighted exposure. J. Environ. 
health, 21, 414, 2004 [In Chinese].

32.	LIN C., LAU A.K., FUNG J.C., HE Q., MA J., LU X., LI 
Z., LI C., ZUO R., WONG A.H. Decomposing the long-
term variation in population exposure to outdoor PM2.5 in 
the Greater Bay Area of China using satellite observations. 
Remote Sens, 11, 2646, 2019.

33.	 LIU W., LI X., CHEN Z., ZENG G., LEÓN T., LIANG 
J., HUANG G., GAO Z., JIAO S., HE X., LAI M. Land 
use regression models coupled with meteorology to 
model spatial and temporal variability of NO2 and PM10 in 
Changsha, China. Atmo. Environ, 116, 272, 2015.

34.	DONG N., YANG X., CAI H. Research progress and 
perspective on the spatialization of population data. J. 
Geo-Inf. Sci, 18, 1295, 2016 [In Chinese].



Yang H., et al.4814

35.	 CARÈ A., GARATTI S., CAMPI M.C. A coverage theory 
for least squares. J. R. Stat. Soc. B., 79, 1367, 2017.

36.	SARASWAT A., APTE,J.S., KANDLIKAR,M., 
BRAUER,M., HENDERSON,S., MARSHALL,J. 
Spatiotemporal land use regression models of fine, 
ultrafine, and black carbon particulate matter in New 
Delhi, India. Environ. Sci. Technol., 47, 12903, 2013.

37.	 YANG H., CHEN W., LIANG Z. Impact of land use on 
PM2.5 pollution in a representative city of middle China. 
Int. J. Env. Res. Pub. He., 14, 462, 2017.

38.	World Health Organization (WHO). Air quality guidelines: 
global update 2005: particulate matter, ozone, nitrogen 
dioxide, and sulfur dioxide, WHO: Geneva, Switzerland, 
2006.

39.	 WANG S., HAO J. Air quality management in China: 
Issues, challenges, and options. J. Environ. Sci., 24, 2, 
2012.

40.	ZHAO S., LIU Y., ZHANG R., FU B. China’s population 
spatialization based on three machine learning models. J. 
Clean Prod., 256, 120644, 2020.

41.	 ANTANASIJEVIC D., POCAJT V., PERICGRUJIC A. A., 
RISTIC, M. Urban population exposure to tropospheric 

ozone: A multi-country forecasting of somo35 using 
artificial neural networks. Environ. Pollut., 244, 288, 2019.

42.	CHEN X., ZHANG L., HUANG J., SONG F., ZHANG L., 
QIAN Z., TREVATHAN E., MAO H., HAN B., VAUGHN 
M., CHEN, K., LIU Y., CHEN J., ZHAO B., JIANG G., 
GU Q., BAI Z., DONG G., TANG N. Long-term exposure 
to urban air pollution and lung cancer mortality: A 12-year 
cohort study in northern China. Sci. Total Environ., 571, 
855, 2016.

43.	 HENDERSON S.B., BECKERMAN B., JERRETT 
M., BRAUER M. Application of land use regression 
to estimate long-term concentrations of traffic-related 
nitrogen oxides and fine particulate matter. Environ. Sci. 
Technol, 41, 2422, 2007.

44.	LIU C., HENDERSON B.H., WANG D., YANG X., PENG 
Z.R. A land use regression application into assessing 
spatial variation of intra-urban fine particulate matter 
(PM2.5) and nitrogen dioxide (NO2) concentrations in City 
of Shanghai, China. Sci. Total Environ., 565, 607, 2016.


