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Abstract

The north Patagonian lakes in their original stage were characterized by their marked oligotrophy, 
with high abundance of mixotrophic ciliates in lakes with native forest in their surrounding basins. 
Nevertheless, in the last decades, it was a replace of native forest of different kind of human activities, 
such as towns and agricultural zones, that generate a transition from oligotrophy to mesotrophy, being 
replaced the mixotrophic ciliates by different kind of phytoplankton. The aim of the present study was 
to propose a descriptive model using remote sensing techniques for determining the best model for 
predict the mixotrophic ciliates abundance in two North Patagonian Chilean lakes.

In studies sites, only Caburgua lake has mixotrophic ciliates, that belong to the species Ophyridium 
naumanni, Stentor amethystinus and S. araucanus, whereas Villarrica lake has not mixotrophic ciliates. 
The multiple regression analysis revealed that for O.naumanni and S. amethystinus  have significant 
direct associations between temperature, B01, B07 reflectances, S. araucanus abundances, and inverse 
associations with B02, B04 and B07, and the abundance of both species was significantly inverse. 
Finally, for S. araucanus was positive associations with B04 and S. amethystinus. The exposed results 
would be similar to the first descriptions of mixotrophic ciliates abundances for Argentinean and 
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Introduction

The Argentinean North Patagonian lakes originally 
were described as oligotrophic, and with native forest 
in their surrounding basins [1,2], these lakes in their 
original stage would have abundant mixotrophic ciliates 
[3] specifically of species Ophyridium naumanni, 
Stentor amethystinus, and S. araucanus that currently 
are abundant in lakes with low human alterations 
[4-7]. In opposite scenario, many Chilean north 
Patagonian lakes have marked human intervention in 
their surrounding basins, due towns and agricultural 
zones [8, 9], that generate transition from oligotrophy 
to mesotrophy in a period of two decades [10] with 
consequent changes in the zooplankton assemblages in 
function to trophic status even in different bays in the 
same lake such as was described for Llanquihue lake 
(41ºS) [8, 9]. 

On the view point of mixotrophic ciliates, these 
would be abundant under low chlorophyll concentration, 
that would be associated to low crustacean zooplankton 
species richness and abundances, and in this 
scenario mixotrophic ciliates would be indicators of 
ultraoligotrophic or oligotrophic status in Patagonian 
lakes [3-5]. But under chlorophyll  increase due 
transition from oligotrophy to mesotrophy mixotrophic 
ciliates are replaced due predation by crustacean 
zooplankton species such as Mesocyclops araucanus 
(= Mesocyclops longisetus) [3, 4, 11, 12]. Also, under 
original oligotrophic status, the mixotrophic ciliates 
would graze on bacteria, and simultaneously it has 
endosymbiontic activity due endosymbiotic algae 
[12, 13] and it would be prey of native juvenile fishes 
[14]. If it is considered that mixotrophic ciliates are 
key species as bioindicators in Patagonian lakes with 
ultraoligotrophic or oligotrophic status, probably the 
trophic status variations can be detectable using spectral 
properties by remote sensing techniques [15]. 

This scenario of trophic gradient of different lakes 
could be studied using their spectral properties. The 
scarce studies for Patagonian lakes, involves marked 
associations between LANDSAT ETM+ sensor for 
obtain optical image properties and zooplankton 
assemblages in lakes with marked glacier influence 
that would be associated with natural changes in water 
colour, such as was observed for General Carrera  
(46ºS) and Tagua-Tagua (42ºS) lakes [16-18]. In this 
context, it would be possible found differences between 
optical properties in lakes with presence and absence 
of mixotrophic ciliates considering their trophic 
differences associated [15]. The aim of the present 
study was determining the potential associations 
between optical properties obtained by remote sensing 

techniques and mixotrophic ciliates abundances in 
two Chilean North Patagonian lakes with presence 
of mixotrophic ciliates (Caburgua), and absence of 
mixotrophic ciliates (Villarrica) [15]. The hypothesis of 
the present study would be that associations between the 
different kind of mixotrophic ciliates abundances with 
reflectance values of different bands of LANDSAT/OLI 
in both mentioned lakes.

Material and Methods 

Study sites: lake Caburgua is located in Andes 
mountains in Araucania region, its surrounding basin 
has perennial native forest with mountains, and very 
few human altered zones, this lake is oligotrophic with 
marked mixotrophic Stentor protozoa abundances [4, 5] 
(Table 1, Fig. 1). Lake Villarrica is located at west of 
Caburgua lake [4], its surrounding basin is characterized 
by the presence of Villarrica and Pucon towns, small 
recreational residences at south, native forest at north 
[15], and the presence of Villarrica volcano (Fig. 1).

Sampling procedures: both sites were visited 
between November 2018 and January 2019 that is the 
period with maximum zooplankton abundances [3, 
5]. For Caburgua lake, four sites were sampled in a 
transect of 4 km at north of the lake (Fig. 1), whereas 
for Villarrica lake it considered two bays with towns in 
the south shore (Villarrica and Pucon), one site at center 
of the lake, and the fourth site in the northern shore of 
the lake where there is native forest (Fig. 1). For each 
site was measured in situ temperature using sensor 
YSI Pro Plus, at surface, concentration of total bacteria 
(AMR = aerobic mesophilic recount) were quantified 
in laboratory [19]. Chorophyll a, from samples were 
analysed using acetone extraction [20], whereas 
mixotrophic ciliates were quantified and identified 
based on literature [5, 14].  

The spectral properties were obtained from 
satellite LANDSAT/OLI, it got from Land Processes 
Distributed Active Archive Center (LP DAAC) from 
U.S. Geological Survey (http://LPDAAC.usgs.gov). 
The bands of visible light used were B01 coastal spray 
(0.430-0.450 μm), B02 blue (0.450-0.510 μm), B03 
green (0.530-0.590 μm), B04 red (0.640-0.670 μm), for 
near infrared were B05 (0.850-0.880 μm), and for short 
wave infrared (SWIR) were B06 (1.570-1.650 μm) and 
B07 (2.100-2.290 μm) were calibrated radiometrically 
to spectral irradiance and then to reflectance, with 
atmospheric correction being applied [15-17, 20-22].

Exploratory multivariate data analysis: all data 
analysis was applied using software R [23]. As first step, 
data analysis a first step was applied a matrix correlation 

Chilean Patagonian lakes. On this basis, we propose the use of remote sensing techniques would be an 
important key tool for study the presence of these organism.
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analysis using Hmisc R package [24], for determine the 
associations between studied variables. As second step 
a principal component analysis (PCA), this statistical 
analysis was applied, factoextra [25] and ggplot2 [26] 
R packages. As second step, a multiple regression 
analysis [27] was applied considering as dependent 
variables, the abundance of the mixotrophic ciliates 
abundances, and independent variables the optical 
properties, temperature, chlorophyll a concentration, 
and bacterial abundances, all data analysis was applied 
using software R [23].

Results

The obtained results revealed that chlorophyll 
concentration and reflectance values of LANDSAT 
OLI , are more high at Villarrica lake in comparison to 
Caburgua lake, therefore the mixotrophic ciliates were 
absent in Villarrica lake (Table 1). The temperature and 
total bacteria values were not relatively different for 
studied sites (Table 1). 

The correlation matrix revealed the existence of 
significant direct associations between B01 with B02, 
B01 with B03, B01 with chlorophyll a, B02 with B03, 
B02 with chlorophyll a, B03 with chlorophyll a, B04 
with B05, B04 with B06, B04 with B07, B05 with B06, 
B05 with B07, B06 with B07, total mixotrophic ciliates 
with O. naumanni, total mixotrophic ciliates with S. 
amethystinus, total mixotrophic with S. araucanus, 
O. naumanni with S. amethystinus, O. naumanni with 
S. araucanus and S. amethystinus with S. araucanus 
(Table 2). Finally, inverse significant associations were 
found between B01 with total mixotrophics ciliates, 
B01 with O. naumanni, B01 with S. amethystinus, B01 
with araucanus, B02 with total mixotrophics ciliates, 
B02 with O. naumanni, B02 with S. amethystinus, B02 
with S. araucanus, B03 with total mixotrophics, B03 
with O. naumanni, B03 with S. amethystinus, B03 with 
S. araucanus, and Chlorophyll a with S. araucanus 
(Table 2).

The PCA results revealed that the main contributor 
variables for axis 1, were B01. B02, total mixotrophic 
ciliates and S. amethystinus, whereas for second axis, 
the main contributor variables were B05, B06, and B07 
(Table 3, Fig. 2). The PCA results revealed the existence 
of two main group, the first group joined Villarrica lake 
sites, within these sites, the north littoral sites have 
high of B01 and B02 reflectances and low chlorophyll 
a concentration in comparison with other sites of this 
lake whereas the remaining sites of Villarrica lake 
have high B03 reflectance and marked high chlorophyll 
concentration (Fig. 2). A different situation was  
reported for Caburgua lake, where the first site 
corresponding to nearby to littoral in both sampled  
dates was different, because both sites have high 
B04, B05, B06 and B07 reflectance values, and low 
mixotrophic abundances considering total mixotrophics 
ciliates and each recorded species (Fig. 2). Whereas Ta
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the remaining sites of Caburgua lake that have low 
reflectance values, and high mixotrophic abundances 
considering total mixotrophics and each recorded 
species (Fig. 2). 

The results of multiple regression, revealed first 
that the most robust model for O. naumani has direct 
significant associations with B01 and B07 reflectances, 
temperature, total mixotrophic ciliates abundances 
and S. araucanus abundances, whereas it has inverse 
significant association between B02, B04 and B07 
reflectances, and with S. amethystinus abundances 
(Table 4). As second step, the results of multiple 
regression, revealed first that the most robust model for 
S. amethystinus has direct significant associations with 
B01 and B07 reflectances, temperature, total mixotrophic 
ciliates abundances and S. araucanus abundances, 
whereas it has inverse significant association between 
B02, B04 and B07 reflectances, and with O. naumanni 
abundances (Table 2). Finally, for S. araucanus the 
robust model had significant association between B04 
reflectance and S. amethystinus abundances (Table 4).

Discussion

The obtained results would be similar to first 
descriptions of North Patagonian lakes of Argentina 
and Chile about the presence of O. naumanni, S. 
amethystinus and S. araucanus [4, 5]. The dominance 
of the all species in the second sampled period would 
be similar to the literature descriptions that mentioned 

the marked dominance of this species in southern 
summer (December, January, and February) [5], that 
would be explained probably to temperature increase. 
Although literature mentioned that mixotrophic ciliates 
graze on bacteria [3, 13], the literature published about 
bacterial abundances in North Patagonian lakes are 
very preliminary, and denotes differences in function 
to human intervention for Villarrica lake [15, 28]. 
The marked differences in spectral properties in both 
lakes (Table 1), is agree with literature descriptions 
for a central Chilean lake with marked gradient of 
trophic status in different sites [28]. In this context, the 
marked associations of different ETM+ remote sensor 
bands between S. araucanus with the other two species 
would be due the pigmentation of the first specie that is 
blue-green, whereas O. naumanni and S. amethystinus 
have green-brown pigmentation [14, 29].. Also, S. 
araucanus is dominant in surface layers (epilimnion), 
due its marked photoprotective strategies, whereas O. 
naumanni and S. amethystinus prefers metalimnion due 
their vulnerability to natural solar radiation [5].

Similar results about the same mixotrophic ciliates 
species abundances and trophic interactions, has been 
described for Argentinean north Patagonian lakes [6, 7, 
30-32]. The Argentinean lakes has more studies about 
interactions between bacteria and pyco-phytoplankton, 
for these lakes have descriptions of pyco-cianobacteria 
that are abundant in metalimnion zones [33] and 
other kind of bacteria [34, 35]. The results obtained 
for Argentinean lakes about mixotrophic ciliates, and 
ultraoligotrophic lakes would give support to the present 

Fig. 1. Map with sites included in the present study [28].
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results observed for Caburgua lake, nevertheless, 
the available methodology to determine bacterial 
abundances is more developed for Argentinean lakes 
than for Chilean lakes, and in the present status the field 
study of the role of bacterial in Chilean lakes would 
be uncertain [3]. The trophic interactions that involve 
mixotrophic ciliates, reported that this group together 
crustacean zooplankton would graze on bacteria, such 
as been observed for Argentinean lakes [36], and in 
this scenario, it would have direct association between 
mixotrophic ciliates with crustacean zooplankton such 
as been observed for Argentinean Patagonian lakes 
[34, 36]. Similar results have been observed for marine 
environments [37, 38-40]. Also, important topic about 
mixotrophic ciliates, is related with phytoplankton 
decreasing, this result was observed in the present study 
for Caburgua Lake, and also was described for Baikal 
lake [41] and Alpine lakes [42].  In this context, it has 
been reported for Argentinean Patagonia and for Alpine 
lakes, that it is possible found abundant mixotrophic 
ciliates under presence of glacier sediments that would 
affect water transparency affecting the phytoplankton 
activity, and enhancing mixotrophic ciliates activity 

Table 3. Contribution of considered variables for PCA.

  Axis 1 Axis 2

B01 -0.375 0.087

B02 -0.380 0.027

B03 -0.305 0.176

B04 -0.037 -0.392

B05 -0.083 -0.506

B06 -0.103 -0.516

B07 -0.121 -0.507

Temp (ºC) 0.021 -0.041

Total_bacteria <-0.001 -0.061

Chlorophyll_a -0.242 0.111

Total Mixotrophic 0.377 -0.032

O. naumanni 0.347 -0.021

S. amethystinus 0.381 0.006

S. araucanus 0.346 -0.09

Fig. 2. Results of PCA for sites and variables included in the present study (Legend for sites: 1 = Villarrica North littoral, November;  
2 = Villarrica centre, November; 3 = Villarrica port November; 4 = Villarrica La Poza Pucon bay November; 5 = Villarrica North littoral, 
December; 6 = Villarrica centre, December; 7 = Villarrica port, December; 8 = Villarrica La Poza Pucon bay, December; 9 = Caburgua 
1, November; 10 = Caburgua 2 = November; 11 = Caburgua 3, November; 12 = Caburgua 4, November; 13 = Caburgua 1, December;  
14 = Caburgua 2, December; 15 = Caburgua 3, December; 16 = Caburgua 4, December). 
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[43]. In this scenario, if the first observations denoted 
for Patagonian lakes the associations between spectral 
properties and zooplankton composition [15-18], these 
results would be applicable to mixotrophic ciliates such 
as been observed in the present study.

The use of remote sensing techniques, for water 
quality studies in lakes [44], proposed marked 
associations in spectral properties and chlorophyll 
concentration [44-51].  In this context would have 
marked differences in watercolour due to water quality 

that can be detectable using remote sensing techniques 

[52, 53]. Also, it was proposed the use of remote sensing 
techniques for determine potential associations with 
cyanobacterial pigments in lakes [54-56]. The exposed 
results about associations between differences in water 
quality with their respective correspondence in spectral 
images, would be similar to the observed results in the 
present study. Also, in this scenario, the present results 
it would be possible detect differences within a same 
lake at large spatial scales (ten or more kilometres), that 

Table 4. Results of multiple regression analysis for mixotrophic ciliates species reported in the present study.

Ophyridium naumanni

Estimate Standard error T value P value

Intercept 6.3126 3.4459 1.832 0.116

B01 377.484 110.786 3.407 0.143*

B02 -405.256 140.924 -2.876 0.028*

B04 -552.330 94.589 -5.839 0.001*

B06 -266.166 92.176 -2.888 0.027*

B07 985.984 255.852 3.854 0.008*

Temperature 0.044 0.016 2.617 0.039*

Total mixotrophic 0.912 0.030 29.586 <0.001*

S. amethystinus -1.762 0.148 -11.862 <0.001*

S. araucanus 0.279 0.107 2.586 0.004*

Residual standard error: 0.180, on 6 degrees of freedom, multiple R2 = 0.998; adjusted R2 = 0.996; F(6;9; α = 0.05) = < 0.001

Stentor amethystinus

Estimate Standard error T value P value

Intercept 0.399 0.174 2.284 0.062

B01 0.021 0.546 4.047 0.006*

B02 -0.024 0.685 -3.550 0.012*

B04 -0.031 0.451 -6.962 <0.001*

B06 -0.015 0.487 -3.140 0.020*

B07 -0.056 0.013 4.382 0.004*

Temperature 0.024 0.009 2.503 0.046*

Total mixotrophic 0.501 0.037 13.554 <0.001*

O. naumanni -0.544 0.046 -11.862 <0.001*

S. araucanus -0.165 0.054 2.975 0.024*

Residual standard error: 0.100, on 6 degrees of freedom, multiple R2 = 0.998; adjusted R2 = 0.996; F(6;9; α = 0.05) = < 0.001

Stentor araucanus

Estimate Standard error T value P value

Intercept -9.960 2.925 -3.404  0.004*

B04 361.285 104.298 3.464 0.004*

S. amethystinus 1.061 0.119 8.902 < 0.001*

Residual standard error: 0.7041, on 13 degrees of freedom, multiple R2 = 0.870; adjusted R2 = 0.851; F(2;13; α = 0.05) = < 0.001
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can be detectable using remote sensing techniques [15, 
57].

The exposed results revealed the presence of 
differences between water qualities, specifically 
chlorophyll concentration, between two lakes, and 
within each lake [15]. Nevertheless, the integration of 
limnological descriptions and remote sensing techniques 
for Chilean lakes has been described only for Vichuquén 
lake (34°48′42″S; 72°02′57″W), that is a coastal central 
Chilean lake, with marked human intervention in 
their surrounding basin, and it was possible propose a 
predictive model based in LANDSAT 8 OLI  sensor 
images [57]. In this scenario it would be possible use 
remote sensing techniques for predict water quality in 
northern Patagonian lakes.
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