
Introduction

Water is an indispensable natural resource for human 
development and the material basis for human beings 
and all living things to survive. China is a country with 
severe droughts and water shortages. The per capita 
water resources of the country are only 2,200 m3, which 
is only 1/4 of the world average level. China is one of 

the 13 countries with the poorest water resources per 
capita in the world [1, 2]. As an important part of water 
resources, groundwater only accounts for one-third  
of the total domestic water resources [3] and shows a 
pattern of “more in the south and less in the north”. 
Located in Shanxi Province in North China, Xinzhou 
city is a mining city with relatively poor groundwater 
resources compared to the national average. In recent 
years, with the acceleration of urbanization, the 
rapid growth of the urban population, and the rapid 
development of industry and agriculture, Xinzhou 
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city’s groundwater pollution has increased daily,  
and the mining intensity in some areas has been 
excessive. Xinzhou city is facing serious water 
pollution and water shortage problems [4, 5]. In 
addition, Xinzhou is located near the basin of the 
Yellow River, China’s “mother river”. Therefore, the 
comprehensive evaluation of the groundwater quality 
in Xinzhou city, the identification of prominent 
pollutants and areas with prominent pollution, and then 
the proposal of reasonable pollution control measures 
have become important parts of Xinzhou’s current 
water environment research. In addition,, the research 
results can also provide a more accurate grasp of the 
overall water environment of Xinzhou city and provide 
a scientific basis for preventing the deterioration of the 
water quality in the assessment area, formulating water 
resources management plans, and conducting the next 
hydrogeological survey.

Common methods for groundwater quality 
evaluation include the single factor index method, the 
F value scoring method [6], the fuzzy comprehensive 
evaluation method (FCE) [7], and the grey system 
evaluation method [8]. These traditional methods mostly 
refer to the water quality category standard, calculate 
the weight of conventional water resource pollution 
factors based on multivariate statistics, and establish 
comprehensive evaluation indexes [9-10]. These methods 
are simple and have been widely used, but they fail to 
solve the uncertainty and nonlinearity of the pollutants 
in water quality evaluation [11], and there are certain 
deficiencies in each method. For example, the FCE needs 
to design the membership function of each evaluation 
index to all levels of standards and the weight of each 
index, and the evaluation results are easily affected by 
subjective factors [12]. The selection of the whitening 
function and the determination of the clustering 
weight in the grey system evaluation method are often 
different from each other, and the evaluation model is 
difficult to universally use [13]. With the development 
of artificial intelligence technology, artificial neural 
networks [14], Dempster-Shafer theory of evidence 
(D-S evidence theory) [15], genetic algorithms, extreme 
learning machines [16], SVMs and other methods 
have been applied due to their strong learning ability 
and performance. However, these methods still have 
some limitations in their application. For example,  
a neural network needs a large number of samples, the 
network structure is subjective and easy to learn, and 
the generalization ability is poor [17]; D-S evidence 
theory calculations are large, and the mass function is 
difficult to determine [18]; and the genetic algorithm 
has a certain dependence on the selection of the initial 
population, and it easily produces the premature 
convergence problem [19]. SVM is a kind of learning 
machine developed from statistical learning theory. It is 
based on the principle of structural risk minimization 
and has the ability to approximate complex nonlinear 
systems, a strong learning generalization ability and 
good classification performance [20]. It requires fewer 

samples and possesses convenient modeling, simple 
calculations, short learning and training times, and 
strong versatility; therefore, it can be used to solve 
the groundwater quality evaluation problem belonging 
to pattern recognition [21]. In SVM applications, its 
performance is directly affected by the selection of the 
model parameters [22]; therefore, the optimal search of 
the best parameters is particularly important.

Based on this, on the basis of PCA, this paper uses 
a particle swarm optimization-based support vector 
machine (PSO-SVM) to conduct a comprehensive 
evaluation of the groundwater quality in Xinzhou 
city and compares the results with those a variety 
of traditional water quality evaluation methods.  
The research results can provide certain referential 
value for the rational development and utilization of 
urban groundwater resources.

Materials and Methods

Sampling and Analysis

Based on the hydrogeological structure of Xinzhou 
city, this paper selects local loose rock pore water and 
carbonate fissure karst water as the research objects. 
There are 14 groundwater sampling points in the study 
area, including 12 diving samples and 9 confined water 
samples. The sampling points are all water wells in use, 
the depth of the diving wells is 5-40 m, and the depth of 
the pressurized water wells is 110-210 m. The sampling 
wells are basically evenly distributed throughout the 
study area. GPS is used to locate each sampling point. 
The distribution of the sampling points is shown in  
Fig. 1. Among them, 1#~12# correspond to the upper 
pore water, and 13#~21# correspond to the lower karst 
water.

The water samples were collected in accordance 
with the requirements of the “Technical Specifications 
for Groundwater Environmental Monitoring” (HJ/T 
164-2004). The collected water samples were filtered 
through a 0.45 μm filter membrane and collected in 
precleaned and sterilized 5 L polyethylene bottles. The 
water samples were divided into two parts: one part 
was used for the anion test without any reagents, and 
the other part was used for cation analysis by adding 
premium grade HNO3 to a pH value of less than 2. After 
the water samples were sealed, they were transported 
back to the laboratory within 24 h and stored at 0-4ºC, 
and the determination was completed within 48 h.  
Fig. 2 shows photos of the field test.

The test items of the water samples taken are 
mainly based on indicators that have potential risks to 
the health of local residents, including the following: 
nitrite (calculated by N), nitrate (calculated by N), 
sulfate, chloride, fluoride, Fe, total dissolved solids 
(TDS) and total hardness (TH). The soluble metal Fe 
in the water sample after acidification was analyzed 
by inductively coupled plasma mass spectrometry 
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(ICP-MS) (Themofisher XII, USA). Cl−, SO4
2− and F− 

in unacidified water samples were determined by ion 
chromatography (Metrohm 761/813). The concentrations 
of NO2

− and NO3
− in the water samples were determined 

by a DR2800 portable spectrophotometer. TDS was 
measured by the gravimetric method, and the total 
hardness (TH) was determined by EDTA titration. 
All instruments were corrected before the experiment, 
and the average analysis error of ICP-MS was less 
than ±10%. The indexes of the water samples were 
determined by the laboratory of the Institute of Geology 
and Geophysics, Chinese Academy  Sciences.

Data Analysis Techniques

The charge balance error of anions and cations in all 
test water samples should be guaranteed to be within 
5% [23]. Through calculation, the charge balance error 
of anions and cations in water samples is less than 

5%, indicating that the detection accuracy of water 
chemistry is high.

The water quality grade evaluation adopted the 
“Groundwater Quality Standard” (GB/T14848-2017). 
The data not detected in the test were replaced by  
1/2 of the detection limit of the instrument.  
The analysis of the anion and cation charge balance 
error of each water sample was completed using 
SPSS 26.0; the water quality evaluation method was 
completed using MATLAB R2018a and Excel 2016; 
and illustrations were made by software such as Origin 
2019b, ArcMap 10.7 and Surfer 17.0.

Water Quality Evaluation Method

This paper uses the PCA-PSO-SVM algorithm 
to evaluate groundwater quality data. The basic idea 
of the algorithm is as follows: First, considering that 
water sample test indicators may cause collinearity due 

Fig. 1. Geographical location of Xinzhou city.
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to their diversity, this paper uses principal component 
analysis (PCA) to reduce the dimensionality of the 
multiple water sample test indicators. Second, PSO is 
used to optimize the selection of the key parameters of 
SVM (kernel function parameter g and penalty factor 
C) to construct a PSO-SVM model. Finally, the water 
sample test data after the dimensionality reduction 
process are inserted into the PSO-SVM model for 
training and testing, and the results are output and 
analyzed.

PCA

PCA obtains new variables with fewer dimensions 
that are irrelevant by constructing the linear combination 
of the original variables. In other words, it uses the 
dimension reduction idea to reduce multiple indicators 
to a few independent comprehensive indicators. In this 
process, the information overlap between different 
indexes is fully considered. On the basis of retaining the 
original information as much as possible, the dimension 
reduction of multidimensional data is conducted, and 
the independent comprehensive factors are selected 
more objectively. Subjective arbitrariness is avoided, 
and the data structure is simplified. The intuitiveness of 
the analysis is greatly improved, and the running time 
of the program is greatly reduced.

SVM

The basic principle of SVM is to minimize structural 
risks. The idea is to find an optimal superflat in the 

sample space and divide the sample space into two 
categories so that the distance between the two-class 
sample set and the optimal superflat is the largest [24]. 
Before using SVM, the classification problem is divided 
into two types: one is linearly separable, and the other 
is linearly inseparable. Most of the actual problems are 
the latter.

We introduce slack variables and increase the kernel 
function K(x, xj) and penalty factor C for analysis. The 
input data in low-dimensional space are transformed 
into high-dimensional space through nonlinear 
transformation, making it a linear sample, so as to find 
the optimal classification hyperplane.

The solution of the hyperplane is transformed into 
an optimization problem:
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Fig. 2. Field test photos a) Drilling, b) Installing PVC pipe, c) Filling with filter material, d) Washing well before sampling, e) Sample 
collection, and f) Parameter determination.
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The discriminant function is:
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PSO

PSO was originally derived from the ideas of 
artificial life and evolutionary computing theory. It 
was first proposed by two American doctors, James 
Kennedy and Russell Eberhart, and imagined such a 
scenario. A group of birds randomly search for food 
in a fixed area. There is only one piece of food in this 
area, and all the birds do not know where the food is; 
however, they know how far the piece of food is from 
their current location. Therefore, in order to search for 
food better and faster, the birds farther from the food 
need to keep getting closer to the birds closer to the 
food. Each bird is constantly searching for the closest 
bird to itself, and the final result is that the entire flock 
of birds flies to unknown food under one control. The 
particle swarm algorithm is inspired by this kind of bird 
predation behaviour and used in optimization problems.

(1) Mathematical description of the particle swarm 
algorithm

The particle swarm algorithm is a kind of bionic 
evolutionary computing technology. The mathematical 
description of the PSO process is as follows [25]:

Assuming there is an N-dimensional space, the 
position vector of the ith particle in the N-dimensional 
space is:

( )1 2, , ,i i i iNx x x x= …
                (2)

The flight speed vector is:

( )1 2, , ,i i i iNv v v v= …
                (3)

Each particle can calculate the corresponding fitness 
value according to the fitness function, update their 
position and speed in N-dimensional space according to 
their own and group experience, and constantly adjust 
their moving speed and position by comparing the 
fitness value of the new position, individual extremum 
and group extremum. The updated formula is:

( ) ( )1
1 1 2 2

k k k k
i i i i i iv v c r p x c r g xω+ = + − + −

  (4)

1 1k k k
i i ix x v+ += +                       (5)

where ω is the inertia weight; i = 1, 2..., N is the size 
of the particle population; k is the number of iterations; 
pi is the best local position of particles, also known 
as the individual extrema; gi is the best position of 
the whole population at present, also known as the 

global extremum; r1 and r2 are random numbers that 
are uniformly distributed from [0,1]; and c1 and c2 
are learning factors, usually between 0 and 2. In the 
velocity update formula, vi

k represents the size and 
direction of the velocity of the particle in the previous 
iteration; and c1r1(pi – xi

k) belongs to the “cognitive” part 
of the particle, namely, the distance vector between the 
current position and its optimal position. c2r2(gi – xi

k) is 
the distance vector between the current position of the 
particle and the optimal neighbour, which can reflect the 
cooperation, information and sharing ability between 
particles.

The particle swarm algorithm is an optimization 
algorithm, and the fitness function refers to the 
optimization objective function in the primary 
algorithm. The fitness function directly reflects the 
individual’s survivability and adaptability to the 
environment. In general, the larger the fitness value 
is, the stronger the individual’s adaptability, and the 
smaller the fitness value is, the weaker the individual’s 
adaptability.

(2) Comparison of PSO and other optimization 
algorithms

Traditional optimization algorithms can solve simple 
problems, but for nonlinear and complex problems, the 
optimization time is often too long. However, modern 
optimization algorithms are an important branch 
of artificial intelligence and can solve optimization 
problems well. Among the modern optimization 
algorithms, the most important intelligent optimization 
algorithms include the particle swarm algorithm, 
genetic algorithm, ant colony algorithm, evolutionary 
programming algorithm, etc. These optimization 
algorithms have many similarities but also have obvious 
differences.

Compared with the genetic algorithm (GA), the 
optimization of the particle swarm algorithm does 
not crossover and mutate particles. The algorithm is 
simple, and the next position is obtained through a 
global and local search mode; therefore, the search 
speed is relatively fast and the efficiency is high. The 
ant colony algorithm (ACO) is the same as the particle 
swarm algorithm. It only needs to calculate the size of  
the fitness value for selection. The main problem is 
that the implementation of the ant colony algorithm 
is complex, which will cause stagnation in the search 
process; however, the particle swarm algorithm will 
not cause such a problem. The iterative process of the 
evolutionary programming algorithm (EP) is affected 
by the random function and may be solved in any 
direction; however, the particle swarm algorithm 
will move based on the local optimum and the group 
optimum in the iterative process, making it smarter, 
rather than unconsciously bumping.

Various algorithms have their own strengths in 
solving optimization problems, but the application 
of PSO in practical applications is more flexible. 
Its advantages lie in its simple implementation and 
powerful functions, and it is feasible in terms of the 
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parameter optimization of mathematical methods for 
groundwater quality evaluation [26, 27].

PCA-PSO-SVM

The specific operating steps of the PCA-PSO-SVM 
algorithm are as follows:

(1) Dimension reduction of influence factors
Since each class of water quality assessment level can 

only correspond to a set of water pollution index limits 
(i.e., critical values), only five pairs of training samples 
can be provided according to the standard requirements. 
This is far from meeting the sample requirements of 
SVM. Due to the lack of training samples, the data 
cannot reasonably reflect the internal rules of water 
quality, which will cause the shortcomings of the poor 
generalization ability, low recognition accuracy and 
weak robustness of the evaluation model and decrease 
the model’s practical value. Therefore, the number of 
training samples must be increased. Combined with  
the test results of water samples, the standard 
threshold of class V was set to be twice that of Class 
IV. Each water quality level randomly generates 100 
8-dimensional water quality data points, for a total of 
500 data points. We normalize the initial data and then 
set the training set (400) and test set (100) according to 
the ratio of 4:1.

Based on the aforementioned PCA principle, we use 
the auxiliary function (pcaForSVM.m) in the libsvm-3.1 
[Faruto Ultimate3.1 Mcode] toolbox [28] of MATLAB 
to conduct dimensionality reduction preprocessing, 
and the function interface program is [train_pca, test_
pca]=pcaForSVM(train, test, threshold). By entering 
the training data (train), test data (test), and threshold 

parameters (i.e., cumulative variance contribution rate, 
which is 85% in this example), the reduced training data 
(train_pca) and test data (test_pca) can be obtained. The 
principal components obtained after dimensioning are 
used for subsequent analysis.

(2) Parameter optimization based on PSO
The selection of kernel function parameter g  

and penalty factor C is very important to the 
classification performance of SVM, and there are many 
ways to optimize the key parameters (kernel function 
parameter g and penalty factor C) of SVM. The most 
common algorithm is the grid optimization algorithm. 
Other methods include genetic algorithms and particle 
swarm algorithms. In this paper, in order to improve  
the speed of model parameter optimization and to 
obtain more reasonable optimal parameters, PSO is 
selected for parameter optimization. The main process 
can be summarized into the following two steps:

1) Make any particle close to the individual and 
obtain the global optimal solution (qbest and pbest), and

2) Iteratively update qbest and pbest to obtain the global 
optimal solution.

The SVM model is mainly established using 
the LIBSVM toolbox, and the interface program 
model=svmtrain (training_label_vector, training_
instance_matrix, [‘libsvm_options’]) is called and 
mainly used for training the model. Then, [predicted_
label, accuracy, r]=svmpredict (test_label_vector, test_
instance_matrix, model), which is mainly used to 
predict data, is called. The input training data are the 
extracted impact factor matrix and label (grade 5 water 
quality level) with 400 training samples.

PSO-SVM mainly uses the auxiliary function 
(psoSVMcgForClass.m) in the libsvm-3.1 [Faruto 

Fig. 3. Flowchart of the research methodology.
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commonly used method is to let the values of C and g be 
in a certain range. For the selected C and g, the training 
set is used as the original data set, and the accuracy 
of training set verification classification is obtained by 
using the K-fold Cross Validation (K-CV) method [29]. 
Finally, C and g that resulted in the highest accuracy  
of training set verification classification were selected 
as the best parameters. This section uses the 3-fold 
cross validation method.

The cross-validation method is adopted. First, the 
ranges of C and g are set as 2−12, 2−9, ... , 210; and the 
optimal values of parameters C and g are preliminarily 
roughly obtained as C = 0.000097656 and g = 0.75786. 
Then, the ranges of C and g are narrowed and refined. 
The ranges of C and g are set as 2−12, 2−11.5, ... , 24. 
Finally, the optimal parameters are C = 0.00024414 and 
g = 0.0625, and the classification accuracy of the test set 
is 90%. In this case, the parameters used are the best in 
a certain sense.

PCA-PSO-SVM

The PCA-PSO-SVM is used to conduct water  
quality evaluation. First, the relevant data are 

Ultimate 3.1 Mcode] toolbox in MATLAB to optimize 
the kernel function parameter g and penalty factor C. 
The function interface program is [bestCVaccuracy, 
bestc, bestg, pso_option]=psoSVMcgForClass (train_
label, train, pso_option). The optimal C and g can be 
obtained by inputting training data (train), training data 
labels (train_label) and PSO parameters.

The flowchart of the PCA-PSO-SVM algorithm  
shown in Fig. 3.

Results and Discussion

General Results

The specific monitoring values of the pore water 
and karst water samples are shown in Table 1. Based 
on these data, SVM and PCA-PSO-SVM are used to 
evaluate water quality.

SVM

There is no universally acknowledged best method 
to optimize the SVM parameters. At present, the 

Table 1. Test results of pore water and karst water samples.

NO. NO2
-

(mg/L)
NO3

-

(mg/L)
SO4

2-

(mg/L)
Cl-

(mg/L)
F-

(mg/L)
Fe3+

(mg/L)
TDS

(mg/L)
TH

(mg/L)

1# 0.011 13.300 48.03 23.16 0.2 0.80 346 200

2# 0.003 11.800 40.83 21.38 0.3 1.00 310 233

3# 0.003 19.700 24.01 12.47 0.5 0.10 267 200

4# 0.003 17.300 16.81 14.25 0.2 1.10 267 193

5# 0.002 18.800 69.64 17.73 0.5 0.20 341 273

6# 0.066 25.100 288.18 146.07 0.6 0.05 942 388

7# 0.016 35.800 4.80 14.18 0.5 0.05 319 255

8# 0.001 27.300 158.50 23.16 0.2 0.05 463 365

9# 0.005 4.000 21.61 17.81 0.4 0.05 323 203

10# 0.004 1.300 45.63 12.47 0.2 0.05 267 223

11# 0.019 24.000 86.45 19.59 0.3 0.05 366 253

12# 0.005 13.600 28.82 10.69 0.3 0.05 247 200

13# 0.013 17.100 12.01 12.47 0.2 0.05 237 193

14# 0.002 19.600 16.81 14.18 0.2 0.50 255 198

15# 0.013 5.900 96.06 33.85 0.6 0.05 404 300

16# 0.002 35.600 24.02 19.59 0.4 0.10 358 288

17# 0.034 25.100 45.63 17.73 0.2 0.05 306 248

18# 0.024 6.400 175.31 8.91 0.1 0.05 410 320

19# 0.005 3.300 379.44 8.91 0.5 0.05 713 570

20# 0.014 12.300 86.45 53.44 0.3 0.05 420 290

21# 0.005 12.400 19.21 10.69 0.5 0.05 244 195
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standardized to eliminate the influence of dimensions 
and orders of magnitude between different indicators. 
Kaiser-Meyer-Olkin (KMO) test statistics and Bartlett 
sphericity tests were used to determine the correlation 
between indicators [30] to determine whether the 
original variables are suitable for factor analysis. The 
calculated KMO value is 0.959, which means that the 
data be used for factor analysis. When the significance 
of the Bartlett sphericity test is 0<0.05, there is a 
correlation between the original variables, which 
means that the variables can be analyzed by principal 
component analysis.

By calculating and selecting the principal 
components whose eigenvalues are greater than or 
equal to 1, it is found that the cumulative variance 
contribution rate of the first four principal components 
reaches 88.76%, which can basically reflect the 
attributes of the source data. The distribution of the 
gravel map and principal component analysis double-
plot is shown in Fig. 4.

By dividing the data in the loading matrix of 
the initial factor of the principal component by the 
square root of the corresponding eigenvalue of the 
principal component, the eigenvector corresponding 
to the principal component is obtained. That is, the 
corresponding coefficient of each index, multiplied by 
the standardized data, and the corresponding expression 

of the principal component F can be obtained (Eq. (6), 
Eq. (7), Eq. (8), and Eq. (9)).

                    
(6)

(7)

(8)

(9)

where Fi is the ith principal component; and Xi (i = 1~8) 
are the concentrations of NO2

-, NO3
-, SO4

2-, Cl-, F-, Fe3+, 
TDS and TH, respectively.

The principal component formula shows that the 
indexes closely related to the first principal component 
are TDS and TH, which mainly reflect the total amount 
of dissolved solids and total hardness, respectively, and 
can characterize the overall degree of pollution of the 
water body. Moreover, since the variance contribution 
rate of the first principal component reaches 48.42%, 
which is much larger than that of other principal 
components, the first principal component plays a 
decisive role in the evaluation of the water quality. 
Among the second principal components, the loadings 
of NO2

- and NO3
- are relatively large, which can indicate 

the degree of pollution of the water body by nitrogen 
salts. The index closely related to the third principal 
component is Fe3+, which mainly reflects the influence 
of Fe3+ on water bodies. The index closely related to the 
fourth principal component is F-, which mainly reflects 
the degree of dissolution of fluorite in the groundwater 
aquifer.

Second, PSO is used to optimize the parameters 
of SVM. The parameters that need to be optimized 
are the following: the kernel function g parameter and 
penalty factor C. The kernel function parameter g and 
penalty factor C of SVM are used as the particles of 
PSO, and the classification accuracy of SVM is used 
as the objective function of PSO. The parameters 
of PSO are set as follows: the maximum number of 
evolutionary generations T is 200, the population 
popsize is 20, and the learning factors are c1 = 1.5 and 
c2 = 1.7. The support vector classification machine is 
selected, and the radial basis kernel function is used as 
the kernel function of the support vector classification 
machine. The value interval of the penalty parameter c 
is set to [0.1, 100], and the value interval of the radial 
basis kernel function g is set to [0.01, 100]. The three-
fold cross validation method is used. Through PSO-Fig. 4. a) Scree plot and b) Biplot.
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SVM, the optimal parameter combination is obtained 
as follows: C = 0.1 and g = 0.01. The optimal cross-
validation accuracy is 99%. The classification results 
are shown in Fig. 5, and the obtained fitness curve is 
shown in Fig. 6.

The final classification results are shown in Table 3.

Comparison of the Results

First, part of the data obtained by interpolation 
between standards at all levels was selected as the 
verification set data, and the accuracy of each method 
was tested. The results are shown in Table 2. Since 
FCE, the F value scoring method and the single factor 
index method have no training process, of course, there 
is no corresponding verification process; therefore, 
these methods are not included in the following table.

The table shows that the accuracy of water quality 
prediction based on SVM is significantly higher 
than that of the BP neural network, and the SVM 
method based on PSO can meet the demand of water 
quality prediction, regardless of whether the principal 
component extraction is used or not. The advantages of 

PCA-PSO-SVM over PSO-SVM are mainly reflected in 
the running time.

Liao, Xu and Wang proposed a water quality 
evaluation method based on the combination of SVM 
and a genetic algorithm with an average prediction 
accuracy of more than 80% [31]. Modaresi and 
Arghinejad studied and compared the water quality 
classification performance of three supervised 
classification methods: SVM, the probabilistic neural 
network (PNN), and k-nearest neighbours (KNN). 
Among these three methods, SVM has the best 
performance with an average accuracy rate of 90.6% 
in the test of 5 data sets [32]. In comparison, the water 
quality evaluation method adopted in this paper has 
certain advantages in evaluation accuracy and has 
promotional value.

Table 3. Summary of the results of each methoIn 
addition, according to the calculated water quality 
evaluation grade (Table 3), the water quality distribution 
map of each layer of water is drawn, as shown in Fig. 7.

The figures show that there is a certain correlation 
between the upper pore water and the lower karst 
water in the central and western water quality levels, 
and the eastern region has a large contrast, which is 
inconsistent with the conventional understanding that 
the lower water is usually less disturbed and the water 
quality of lower water is better than that of the upper 
water. Through observation, this may be because in 
the karst water aquifer, the area near Wutai is large, 
and there are few sampling points. When the kriging 
interpolation method is used, the water quality around 
Wutai is extrapolated and interpolated based on 
Wutai. Therefore, the water quality around Wutai has 
a strong correlation with the results, which also causes 
poor water quality in the eastern karst water aquifer. 
Therefore, in future research, the number of monitoring 
points and monitoring frequency should be increased.

Discussion

Based on the data of 21 groundwater monitoring 
water samples in Xinzhou city, the improved SVM 
method was used to comprehensively evaluate the 
groundwater quality, and the results were compared with 
the results a variety of water quality evaluation models. 
The evaluation results of the single factor index method 
and the F value score method are relatively close, the 
results are better than those of the other evaluation 

Fig. 5. Classification results of the actual test set and predicted 
test set.

Fig. 6.  Fitness curve.

Table 2. Comparison of the performance of each method

Methods Total 
number

Number of correct 
evaluations Accuracy

PCA-PSO-SVM 100 99 99.00%

PSO-SVM 100 96 96.00%

SVM 100 90 90.00%

BP neural network 100 52 52.00%
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models, and the evaluations are relatively conservative. 
This is because the single factor evaluation method 
determines the water quality category using the single 
index with the worst water quality, so the water quality 
category evaluated is inferior. The F value scoring 
method can reflect the overall situation of water quality, 
but the evaluation results highlight the level of excessive 
pollution indicators, and the evaluation results are not 
continuous. Compared with the results of the single 
factor index method and F value score method, the 
results of FCE are more volatile, which may be caused 
by the influence of FCE in which the pollution factors 
in a few monitoring indexes exceed the standards. In 
addition, this algorithm fully considers the fuzziness of 
the boundaries of different water quality categories and 
the influence of evaluation factors on the water quality 
weights in the calculation process, and the evaluation 
results are the results of the interaction between the 
two.

SVM and improved SVMs (PSO-SVM and PCA-
PSO-SVM) in the evaluation results are consistent. 
The results are better than the results of the traditional 
evaluation methods (single factor index method and F 

value score method), more consistent with the actual 
research, and more objective. The evaluation results of 
the BP neural network are slightly different from those 
of SVM and the improved SVM models (PSO-SVM 
and PCA-PSO-SVM), which are basically consistent. 
However, the artificial intervention of the BP neural 
network structure is large, and the verification accuracy 
of the results is low. When only a single method is used 
for evaluation, the credibility of the results is general. 
As a comparison, SVM and the improved SVM models 
(PSO-SVM and PCA-PSO-SVM) have high accuracy, 
but the SVM has certain blindness in searching the 
best parameters based on cross-validation, and it takes 
a certain amount of time. PSO-SVM compensates 
for this defect, and the performance of the model is 
greatly improved. However, in addition, there are 
shortcomings such as low computational efficiency and 
large memory occupation. In contrast, the PCA-PSO-
SVM algorithm established in this paper improves the 
operating efficiency of the program and reduces the 
amount of data occupying memory under the premise of 
ensuring the accuracy by reducing the dimensionality.  
The application effect is good.

Table 3. Summary of the results of each method

NO. PCA-PSO-SVM PSO-SVM SVM BP neural network FCE F value scoring 
method

Single factor index 
method

1# II II II II III IV IV

2# II II II II I IV IV

3# II II II II I II III

4# II II II II III IV IV

5# III III III II I II III

6# V V V III III IV IV

7# III III III III V IV V

8# III III III III II IV IV

9# II II II I I II III

10# I I I I I II III

11# III III III III I IV IV

12# II II II I I II III

13# I I I I I II III

14# II II II II III IV IV

15# III III III II II II III

16# III III III III V IV V

17# III III III III I IV IV

18# III III III III II II III

19# IV IV IV III V V V

20# III III III III II II III

21# II II II I I II III
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Since the training set of the various new artificial 
intelligence algorithms selected in this paper is 
composed of random data, the corresponding training 
models are different, which causes each test result 
to not be static, although this change is small.  
In addition, in this paper, the threshold range point  
of the class V water quality is set to twice that of  
class IV water quality, which has certain applicability 
and representativeness. However, for poor water  
quality, it is far beyond the threshold range point of 
class V water quality; and although it exceeds the 
standard of class V water quality, the two situations of 
small exceeding range are generally applicable and the 
training effect is general. Therefore, more appropriate 
threshold ranges should be set for different research 
water bodies.

Conclusions

(1) The overall condition of the groundwater quality 
in Xinzhou city is generally good. The upper pore 
water quality is mainly class II, the lower karst water 
is mainly of class III, and the water quality shows 
significant spatial differences.

(2) Overall, the water quality in Kelan, Wuzhai, and 
Shenchi is relatively good while the water quality in 
Baode and Wutai is poor; and water quality management 
is urgently needed. However, the water quality of 
Yuanping, Xinfu, and Dingxiang fluctuates greatly, and 

the monitoring frequency should be increased to treat 
pollution sources in time.

(3) PCA-PSO-SVM is more comprehensive and 
objective in the evaluation results and has high accuracy 
and calculation efficiency. It is worthy of promotion and 
use.
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