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Abstract

Rapid, accurate, and non-destructive monitoring after land reclamation is the basis of and key  
to realizing land restoration evaluation, as well as land use direction decision-making and improvement. 
However, the biggest problem with the filling reclamation method is the poor soil water retention 
caused by the insufficient thickness of covering soil (TCS), which results in the loss of soil nutrients.  
In addition, the cost of filling reclamation has also increased due to the excessive TCS. In this study, 
multi-source remote sensing data acquisition methods were used to assess the impacts of the TCS of 
the filling reclamation method on soil water retention and crop growth (CG). We found that as the 
TCS increases, the overall trend of the CG gradually increases, and the overall trend of the soil water 
content slowly increases. However, considering the huge economic costs and the cost of soil sources, we 
suggest that the optimal TCS for the filling reclamation method should be controlled within 40-50 cm.  
The results of this study provide a reference for the use of multi-source remote sensing technology 
for rapid evaluation of the restoration effects of reclaimed areas and for the rational utilization of coal 
chemical wastes.
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Introduction

With the progress of human civilization, the 
development of mineral resources has gradually 
become the basic source of human production and 
living materials. However, long-term, large-scale, high-
intensity mining inevitably causes numerous environ-
mental problems [1]. Land reclamation has gradually 
become an important method of environmental 
restoration in mining areas, but it is still challenging to 
efficiently carry out long-term monitoring and research 
on the effects of reclamation methods without causing 
damage [2]. In addition, due to the increasing shortage 
of soil resources, reclamation projects have gradually 
adopted the filling reclamation method. However, when 
the reclamation filling method is used, the resultant 
water-preserving capability of the covering soil is 
poor, which leads to problems such as a decline in soil 
fertility and the loss of soil nutrients [3]. Therefore, 
monitoring of the soil moisture in the reclaimed area 
is one of the key indicators used to detect the effect of 
reclamation and restoration measures. The relationships 
between the thickness of the covering soil (TCS), 
the soil water content (SWC), and the crop growth 
(CG) under the reclamation filling method are also 
increasingly considered to be an important part of the 
ecosystem in the re-claimed farmland because these 
relationships determine the growth and succession 
of crops in the farmland ecosystem [4]. However, soil 
sampling methods are often used to determine the TCS, 
the SWC, and the CG, and these methods are time-
consuming, laborious, and destructive to the soil [5]. 
Although the satellite remote sensing method has the 
ability to provide spatial information and to quickly 
obtain the distribution of the target to be measured on 
a large scale, the scale of the measurement target is 
relatively large [6]. Due to the inappropriate scope and 
resolution of the survey, the abovementioned methods 
cannot meet the accuracy requirements of reclamation 
effect evaluation.

The unmanned aerial vehicle (UAV) remote sensing 
technique is a down-scaled remote sensing method 
relative to satellite remote sensing. With its fast, 
efficient, and accurate characteristics, the UAV method 
has gradually become widely used for crop evaluation 
[7]. In recent years, the near-ground quantitative remote 
sensing technique based on drones has been shown to 
have unique advantages [8]. More scholars have carried 
out a series of studies on crops and have achieved many 
results. Dehkordi, et al. [9] used high-resolution aerial 
remote sensing data to study the impact of biochar on 
farmland crop growth at the canopy level for the first 
time. Their results showed that the presence of biochar 
significantly increased the stress on the chicory crops, 
but the yield of the harvested crops was not affected. 
Fu, et al. [10] used the UAV remote sensing technique 
to study wheat test sites, and their results showed that 
UAV remote sensing has broad application prospects 
in crop growth index monitoring and yield estimation. 

Hassan, et al. [11] used a multi-spectral drone to 
monitor the normalized difference vegetation index 
(NDVI) of wheat varieties and breeding lines grown 
under different irrigation conditions. Their results 
revealed that the multi-spectral sensor on the drone is 
a reliable high-throughput NDVI measurement platform 
and has a good effect in studying the CG. These studies 
have fully demonstrated that the UAV remote sensing 
technique has significant advantages in the monitoring 
of CG on the mesoscale. How-ever, because UAV 
remote sensing involves the acquisition of the apparent 
reflectance, it has limitations in terms of its ability to 
detect underground properties such as the TCS [12].

In order to explore the impacts of the filling 
reclamation method on the soil water-preservation 
capability and CG, it is necessary to determine the 
distribution of the underground structures in the 
reclamation area. Therefore, it is essential to conduct 
non-destructive and accurate acquisition of the TCS. 
As a geophysical tool, ground penetrating radar (GPR) 
has a great potential for soil structure investigations. 
This method can achieve non-destructive detection of 
underground abnormal structures under a large-area 
and has the ability to obtain underground information 
[13]. Liu, et al. [14] used GPR to detect the thickness 
of the soft soil layer in northeastern China, and their 
results demonstrated that GPR has a great potential 
in terms of its ability to identify the soil thickness. 
Marecos, et al. [15] used GPR to detect the asphalt layer 
of a road. Their results showed that GPR is of great 
significance to long-term monitoring of the pavement 
structure, and it can accurately obtain the thickness of 
the asphalt layer and the particle layer. Luo, et al. [16] 
used GPR to analyze the physical soil properties of re-
claimed land in a mining area, and their results showed 
that GPR can accurately obtain the soil layer thickness 
of reclaimed land and other unnatural sediments. 
Therefore, in future, GPR can be gradually applied to 
the detection of the soil thickness and under-ground 
structures constructed from unnatural sediments.

In addition, GPR is not only a geophysical tool but 
has also gradually become a near-earth microwave 
remote sensing technique for the rapid and non-
destructive detection of the SWC [17]. After the 
analysis of the relationship between the soil’s dielectric 
constant and the SWC by Topp, et al. [18] and Knoll, 
et al. [19], it became possible to use GPR to non-
destructively predict the SWC. Cao, et al. [20] used 
GPR to acquire the SWC and analyzed the spatial 
variability of the SWC. Their results revealed that 
GPR has a great potential in investigating the spatial 
variability of water. Pettinelli, et al. [21] found that the 
early-time signals of GPR have a strong correlation with  
the SWC. Algeo, et al. [22] verified that the early-
time amplitude envelope has a good correlation with  
the SWC in the field environment, and they used it to 
create a farmland moisture distribution map based on 
the time series. With the deepening of research, GPR 
has not only been used for the detection of structures 
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but has also gradually become widely used for SWC 
prediction [23].

In this study, a reclaimed area filled with fly 
ash, in Huaibei City, eastern China, was taken as the 
study area. Multi-source remote sensing (GPR and 
UAV) techniques were used to analyze the impact of 
the filling reclamation method on the soil moisture 
accumulation and CG under different TCS values. 
In addition, the feasibility of heterogeneous layer 
identification and depth acquisition after the filling 
reclamation method using GPR was explored, and 
the potential of using multi-source remote sensing 
(GPR and UAV) for reclamation effect evaluation was 
evaluated. Furthermore, the optimal TCS for the filling 
reclamation method was analyzed from the perspectives 
of water retention and CG. The results of this study are 
significant to optimizing reclamation methods and to 
long-term, rapid, and non-destructive monitoring of the 
effects of reclamation projects.

Experimental  

Study Area Overview

The study area is located in Huaibei City, northern 
Anhui Province, eastern China (33°58′N, 116°51′E). 

The warm semi-humid monsoon climate of this area 
results in well-marked seasons and more than adequate 
rainfall. Since Huaibei City is one of China’s important 
coal mining bases, the construction and production of 
thermal power generation facilities have increased. 
This has led to the accumulation of a large amount of 
fly ash, the storage of which occupies a lot of arable 
land. In the early 21st century, in order to cope with the 
damage to the land caused by coal mining subsidence 
and to solve the problem of fly ash accumulation, the 
local government adopted the fly ash filling reclamation 
method to restore a large amount of arable land. The 
study area was one of the farmland areas reclaimed 
at that time, with an area of about 0.84 km2. Before 
the reclamation, it was a subsided seeper area, with 
a maximum collapse depth of 10 m. Due to the large 
collapsed area, it is inevitable that the filling height is 
inconsistent and the TCS varied during the construction 
and accumulation processes. The soil type of the TCS 
is mainly loam. The TCS is approximately 20-70 cm. 
The southern and western parts of the study area are 
adjacent to lakes. The terrain in the study area is flat. 
The main crops planted are wheat and corn rounds, and 
the water supply for the crops is rain. The field test was 
conducted in December, and the winter wheat was in 
the overwintering period in the study area. The specific 
situation is shown in Fig. 1.

Fig. 1.  Overview of the study area: a) location and elevation of the study area in Anhui Province; b) sampling locations (n = 58); c) 
ground penetrating radar pre-experiment results (layered information) for a 50-m line measurement; d) soil profile; and e) fly ash water 
absorption performance.
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UAV Data Acquisition and Preprocessing

UAV Data Acquisition

A DJI Phantom 4 (DJ-Innovations, Shenzhen, 
China) multi-spectral version of the plant protection 
UAV equipped with an integrated multi-spectral 
imaging system was used to acquire the multi-spectral 
images of the reclamation area. The UAV integrates 
one visible light sensor and five multi-spectral sensors 
(blue, green, red, red edge, and near infrared). The 
parameter settings of the UAV should comprehensively 
consider the research goals. Therefore, in this study, 
the heading overlap was 70%, and the side overlap 
was 60%. The UAV was flown at a height of 110 m 
and at a speed of 5.1 m/s, and the sensor lens was 
oriented vertically downward. The study area is a large 
winter wheat planting area with relatively few typical 
features. In order to facilitate the sub-sequent geometric 
correction processing of the images, 10 aerial survey 
landmarks were evenly arranged in the survey area as 
typical reference points. Before the aerial photography 
was conducted, the aircraft was manually controlled 
to hover 2.5 m above the calibration plate to capture 
images, and the standard reflectance values under the 
cur-rent conditions were obtained. When the multi-
spectral images were acquired in the study area, the sky 
was clear, with few clouds and no wind, and the light 
radiation in-tensity was stable.

UAV Data Preprocessing

The Pix4D (Pix4D SA, Prilly, Switzerland) Mapper 
software was used for the post-image stitching after 
the drone images were acquired. The acquired multi-
spectral images were calibrated and mosaiced before 
the image processing [24]. The UAV data preprocessing 
was conducted using the ENVI 5.3 software (Exelis 
Visual Information Solutions, New York, USA). 
First, 30 reference points (including 10 aerial survey 
landmark points) were uniformly selected throughout 
the area to geometrically correct the multi-spectral 
images. According to the location of the ground sample 
points in the image, the region of interest (ROI) of the 
sample points was constructed. The average reflectance 
spectrum value in the ROI range was taken as the 
winter wheat reflectance spectrum at this point in order 
to obtain the reflectance spectrum data for each sample 
point.

Ground Penetrating Radar Data Acquisition 
and Preprocessing

GPR Data Acquisition

A PRO-EX ground penetrating radar instrument 
(Mala Geoscience, Malå, Sweden) was used to acquire 
the GPR data for the reclamation area. Considering that 
the reclamation area is large and most of the plots have 

been planted with winter wheat, the GPR test included  
a 50-m long survey line for the pre-experimental 
analysis and 58 radar survey points for detection. 
Considering the TCS, the dielectric properties of the 
soil, and the energy loss during detection, the antenna 
center frequency was set to 500 MHz; the time window 
was set to 40 ns; the number of sampling points was 
1024; and the fixed offset measurement method was 
used. Twenty radar measurements were taken at 
each sampling location. Soil samples were collected  
at the calibration position after the radar detection 
was completed. In order to reduce the interference  
of the surface heterogeneity, the surface impurities  
on the radar survey line were simply cleaned up before 
the detection.

GPR Data Preprocessing

Electromagnetic waves cause various interferences 
such as energy attenuation and dispersion during 
propagation in a soil medium; so, it is necessary to 
preprocess the radar data to improve the accuracy of 
the data [25]. Due to the different uses of GPR data 
(SWC and TCS), there are also certain differences in 
the preprocessing methods used for different purposes.  
It should be noted that due to multiple reasons, 
such as the undulation of the ground, there will be 
inconsistencies in time zero. We used the short-term-
average (STA) over long-term-average (LTA) method 
to automatically extract the time zero position of the 
electromagnetic wave signal of the GPR, in order to 
accurately obtain the travel time of the electromagnetic 
wave. This method was first proposed by Stevenson 
[26] to identify the arrival of microseismic waves.  
The STA/LTA was obtained using the following 
equations:
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where NS and NL are the numbers of samples in the 
STA and LTA time windows, respectively. The time 
window used in this study was NS = 40 and NL = 200. 
λ is the trigger threshold, and CF is the characteristic 
function. The CF function used in this study was an 
improved feature function of Liu, et al. [27]. It introduces 
a weighting factor K, which has the advantages of noise 
resistance and a strong stability. The CF function is 
expressed as follows:

               (4)
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to enhance the visibility of the fly ash-soil critical layer 
[28]. Since the GPR data contain background noise, 
which is mainly caused by the horizontal frequency 
band created by the antenna-ground interaction, 
multiple underground reflections, and high-frequency 
spike events, we conducted background removal 
processing [29]. Following this step, band-pass filtering 
was used to eliminate the high-frequency and low-
frequency noise. The band-pass was 1.5 times the 
center frequency [30] of the GPR, and the low (high-
pass filter) and high (low-pass filter) boundaries were 
evenly distributed near the center frequency (the high-
pass filter was 100 MHz and the low-pass filter was  
900 MHz). The fly ash-soil critical layer could be 
identified in the A-Scan (one-dimensional scan) after 
the data processing (Figs 2e and 2f).

In order to obtain accurate information about  
the TCS, we used the travel time of the electromagnetic 
wave in the soil to determine its specific depth.  
The formula is as follows:

2 2( 1) ( ( 1) ( )) ,CF X i K X i X i= + + + −  (5)

where K is based on the signal sampling frequency and 
the nature of the noise in order to carry out the weight 
distribution. The CF includes the signal amplitude and 
frequency parameter characteristics, which greatly 
improve its noise resistance and stability. len is the 
length of the input signal; and X(i) is the amplitude of 
the signal at i. X'(i) is the derivative of X(i). As shown 
in Fig. 2c), its stability and accuracy are extremely high.

The processing tools used were Reflex-Win 7.2 
(Sandmeier Scientific software, Karlsruhe, Germany) 
and MATLAB. The preprocessing steps included 
DC drift removal, a time zero search, direct wave 
removal, gain, background removal, and signal filtering 
processing. The purpose of the gain is to compensate 
for the energy lost through the attenuation, scattering, 
and dissipation of the electromagnetic waves during 
propagation through the underground medium in order 

Fig. 2.  GPR data preprocessing: a) raw GPR data; b) GPR data after removal of the DC shift; c) and d) STA/LTA method to find the time 
zero; e) bandpass filter (high-pass filter: 100 MHz; low-pass filter: 900MHz); and f) final data used to identify the critical layer.
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                           (6)

where v is the wave speed of the electromagnetic waves 
propagating through the soil, which is the dielectric 
constant of the soil, and c is the speed of light. Then, 
using Topp’s formula [18], 

     (7)

where θv = ρ × θm; θv is the soil volumetric water 
content; ρ is the soil’s dry bulk density (DBD); and θm 
is the water content of the soil mass. We can obtain 
the travel velocity (v) of the electromagnetic waves 
in the soil using Equation (6). Therefore, we can obtain 
the TCS as follows:

,travelS vt=                                (8)

/ 2,h S=                                 (9)

where ttravel is the travel time of the electromagnetic 
wave in the soil; S is the two-way distance that 
the electromagnetic wave reflects during travel; and h is 
the TCS.

Soil and Crop Data Collection

Soil Data Acquisition

The collection of the soil’s DBD, SWC, and 
compactness data was carried out at the sampling points 
in the study area. The cutting ring method was used 
to collect the soil data. The plum blossom sampling 
method was used to collect soil samples at 15 cm at 
each sample point. The soil samples were transported 
to the laboratory and placed in a dryer at 105ºC for 
24 h. After drying, the dry weight of each soil sample 
was obtained. The DBD and SWC were calculated as 
follows: 

                          (10)

                          (11)

where ρ is the DBD of the soil; M is the weight of the soil 
before drying; m is the weight of the soil after drying; 
V is the volume of the cutting ring; and θ is the SWC.

An SC-900 (Spectrum Technologies, Aurora, USA) 
soil compactness tester was used to acquire the soil 
compactness data. The measurement unit was kPa; 
the resolution was 2.5 cm; the measurement accuracy 
was ±35 kPa; the maximum range was 45 cm; and 
the measurement pressure range was 0-7000 kPa.  
The compactness was tested three times at each sample 

point, and the average value was taken as the final 
compactness.

Crop Data Acquisition

In order to quantify the growth of the winter wheat 
in the study area, the single CG index did not consider 
the characteristics of the winter wheat’s morphological, 
physiological, and biochemical characteristics [9].  
In this study, we used a combination of morphological 
indicators (crop height), physiological and biochemical 
indicators (leaf pigments), stress indicators (water), and 
yield indicators (biomass) to quantify the comprehensive 
growth of the winter wheat. The chlorophyll content of 
the crops was measured using a SPAD-502 (Konica 
Minolta, Tokyo, Japan) chlorophyll meter for 58 
sampling points in the study area. Each sampling 
point was selected in the range of 1 m × 1 m; three 
high, medium, and low crops were selected; and two 
leaves from each crop were measured to determine the 
chlorophyll content of the tip, middle, and base of the 
leaf. The average chlorophyll content was taken as the 
final chlorophyll content of the sample. The crop height 
was defined as the distance from the highest leaf tip 
to the base of the stem of the winter wheat that grows 
naturally, and it was measured using a ruler. After the 
leaf samples were separated, they were placed in an 
oven at 105ºC for 30 min, and all of the crop samples 
were dried for 48 h at 80ºC. Subsequently, the crop 
biomass index and water content index were calculated 
as follows:

 (12)

where θcrop is the crop’s water content; M1 is the fresh 
weight of the crop leaf; M2 is the fresh weight of the 
stem; m1 is the weight of the crop leaf after drying; and 
m2 is the weight of the stem after drying.

UAV Vegetation Index Selection 
and Crop Growth

Vegetation Index Selection

Crops exhibit different spectral reflectances in 
different wavebands because of the differences in their 
intrinsic biochemical parameters [31]. The vegetation 
index refers to the linear or non-linear combination of 
the spectral reflectance in the characteristic band, and it 
can be used to diagnose the growth state of vegetation 
and to invert various vegetation parameters. However, 
the response relationships between the vegetation index 
constructed in different wavebands and the target object 
are different. The condition of the crop is closely related 
to the spectral reflectance information in the red band, 
red edge band, and near-infrared band [32]; so, there 
are 16 vegetation indices composed of the red band, red 
edge band, and near-infrared band.
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Construction Method of the Comprehensive Growth 
Monitoring Index (CGMI) 

Due to the different weights of the winter wheat 
chlorophyll, biomass, crop height, and water content 
in the CGMI, we adopted the coefficient of variation 
method to construct the CGMI. The coefficient of 
variation method is used to determine the weighted 
value of the evaluation index according to the degree 
of variation of each evaluation index value [43].  
The variation coefficient is calculated to determine  
the weighting method as follows:

                  (13)

                          (14)

where Vi is the coefficient of variation; σi is the standard 
deviation; x̄ i is the average; and Wi is the weight.

Early-Time Signal Amplitude Envelope of Ground 
Penetrating Radar

Ground penetrating radar data contain a large 
amount of information about the underground media 
[44]. In this study, the average envelope amplitude 
(AEA) was used as the characteristic parameter of 
the GPR in order to analyze the response relationship 
between it and the SWC. This method, which is based 
on early-time amplitude analysis, was first proposed 
by Pettinelli, et al [21]. The early-time signal refers 
to the radar wave in the first positive half cycle.  
The Hilbert transform can be used to obtain the 
value of the envelope’s amplitude, and the value of  
the envelope’s amplitude in the time window (first 
positive half cycle) is averaged to obtain the AEA (Fig. 3). 

The advantage of this method is that when the air and 
ground waves are mixed, the wave velocity inversion 
method fails; so, this method can be used to mine the 
characteristic variables from the electromagnetic wave 
attribute information (instantaneous amplitude) and to 
characterize the SWC information. Later, Di Matteo, et 
al. [45] defined the theoretical basis of the AEA based 
on continuous research.

Therefore, the Hilbert transform of the time-domain 
radar data was obtained as follows:

1 ( )ˆ( ) ,x sx t ds
t s

+∞

−∞
=

π −∫
                   (15)

where x̂ (t) is the Hilbert transformation function of 
x(s), and the integral is the value integral of the Cauchy 
principle. The complex imaginary part of the radar 
signal xi(t) is generated after the Hilbert transformation, 
and the GPR signal xt(t) is regarded as the real part of 
the signal. Its form is as follows:Fig. 3. Hilbert transform of GPR data.

Vegetation 
index Formula Reference

CIgreen CIgreen  = NIR/GREEN−1 [33]

DVI DVI  = NIR−RED [34]

EVI2 EVI2 = (NIR−RED)/
(1+NIR+2.4RED) [35]

GNDVI GNDVI = (NIR−GREEN)/
(NIR+GREEN) [36]

MSR MSR = (NIR/RED−1)/(NIR/
RED+1)^0.5 [37]

MTCI MTCI = (NIR−REG)/(REG−RED) [38]

MVI MVI = [(NIR−RED)/
(NIR+RED)+0.5]^0.5 [36]

NDGI NDGI = (GREEN−RED)/
(GREEN+RED) [34]

NDVI NDVI = (NIR−RED)/(NIR+RED) [39]

NLI NLI = (NIR^2−RED)/(NIR^2+RED) [40]

OSAVI OSAVI = (NIR−RED)/
(NIR+RED+0.16) [41]

RDVI RDVI = (NIR−RED)/
(NIR+RED)^0.5 [42]

SAVI SAVI = (1+L)(NIR−RED)/
(NIR+RED+L)(L = 0.5) [36]

RVI RVI = NIR/RED [34]

RVI1 RVI1 =  NIR/GREEN [36]

TVI TVI = 0.5×[120(NIR−
GREEN)]−200(RED−GREEN) [40]

Note: GREEN, RED, REG, and NIR denote the reflectance 
values in the green, red, red edge, and near infrared bands, 
respectively.

Table 1. Multi-spectral vegetation indexes and their formulas.
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ˆ( ) ( ) ( ),r ix t x t jx t= +                (16)

2 2( ) ( ) ( ),i r iA t x t x t= +
             (17)

where 1,j = −  and ( )iA t  is the instantaneous 
amplitude. Therefore, the AEA can be defined as the 
average value of the instantaneous amplitude (amplitude 
envelope) within a specific time window.

Results and Discussion

CGMI Inversion Based on UAV

Constructing the CGMI

The variations in the TCS result in the soil 
conditions being more complex than those of normal 
soil. To achieve a more accurate characterization of the 
CG, 58 crop samples (chlorophyll, crop height, biomass, 
and crop water content) were acquired from the study 
area and analyzed. Table 2 presents the results of the 
statistical analysis of the measured data. We found 
that the average values of the chlorophyll content, crop 
height, and crop water content were 36.67, 12.09 cm, 
and 64%, respectively; and their coefficients of variation 
(CVs) were 14.05%, 22%, and 8.85%, respectively. For 
the biomass, the average value was 2.19 g, and its CV 
was 43.90%, which is the largest of all the indicators. 

In general, the TCS variations in the study area have 
increased the spatial variability of the CG to a certain 
extent. Due to the large variability of the various 
biological indicators, the CV method was used to assign 
weights to the different biological indicators. The CGMI 
of the winter wheat was constructed as follows:
CGMI = 0.166X1 + 0.246X2 + 0.489X3 + 0.099X4, (18)

where X1 is the chlorophyll content; X2 is the crop height; 
X3 is the biomass; and X4 is the crop water content.

Correlation Analysis and Variable Selection 
of Vegetation Index and CGMI

In order to screen out the best selected variables  
for the model, Pearson correlation analysis was 
performed between the CGMI and the 16 vegetative 
indexes (Table 3). It was found that the CIgreen, GNDVI, 
MTCI, and RVI1 indexes have very low correlations 
with the CGMI (Table 3), but the remaining vegetation 
indexes are all extremely significantly correlated 
with the CGMI. The TVI and NDGI have the highest 
correlation coefficients (0.580) with the CGMI, 
indicating significant correlations. We selected the 
12 vegetation indexes that are extremely significantly 
correlated with the CGMI based on the above analysis.

Multi-collinearity of the vegetation indexes can 
cause problems such as instability or over-fitting of the 
model. Therefore, we selected the variance inflation 
factor (VIF) to analyze the multi-collinearity between 
the input variables (vegetation indexes) of the model 

Table 2. Statistical analysis of the crop data.

Crop growth index Minimum Maximum Mean STD CV (%)

Chlorophyll content 29.68 53.12 36.67 5.15 14.05

Crop height (cm) 6.50 18.70 12.09 2.682898 22.19

Biomass (g) 0.26 4.94 2.19 0.960676 43.90

Crop water content (%) 36.96 72.28 63.93 5.66 8.85

Table 3. Correlations between the vegetation indexes and the CGMI.

Vegetation index Correlation coefficient Vegetation index Correlation coefficient

CIgreen 0.167 NDVI 0.437**

DVI 0.454** NLI 0.346**

EVI2 0.445** OSAVI 0.440**

GNDVI 0.178 RDVI 0.446**

MSR 0.433** SAVI 0.443**

MTCI 0.046 RVI 0.422**

MVI 0.428** RVI1 0.167

NDGI 0.580** TVI 0.580**

Note: * denotes significant at the 0.05 level, ** denotes significant at the 0.01 level.
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[46]. The VIF values of the 12 vegetation indexes were 
calculated, and VIF<10 was used as the screening 
condition. Finally, six vegetation indexes (DVI, MSR, 
MVI, NDGI, NLI, and TVI) were used as the final 
input variables of the model.

CGMI Inversion

Due to the error of the instrument itself and many 
other accidentally introduced factors, in the actual 
sampling, abnormal data are incorporated into the 
acquired data. We used residual analysis to eliminate 
the abnormal data before the model was constructed 
[47]. Three abnormal points were eliminated, and 55 
samples were used in the model construction process. 
The samples were stratified: 18 samples were used 
as the validation set and 37 samples were used as the 
modeling set. The extreme learning machine (ELM) 
algorithm was used for the model construction and 
prediction based on the six selected variables of the 
model (vegetation indexes). The growth status of the 
winter wheat in the study area was obtained through the 
model. Fig. 2a) shows the effect map of the normalized 
CGMI in the study area. As can be seen, the spatial 
variability of the growth of the winter wheat is relatively 
large in the study area. The growth of the winter wheat 
in the central and southern parts of the study area 
was average, and the growth in the eastern area was 
better. In general, the growth of the winter wheat in the 
study area was moderate. Fig. 4b) shows that the R2 of 
the model constructed using the ELM is 0.70 and the 
RMSE is 0.07. Fig. 4c) shows that the standard residuals 
are all between −2 and 2 and are normally distributed. 
In summary, the model has a good effect and can 
accurately invert the CG in the study area.

Recognition of TCS and SWC Inversion

Analysis of the Data Detection Results 
of the Pre-Experiment in the Research Area

A pre-experiment (feasibility verification) was 
performed by setting up an ~50-m long survey line in 
the study area. The GPR was used for the detection, 
and the SWC of 25 samples (2 m apart) was collected 
along the survey line. A total of five waveforms 
before and after each sampling point were averaged in 
order to eliminate any small-scale changes (outliers) 
and the error of the instrument’s detection distance.  
The AEA value corresponding to each sampling point 
was obtained, and regression analysis of the SWC 
and AEA was performed (Fig. 5). We found that the 
AEA exhibited a negative correlation with the SWC, 
with a Pearson’s correlation coefficient of −0.79, 
which is significant (p<0.01), and an R2 value of 0.62. 
In addition, the delamination phenomenon was obvious 
from the B-Scan (Fig. 1c), and we found that the TCS 
is not at the same height. The results revealed that GPR 
can be used to detect the critical soil-fly ash layer and to 
predict the SWC of the plough layer.

Recognition of TCS

In order to explore the possibility of the accurate 
identification of the TCS using GPR, we used the 
B-Scan (two-dimensional scan) of the GPR data to 
determine the suspected interval and to accurately 
pick the first maximum reflection peak in the A-Scan 
as the receiving point. In this way, the travel time of 
the electromagnetic wave in the covering soil can 

Fig. 4. The effect of the crop growth in the study area based on the UAV inversion. 
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be accurately obtained, and an accurate TCS was 
obtained. We adopted the compactness as supporting 
evidence of the ability of this geophysical method 
to ensure the accuracy of the TCS of each sample 
point in the study area. As can be seen from Figs 6a)  
and 6b), the B-Scan and A-Scan can accurately identify 
the position of the reflection peak; and the travel  
time was 7.7 ns. According to Eq. (6), the speed 
was 0.092 m/ns, and finally, the TCS was 35.4 cm. 
In addition, as can be seen from Fig. 6c), the soil 
compactness changes abruptly at 35 cm and then 
gradually becomes stable; so, we conclude this change 
to be roughly equivalent to the critical layer. Finally, 
the TCS information for all of the samples was obtained 
using this method.

Acquisition of SWC

Since the study area was a filling reclamation area, 
it was necessary to consider the spatial heterogeneity 
directly or indirectly caused by the variations in the 
TCS. In this study, the main method of dealing with the 
spatial heterogeneity, i.e., the geographically weighted 
regression (GWR) model, was used to construct the 
moisture inversion model. It is a non-parametric 
local spatial regression analysis method for modeling 
independent variables and dependent variables with 
spatial variations. The biggest advantage of the GWR 
is that it considers the spatial heterogeneity. In addition, 
the SWC is greatly affected by the physical properties of 
the soil. We selected representative physical properties 
of the soil (soil dry bulk density and compactness) and 
the GPR characteristic index (AEA) to analyze their 
correlation with the SWC (Table 4). We found that the 
DBD, AEA, and compactness were all significantly 
correlated with the SWC.

Therefore, the DBD, compactness, AEA, and TCS 
were selected as the input variables of the model, and 
the SWC was selected as the dependent variable of the 
model. Fifty-eight sample points were input to the GWR 
model, and the leave-one-out cross-validation method 
was used to evaluate the model’s accuracy. Fig. 7a) 
shows the spatial distribution map of the SWC obtained 
using the ordinary Kriging interpolation of the model 
prediction values. It was found that the distribution 
of the SWC exhibits a certain trend, that is, it is low 
in the middle and high in the north and south-west.  
Figs 7b) and 7c) show that the R2 and RMSE values 
of the SWC inversion model established using the 
GWR are 0.81 and 0.81%, respectively. Moreover, the 
standard residuals are almost all distributed between −2 
and 2, which indicates that the model’s prediction effect 

Fig. 5. Analysis of the relationship between the AEA and 
moisture content in the pre-experiment. 

Fig. 6. Recognition of the TCS based on GPR data. 
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is good. In summary, GPR has a great potential for  
the detection of the SWC.

Analysis of the Influences of the Variation 
in the TCS on the SWC and CG

To analyze the impacts of the fly ash filling 
reclamation method on the SWC and CG with a 
variable TCS, in this study, the TCS data obtained 
via GPR were divided into five intervals: <30, 30-40,  
40-50, 50-60, and >60 cm. We analyzed the 
measurement data (SWC and CGMI) in the different 
TCS ranges to explore the impact of the TCS on the 
SWC and CGMI. The average values of the CGMI 
and GWC in each TCS range were taken as the final 
values representing the TCS range. Fig. 8 shows that 
as the TCS increased, the overall trend of the CGMI 
gradually increased. The results show that the thicker 
the TCS, the better the CG. In addition, we found that 
the CGMI was the lowest when the TCS was less than 
30 cm, and the CGMI began to increase slowly when 
the TCS reached 40-50 cm. As the TCS increased, the 
overall trend of the SWC increased. However, the SWC 
increased slowly when the TCS reached more than 30 
cm. This may be because the depth of this sampling 
was located in the plough layer (20 cm in depth). As the 

TCS increased, the influence of the fly ash layer on the 
SWC of the plough layer gradually decreased. However, 
the SWC was the lowest when the TCS was less than 
30 cm. The results show that the TCS was too low, 
which affected the supply and migration of the water 
in the plough layer. We found that the TCS affects the 
reclamation effect. However, it should be noted that 
given the current very short supply of soil resources, 

Index Compactness DBD AEA

Correlation coefficient −0.65** −0.59** −0.81**

Note: * denotes significant at the 0.05 level, ** denotes significant at the 0.01 level.

Table 4. Correlation analysis between the GWR variables and the SWC.

Fig. 7. The effect of the water retrieval based on ground penetrating radar data. 

Fig. 8. CGMI and GWC changes with increasing TCS. 



Cheng Q., et al.2574

an extra 10 cm of TCS means a huge increase in the 
cost of the reclamation. Therefore, the CGMI will 
gradually decrease as the TCS increases; and the SWC 
is at a normal level, when the TCS reaches 40-50 cm. In 
summary, considering the economic costs and available 
resources, the TCS of the filling reclamation method 
should be controlled within the range of 40-50 cm.

Analysis of the Relationship between the SWC 
and CGMI for Reclaimed Soil Filled 

with Fly Ash

The soil water content is an important factor in 
maintaining the energy balance on the Earth’s surface. 
The amount of SWC in the soil determines its material 
and nutrient transport capacity [48]. We found that the 
variation in the SWC for a given TCS seems to be a 
key factor affecting the CG when studying the influence 
of the TCS on the CG. Therefore, we analyzed the 
influence of the SWC on the CG. Since the changes 
in the TCS will affect the CG, the sample points were 
divided into three categories (30-40 cm, 40-50 cm, and 
>50 cm) according to the TCS. The classified samples 
were divided into six ranges (<19%, 19-20, 20-21,  
21-22, 22-23, and >23%) according to the GWC range. 
The average of the CGMI in each range was used as 
the SWC of the range. The results are shown in Fig. 9a).  
It was found that the CGMI is generally lower in the 
three TCS ranges when the SWC is less than 19%. 
As the GWC increases, the CGMI of the different 
TCS ranges gradually increases. The CGMI generally 
decreases and gradually stabilizes when the GWC is 
greater than 21%. In addition, we found that the SWC 
changes more slowly within the TCS range of 30-40 cm. 
The response degree of the CGMI under different SWC 
ranges increases as the TCS increases. Thus, the fly ash 
has a strong water absorption ability and low nutrient 
content [49]. The lower the TCS, the closer the plough 
layer will be to the fly ash layer. Therefore, under 

different SWC ranges, the CGMI changes more slowly 
at low TCS values. However, the nutrient migration law 
of the plough layer gradually approaches normal as the 
TCS increases [50].

Next, we expanded the range of the TCS (30-50 cm, 
40-60 cm, and all samples), and the results are shown 
in Fig. 9b). We found that the trend of the response 
relationship between the CGMI and CWC in the three 
TCS ranges is highly consistent. The CGMI in all of 
the TCS ranges reached the maximum when the GWC 
was 19%-21%. In summary, the results show that the 
best SWC for winter wheat in the reclaimed area is 
19%-21%. When the SWC is too low, it will supply 
insufficient nutrients to the winter wheat; and when 
the SWC is too high, respiration of the wheat will be 
prevented and root rot will occur [51].

Potential and Limitations of Multi-Source Remote 
Sensing Reclamation Effect Evaluation

In the past, research on SWC, TCS, CG, and 
other information was mostly conducted by using 
manual measurement methods to obtain the sample 
information. These methods not only destroy the 
original soil environment and/or CG but also fail to 
accurately obtain sample information in a large-scale 
research area. In this study, the UAV multi-spectral 
remote sensing technique was used to obtain non-
destructive information about the CG throughout the 
entire study area. In addition, GPR was used to obtain 
non-destructive information about the TCS and the 
SWC of the plough layer. The relationships between 
the TCS, SWC, and CGMI in the reclaimed area filled 
with fly ash were explored using a combination of 
UAV and GPR methods. The advantage of using the 
coupled multi-source remote sensing method is that 
multi-source remote sensing can be used to accomplish 
large-area detection in a short time, which overcomes 
the expensive and time-consuming disadvantages  

Fig. 9. Response relationship between the CGMI and SWC for different TCS ranges. 
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of traditional methods of acquiring information through 
sampling. In addition, the CG, SWC, and TCS of the 
entire study area were fully determined. The use of 
UAV remote sensing in research has increased in recent 
years. The technology has become more mature and 
has been gradually applied in precision agriculture and 
smart agriculture [52]. In this study, the CG detection 
model based on a combination of multiple vegetation 
indexes and the extreme learning machine algorithm 
was used, which is a new method that overcomes the 
uncertainty of the traditional UAV single-parameter 
model [53]. The CGMI of the winter wheat in the study 
area obtained via UAV remote sensing (Fig. 4) is useful 
for monitoring the agricultural planting and agricultural 
management in the reclaimed area in real time.

In addition, we applied GPR, a near-ground 
microwave remote sensing technique, to the 
identification of the soil-fly ash layers in a reclaimed 
area. This method is currently mostly used in the 
detection of road thickness and asphalt layers [54]. 
In this study, the information about the TCS was 
accurately obtained through preprocessing of the GPR 
data. Then, the results of the GPR were rechecked and 
calibrated using the compactness data. The advantage 
of the GPR method is that it can be used to quickly 
and non-destructively obtain information about  
the underground structures and to further analyze  
the response relationships between the TCS, SWC, 
and CGMI. Moreover, this method effectively solves  
the shortcomings of the fuzzy underground structures 
and uncertain levels encountered in previous studies, 
and it can gradually be extended to farmland soil 
thickness detection based on this study. In recent years, 
GPR has gradually been applied to the non-destructive 
and rapid acquisition of the SWC [28, 55]. Therefore, 
some research has been conducted on the acquisition of 
the water content of the cultivated layer while studying 
the identification of the TCS. The Hilbert transform 
was used to obtain the AEA value of the first positive 
half-cycle signal of the GPR data. The GWR model 
was used to establish an SWC inversion model, which 
greatly improves the accuracy of the SWC inversion. 
As the GPR technique is being increasingly applied 
in large-scale hydrology studies, the multi-factor 
GWR analysis method adopted in this study will help 
to improve the accuracy and scientific nature of the 
SWC acquisition for complex soil structures. It is very 
important to consider the influences of multiple factors 
on the moisture accumulation in future research.

The biggest problem with the filling reclamation 
method is the poor water retention of the covering soil, 
which results in the loss of nutrients and the fertility of 
the plough soil. Numerous scholars have also proposed 
many methods to solve this problem, such as hybrid 
filling and remediation techniques and mixing water-
retaining materials with the soil [56]. However, most 
of these methods are in the indoor test stage and are 
expensive to implement. The multi-source remote 
sensing data acquisition method proposed in this 

article has reference significance for the evaluation of 
the restoration effect of reclamation methods in future.  
In this study, we mainly relied on UAV and GPR 
techniques to analyze the impact of filling reclamation 
engineering measures on the soil water retention 
and CG. The effects of the soil nutrients and root 
distribution on the CG and SWC were not considered. 
The soil nutrient index, as an essential index for fertility 
evaluation, has an important influence on the CG and 
determines the CG to a large extent [57]. Therefore, 
the relationship between the soil nutrients and TCS in 
reclaimed areas will be the focus of our future work. The 
roots of the crops in the soil also have a certain impact 
on the water content in the plough layer [58]. Therefore, 
it is necessary to continue to quantify the degree of 
influence of the roots on the accumulation of water in 
future studies. These factors need to be incorporated 
into the multi-factor model in order to ensure that 
the GPR detection method has a strong universal 
applicability in future. In this study, the influence 
was only studied from three aspects (TCS, SWC, and 
CGMI). Understanding the deeper relationships will 
require more experiments, for example, the analysis 
of the internal potential influencing factors through 
structural equation modeling. Therefore, we advocate 
conducting more field research to promote the important 
applications of multi-source remote sensing technology 
in monitoring the effects of reclamation methods in 
future.

Conclusions

In this study, the multi-source remote sensing 
technique was coupled with ground penetrating radar 
and unmanned aerial vehicle remote sensing to obtain 
the winter wheat crop growth, soil water content, and 
thickness of the covering soil in the study area. The 
response relationships between the TCS and the SWC 
and the comprehensive growth monitoring index in 
a reclaimed area filled with fly ash were analyzed. 
Through analysis of the response relationships between 
the TCS, SWC, and CGMI, we found that the CG 
improves as the TCS increases. Moreover, considering 
the large economic costs and the limited available soil 
sources, the optimal TCS is 40–50 cm. In addition, 
we also analyzed the relationship between the SWC  
and CGMI, and the results show that the best SWC 
is 19%-21% in the reclaimed area. This study 
systematically explained the relationships between the 
TCS, SWC, and CGMI based on data acquired using 
a multi-source remote sensing platform. The optimal 
TCS for the fly ash filling reclamation method was 
determined. In summary, the fast and non-destructive 
advantages of multi-source remote sensing are a huge 
improvement on traditional methods. The results of this 
study will help improve the application of multi-source 
remote sensing to the rapid evaluation of the restoration 
effect and farmland CG monitoring in reclaimed areas.
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