
Introduction

The impact of air pollution on the ecological 
environment, human health and safety is being 
discussed around the world [1]. It is a well-known fact 
that economic expansion contributes to air pollution 
since fossil fuels are utilized in production. When 
fossil fuels, principally petroleum, coal, and natural 
gas, are burned, significant quantities of carbon are 
released into the atmosphere, creating air pollution. 
Thus, economic progress is attained on the one hand, 

while environmental damage happens on the other. As 
a result, rising expenses decrease the net contribution 
of growth. This scenario creates a virulent loop of 
economic expansion and air pollution. In this context, 
Simon Kuznets’ work on economic growth and 
environmental variables is crucial from a theoretical 
standpoint. According to him, as the economy expands, 
the environmental quality increases and ultimately 
spirals downwards [2]. Porter’s Hypothesis (PH) is 
another theory that seeks to explain the link between 
economic growth and pollution. Porter argued that 
improved conditions for the environment would improve 
manufacturing output [3]. Fine particulate matter PM2.5 
ratios are thought to be an indicator of environmental 
air pollution [4]. A study conducted for Kazakhstan for  
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the period between 1992-2013 found a positive 
relationship between air pollution and economic 
growth [5]. From 1997 to 2010, economic efficiency 
was increasing due to a decrease in primary PM2.5 
emissions in China. In similar studies conducted in 
China, it has been found that labour productivity 
[6] and economic efficiency [7] decrease as PM2.5 
concentration increases. [8, 9]. Two different studies 
have been conducted for the economy of Azerbaijan 
between tourism-based economic growth and the 
ecological environment. Accordingly, a long-term 
positive relationship has been found between the 
two variables [10, 11]. It has been found that PM2.5 
and PM10 particulate matter increased the economic 
health cost in China between 1975-2005 and between 
2014-2015 [12]. The study using the EKC model for 
African countries has found a long-term relationship 
between emissions such as PM and per capita income 
from 1995 to 2010 [13]. It has been found that motor 
vehicle exhaust, coal decarbonization, and industrial 
emissions are among the most important sources of 
air pollution in Shandong. In Beijing [14], in Shanghai 
[15] PM2.5 pollution causes premature deaths [16]. For 
the period between 1996-2018, it has been concluded 
that FDI inflows to Azerbaijan were not completely 
environmentally friendly [17]. In the study conducted 
using simulation techniques of GEOS-global Chem for 
the 16 of the world regions, it has been estimated that 
the health expenditure of ozone pollution would be $580 
billion by 2050 and deaths from acute exposure would 
exceed 2 million. Similarly, other studies have shown 
that PM2.5 exposure can harm people’s health, reduce 
their working capacity, shorten their life expectancy, 
increase their spending on healthcare, and impose large 
economic burdens on the entire society [18-20].

The chemical, physical, and biological quality of 
the air we breathe is altered by PM2.5. Individuals 
breathe 13,000-16,000 litres of air each day on average. 
As a result, air with degraded chemical, physical, and 
biological properties is extremely hazardous to human 
health. Every year, 7 million people in the globe die 
prematurely as a result of air pollution [21]. Furthermore, 
because PM2.5 particles have a high surface area and 
volume, some bacteria, viruses, fungus, and other 
pathogenic microorganisms, as well as some heavy 
metals, acid oxides, and organic pollution toxins, can be 
absorbed by them, resulting in higher toxicity [22, 23]. 
Airborne and fomite transmission of SARS-CoV-2 is 
possible since the virus may remain alive and infectious 
in aerosol for hours [24].

Epidemiological studies have found substantial 
links between long-term exposure to PM2.5 and 
chronic illnesses such as heart disease, stroke, and 
lung cancer, as well as mortality from these diseases 
[25-28]. Several studies have found a link between 
air pollution exposure and respiratory system illness 
[29-32]. Air pollution is also known to impair the 
immune system, limiting people’s capacity to fight 
infection, according to the European Public Health 

Alliance [33]. Furthermore, pollution harms children’s 
lung development and increases the prevalence of 
chronic respiratory disorders (CRDs) such as asthma 
and chronic obstructive pulmonary disease (COPD) in 
polluted areas [34, 35]. Discovered a positive connection 
between measles incidence and PM10 particulate matter 
in western China between 1986 and 2005. According to 
[36], the majority of positive cases of highly pathogenic 
avian influenza (HPAI) H5N2 in Iowa (USA) in 2015 
may have been caused by an airborne virus spread by 
fine particulate from infected farms in the same or 
neighboring states. Similarly, the relationship between 
particulate matter exposure and COVID-19 incidence 
was investigated in 355 Dutch towns; Italy [37-39] and 
the United States [40, 41]. According to these studies,  
a small increase in long-term exposure to PM2.5 leads 
to a significant increase in the number of COVID-19 
cases and the death rate [42]. Concluded that COVID-19 
cases and morbidity were associated with the levels of 
certain air pollutants in the UK. 

Due to the virus’s rapid spread, the war against it 
raised health-care costs while also having a detrimental 
impact on the industry [43]. IT has been confirmed 
that, in more than 130 countries, covid-19 cases have 
negatively affected economic growth. Because intimate 
contact between numerous people increases the danger 
of transmission, many big and small businesses in 
the economic sector were forced to curtail or totally 
cease operations. The extension of the pandemic era 
has resulted in staff layoffs in various industries. 
Because of all these negatives, optimistic projections 
for global economic growth have transformed into 
gloomy forecasts. As a result, economists have begun 
to speculate on how much the global economy will 
contract rather than increase. 

As all countries across the world globalize 
economically, they become interdependent [44, 
45]. Thus, a crisis in any country will affect all the 
other countries, particularly the ones having a trade 
relationship with that country [46, 47]. The effects of 
these crises will be harsher; when they occur especially 
in the countries which have an important role in the 
world’s economy [48]. Since the 2008 global crisis 
occurred in the USA, it has spread all around the world 
rapidly and the effects have been extremely severe 
regardless of the size of the countries [49], similarly, 
the pandemic has also impacted all countries across the 
globe. During this process, G7 countries, especially the 
USA, have been adversely affected.

Although the G7 countries make up only 11% of the 
world’s population, their share in the world’s economic 
production is %33 [50]. These countries are the most 
developed industrial countries in the world and their 
production mainly depends on fossil fuels. Therefore, 
negative situations which may take place in the G7 
countries will devastate small and medium developing 
economies even more with the multiplier effect. 
Compared to ordinary countries, the G7 countries are 
always in the limelight. In that case, any measures 
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taken by the G7 countries to fight the coronavirus will 
be a role model for other countries. 

Also, the accuracy of PM2.5 exposure estimates 
varies significantly by location. Accuracy is poorer  
in regions with few monitoring stations and in 
areas with very high concentrations such as Africa,  
the Middle-East and South Asia. Accuracy is generally 
good in regions with dense monitoring station networks 
(such as G7 countries) [51]. The G7 countries have 
around 38% of the global total cases [52].

For the Fig. 1 analysis, we analyzed the OECD 
database and the World Bank and World Health 
Organization (WHO) data. Accordingly, while 
economic growth is taking place in G7 economies, on 
the one hand, PM2.5 particle rates, COVID-19 cases 
and health expenditures are also increasing on the other 
hand.

“If there is a link between economic growth and 
air pollution, there could be a comparable association 
between COVID-19 and economic growth,” our 
hypothesis said. The research aims to contribute to 
the literature by providing a different perspective to 
the industrial economies facing COVID-19 epidemic 
in combating the pandemic. The study differs from 
prior studies in that it attempts to demonstrate the 
relationship of economic growth with COVID-19 and 
PM2.5 particles (vicious cycle). It is the first study in 
this setting. A small number of studies using similar 
variables have been found. However, in these studies, it 
has been observed that the direction of the relationship 
between the variables and the way they were handled 
were different from our study. Other studies are 
separately subject to air pollution - economic growth, 
air pollution-health expenditures, and air pollution-
COVID-19 relationship. The rest of this article has 
been edited as follows: Chapter 2 gives a review of the 
Theoretical Framework. Chapter 3 describes the data 
and methodology used. Chapter 4 presents the empirical 
results. Chapter 5 demonstrates the interpretation and 
discussion of the results.

Materials and Methods

Data Sources

To assess the relationship between air pollutant 
(PM2.5)1 concentrations and COVID-19 virus 
(COV-19), economic growth (GDP) and health 
expenditures (HE) in G7 Countries, monthly country-
level data has been used in the study. We constructed our 
panel using Organization for Economic Co-operation 
and Development (OECD), World Health Organization 
and The World Bank database and expressed in natural 
logarithms. Research is based on monthly data covering 
the period 2019:12-2021:7.

Methodology

Panel data has been used in most of the recent 
economic studies that contain econometric analysis. 
Because Panel data models provide a rich environment 
for improving the forecasting techniques and theoretical 
results [53]. Panel data models examine cross-sectional 
and time-series effects. Therefore, it provides multiple 
observations for each series [54]. The ability to detect 
impacts on the dependent variable that cannot be 
observed or measured is one of the most significant 
aspects of panel data analysis [55]. In panel data 
analysis, the balanced panel data model is used  
if the number of cross-sectional data and their time 
series are equal. The imbalanced panel data model is 
developed if there is an inequality between these data. 
Generally, the panel data regression equation is as 
follows [56]:

1 “Particulate matter contains microscopic solids or liquid 
droplets that are so small that they can be inhaled and cause 
serious health problems. Some particles less than 10 mi-
crometers in diameter can get deep into your lungs and some 
may even get into your bloodstream. Of these, particles less 
than 2.5 micrometers in diameter, also known as fine parti-
cles or PM2.5, pose the greatest risk to health.” [58].

Fig. 1. G7 Countries, COVID-19 Cases, GDP, PM2.5 and Health Spending, (2019-2021).
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              (1)

In the equation, ‘i’ stands for cross-sectional data, 
while ‘t’ stands for time series data variables. Long-
term connections in panel data series are investigated 
using cointegration methods. Therefore, in our study 
on “Vicious Cycle of Economic Growth, PM2.5 and 
COVID-19: Evidence from G7 Countries”, the panel 
cointegration test approach was used. The entire panel 
was first evaluated for cross-section dependency, as 
proposed by [57]. Later, the logarithmic values of the 
economic growth variables COV19, GDP, PM2.5, and 
HE were calculated, and the unit root test and other 
tests were performed using the logarithmic values of 
the variables. After the stationarity test was performed, 
the cointegration test, which is the second stage, was 
started. For the long-range relationship between the 
series, the Pedroni cointegration test was performed. 
The result of cointegration is determined by a majority 
decision based on 11 parameters. In the Pedroni 
cointegration test, eight out of 11 statistics showed 
that there was cointegration. Fully Modified Ordinary 
Least Squares and Dynamic Ordinary Least Squares 
techniques were used to assess the consistency of this 
test after identifying the cointegration relationship. 
Finally, the panel causality test was used to investigate 
the causative connections between COV19, GDP, 
PM2.5, and HE in G7 Countries. 

Equation to be Estimated

The impact of PM2.5, GDP and HE on COV19 can 
be modelled as follows: 

                
(2)

In order to reduce the difference between variables, 
log-linear form was used in panel data analysis and can 
be expressed decidedly:

                         
(3)

Testing Horizontal Section Dependency

Examination of cross-sectional dependence among 
the countries in the panel data is of great importance for 
obtaining healthy results. Therefore, the cross-sectional 
dependence test was performed before carrying out 
the analysis. In the study, CDLM and CD tests were 
performed to determine the cross-section dependence 
[59]. The following equations were used in the tests:

  (4)

            (5) 

Panel Unit Root Analysis

Panel unit root tests were created to see if panel 
data remained stable over time. The following first-
generation unit root tests are used in panel data analysis 
when there is no correlation between units [60, 61]: The 
Levin, Lin, Chu, Im Pesaran, and Fisher (ADF, PP) 
panel unit root tests include the following hypotheses:  

H0: There is a unit root in the series.
H1: There is no unit root in the series.
The equation employed in the unit root test of Levin, 

Lin and Chu [62] is as follows:

 (6)

In the Formula, “dmt” deterministic variables vector, 
“αmi” is the coefficient vector of the model. On the other 
hand, Im Pesaran Shin unit root test is formulated in its 
simplest form as follows [63]:
 

              (7)

Pesaran Shin panel unit root tests include the following 
hypotheses:

H0: There is a unit root in the series.
H1: There is no unit root in the series.
The Fisher (ADF, PP) panel unit root tests utilize the 

following equation [64]:

 (8)

If H0: α = 0 There is a unit root. 
If H1: α<0 There is no unit root.

Panel Cointegration Analysis

The cointegration technique is a well-known way 
to determine the link between the series of numerous 
cointegrations [65]. This allows for the testing of long- 
and short-term characteristics. From this point of view, 
the cointegration test is preferable to other analyses [66]. 
Pedroni Panel Cointegration Test Technology is another 
way for determining the presence of a panel data 
cointegration connection. In his prior works [67, 68], 
found that in heterogeneous panels, the cointegration 
connection was confined to models with two variables at 
most [69]. Filled this need by developing a technique for 
assessing the cointegration relationship in multivariable 
models. Pedroni tests provide several advantages, 
including the ability to use numerous explanatory 
factors, the ability to differentiate the cointegration 
vector in various segments of the panel, and the ability 
to allow for error heterogeneity [70]. The co-integration 
test of Engle-Granger (1987) is based on the residuals 
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of a fake regression conducted using variables I (1).  
The residuals should be I (0) if the variable is integrated. 
On the other hand, if the variables are not combined, 
then I (1) will be the residue. The Engle-Granger 
paradigm was expanded by [71] utilizing the panel data 
equation as follows:

        (9)

For t = 1,..., T; I = 1,..., N; m = 1,..., M, where y  
and x are assumed to be integrated with order one.  
The residuals will be ci, t I under the null hypothesis 
of no cointegration (1). The typical technique  
is to extract residuals from Equation (1) and then  
run the auxiliary regression to see if the residuals  
are I (1).   

                  (10)

The hypotheses of the Pedroni (1995 and 1999) 
panel cointegration test are as follows [72, 73]:

H0: There is no cointegration between variables. 
(H0: pi = 1)

H1: There is cointegration between variables. (H0: 
pi <1)

[74] suggested 7 panel cointegration test statistics. 
Panel v-Statistic: 

 
(11)

Panel p-Statistic:

(12) 

Panel t-Statistic: (non-parametric)

(13)

Panel t-Statistic: (parametric)

(14)

Group p-Statistic:

(15)

roup t-Statistic: (non-parametric)

(16)

Group t-Statistic: (parametric)

 (17)

Results and Discussion

Empirical Results

Main text paragraph. The findings of the analysis 
are provided in this section. To begin, the descriptive 
statistics for the variables used in the model for the 
period 2019-21 are provided (Table 1).

Descriptive Statistics

According to Table 1, maximum GDP (89.72305), 
COV19 (80.52074) are found for the United States 
of America (USA), while minimum GDP (19.01282) 
and COV19 (32.49526) is for Canada. It is seen that 
the difference between the maximum and minimum 
values of the GDP is considerably greater than the 
dependent variable. The reason why the difference 
between the maximum and minimum values of  

  Table 1. Descriptive Statistics.

COV19   GDP PM2.5 HE

Average 57.38598 58.22558 38.64252 48.36503

Median 58.52843 63.10963 48.90312 51.38626

Maximum 80.52074 89.72305 52.76309 69.03738

Minimum 32.49526 19.01282 27.02345 37.84093

      Standard deviation 8.102673 18.11213 7.12012 7.86084

Observation 147 147 147 147
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the independent variable GDP is higher than the 
dependent variable COV19 may be due to the volatility 
of the GDP variable. The same patterns are found 
(PM2.5) maximum (52.76309) and minimum (27.02345) 
for the US and Canada, respectively. Finally, found the 
highest level of Health Expenditure (HE) (69.03738) is 
for the US, while the lowest is for Japan (37.84093). 
According to Table 2, the probability values of the 
variables are greater than 0.05. Accordingly, there is no 
cross-section dependence between the variables.

Results of The Panel Unit Root Test 
and Their Evaluation

The tests, called first generation unit root tests 
are predictors Levin, Lin & Chu, Im Pesaran and 
Shin, ADF-Fisher, PP- Fisher tests. If the probability 
value of these tests is close to 0, it indicates that the 
series is stationary. If it is close to 1, it means there is  
a volume root problem. The logarithmic values  
of the economic growth variables COV19, GDP, PM2.5, 
and HE were computed, and the unit root test and 
other tests were done using the logarithmic values of 
the variables. The Schwarz information criteria were 
used to determine the ideal lag duration that removes 
the autocorrelation problem. The series was found to be 
non-stationary based on their level values. By taking 
the first differences, the series was made stationary.  
The findings are shown in Table 3.

Unit root tests applied to the levels of the variables, 
t statistics, and probability findings are not stationary at 
the level of series, I (0), to be employed in econometric 
analysis, as shown in Table 3. To guarantee stability, 
the first differences in the series, I (1), are used.  
Table 4 displays the Pedroni Cointegration Test findings 

for four variables and 11 values of seven test statistics. 
As a result, these four factors, COV19 and GDP, PM2.5, 
and HE interact throughout time.

Findings of Cointegration Coefficients Using FMOLS 
and DOLS and Their Evaluation

Group-Mean FMOLS (Fully Modified Ordinary 
Least Squares) and DOLS (Dynamic Ordinary 
Least Squares) techniques will be used to assess 
the consistency of this test after identifying the 
cointegration relationship [75, 76]. The FMOLS 
approach eliminates the discrepancies caused by 
fluctuating variance, autocorrelation, and other issues in 
traditional fixed effect estimators. The DOLS technique 
is used to include dynamic components in the model. 
As a result, mistakes resulting from endogeneity issues 
in static regression are avoided [77]. Endogeneity and 
serial correlation adjustments are used to create the 
FMOLS estimator, which is defined as follows [78]:

        (18)

ŷit
* = Endogeneity correction is provided by the 

transformed y variable; Δ̂ *
EM = serial correlation 

correction term. The DOLS estimator may also be 
used to adjust for serial correlation and endogeneity.  
The DOLS estimator’s equation is as follows:

 (19)

Table 2. Horizontal Dependency Test Results.

Variable CDLM CD

Test Statistics Probability Test Statistics Probability

COV19   -0.845 0.353 1.478 0.301

GDP -0.298 0.071 1.304 0.091

PM2.5 -0.658 0.094 1.793 0.073

HE -0.583 0.106 2.072 0.097

Table 3. Panel Unit Root Test (First Difference of the Series is taken).

Variable LLC (P-Value) Pesaran, Shin (P-Value) ADF-PP (P-Value)

Level First dif. Level First dif. Level First dif.

COV19 0.7932 0.0000 0.0921 0.0001 0.1475 0.0000

GDP 0.0601 0.0002 0.9308 0.0000 0.0564 0.0000

PM2.5 0.5903 0.0000 0.0932 0.0001 0.1028 0.0000

HE 0.6435 0.0011 0.0212 0.0000 0.3774 0.0001
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cij = The first distinction is the explanatory variables’ 
lead or lag coefficient.

COV19 coincides with the findings by co- integration 
approach between GDP, PM2.5 and HE subsequent 
analysis of long-term effects of DOLS and FMOLS. It is 
an important consequence that economic growth is the 
cause of air pollution. The severity of this relationship 
was determined as DOLS (0.76) and FMOLS (0.72) 
(Table 5).

Panel Causality Analysis

Granger causality logic may be used to investigate 
causal relationships in panel data models as well as 
time series. The following is the equation for the panel 
causality model [79]:

 
(20)

Unit-specific effects are denoted α1 by Also, for all 
units, y(k) and β(k) are the same. In contrast to Granger 
causality tests, causality tests in panel data analysis 
account for unit heterogeneity. As a result, the null 
hypothesis is written as H0: = 0, which says that X and 
Y have no causal link [80]. The following are the β(k) 
outcomes of causality in our model. Since this approach 
can be utilized in both cross-section dependency and 
heterogeneous panels, [81] the panel causality test 
was employed to investigate the causative connections 
between COV19, GDP, PM2.5, and HE in G7 countries.

GDP and COV19 were determined to have 
probability values of 0.0039 and 0.0020, respectively, as 
model variables. At a 5% significance level, these results 
show the existence of a two-way causal connection 
between COV19 and GDP. To put it another way, both 
factors cause each other. As a result, the entire study’s 
link between PM2.5, GDP, and COVID-19 may be 
described as a vicious cycle. Finally, it is possible  

Table 4. Results of Pedroni (Engle-Granger based) Cointegration Test.

Table 5. Results of Panel FMOLS and DOLS Methods (Panel Whole).

Series: DCOV19, DGDP, DPM2.5, DHE

Statistics Probability Weighted Statistics Probability

Panel v-Sta.  1.89804*** 0.2109 -0.89073* 0.2073

Panelrho- Sta. -7.04802*** 0.0032 -3.03461*** 0.0000

PanelPP- Sta. -4.08045*** 0.0041 -1.90630*** 0.0020

PanelADF-Sta. -5.00232*** 0.0001 -2.05611*** 0.0001

Alternative Hypothesis: Common AR Coefficients (in-between them)

Group rho-Sta. -3.06782*** 0.0001

Group pp-Sta. -0.80012* 0.0028

Group adf-Sta. -6.17408*** 0.0845

*** refers to a significance level of 1%.

Dependent Variable COV19

FMOLS

Independent Coefficient t statistics St. Error Probability

lnGDP 0.720321  9.56302 0.518741 0.0001

lnPM2.5  0.358935 5.21742 0.092273 0.0000

lnHE   0.167931 9.76320 0.21083 0.0002

DOLS

Independent Coefficient t statistics St. Error Probability

lnGDP 0.763309 9.458529 0.927431 0.0000

lnPM2.5   0.437409 5.168203 0.094572 0.0000

lnHE   0.201803 6.320282 0.210873 0.0001
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to conclude that there is a one-way causal connection 
between PM2.5 and HE.

Discussion

It has been stated by the World Health Organization 
that the Covid-19 virus can be transmitted more in 
closed and airless environments. Indoor environments 
are favourable environments for air-polluting particulate 
matter. Studies have shown that the risk of transmission 
of the Covid-19 virus is high in environments with  
a high concentration of particulate matter [82, 83]. 
Today, production is based on the use of fossil fuels. 
Hazardous gases produced by the combustion of fossil 
fuels enter the atmosphere and contaminate the air. 
As long as traditional methods of manufacturing rely 
on fossil fuels, health concerns will worsen due to air 
pollution. As a result, net contributions to economic 
growth will be reduced. The impacts of air pollution 
on human health are not confined to the harmful 
substances it contains. According to scientific research, 
incidences of contagious and lethal viruses are on  
the rise in areas with high levels of air pollution.

The main purpose of this study is to reveal that the 
economic growth due to the use of fossil fuels causes 
air pollution and that Covid-19 cases are associated 
with it. To do so, the Pedroni cointegration test has 
been performed. There are 7 cointegration statistics 
in Pedroni cointegration analysis. By combining 
the weighted statistics for the first four tests to the 
seven test statistics, 11 values have been produced.  
The majority decision decides on cointegration 
according to these 11 parameters. The probability 
values show that the probability values of the 8 tests are 
less than 0.05. The H0 hypothesis, which was the null 
hypothesis, in this case, has been rejected.  Accordingly, 
a long-term relationship between COVID-19, GDP, 
PM2.5 and HE has been found in the G7 countries.  
The most important feature that distinguishes this study 
from other studies is the direction of the relationship 
between the variables. According to the results of the 
causality analysis, a bidirectional causality relationship 
has been found between economic growth and Covid-19. 
This result is important for the originality of the study. 
In the literature, only two studies have been found that 
are similar to our study in terms of research results. 
One of these studies was conducted for the 25 largest 
cities in India for the years between 1980-2018 [84]. 

Causality      Aspect W-Stat Z-bar Stat Probability

COV19 → GDP 0.8092 -0.4053 0.0039

COV19 ← GDP 2.9808 5.0002 0.0020

COV19 ← PM2 1.9684 3.4258 0.0045

COV19 → HE 1.8504 2.1093 0.0042

The other study was conducted for the state of New 
York from June 3 to June 26, 2020 [85]. However, these 
studies were carried out at the regional level, unlike our 
study. At the same time, the direction of the relationship 
between the variables was evaluated unilaterally in 
the form of economic growth air pollution- covid-19. 
In other studies, the causal relationship between 
the variables is as follows; Air Pollution (PM2.5) 
→ COVID-19 → Economic Growth, respectively. 
Accordingly, Covid-19 restrictions have a negative 
impact on economic growth and a positive effect on  
the prevention of air pollution. Our other conclusions are 
that Covid-19 cases negatively affect economic growth. 
These findings imply that the influence of Covid-19 on 
economic growth is in agreement with the results of 
[5, 11, 12, 14]. A one-way causal link between PM2.5 
and COVID-19 has been identified. These findings 
imply that the influence of PM2.5 on COVID-19 is in 
agreement with the results of [86-90]. Finally, a one-way 
causal relationship has been established between PM2.5 
and health expenditures. Implying that the influence of 
PM2.5 on health expenditures is in agreement with the 
results of [91, 92].

In terms of the results of our article, other developed 
countries, especially the G7 countries, should abandon 
the fossil fuel-dependent growth model. In this context, 
the reduction of carbon emissions is of great importance 
in terms of fighting Covid-19 and similar outbreaks.   
If these data are associated with the use of fossil fuels 
in industries, they will contribute to the creation of 
public policies that encourage a new generation of 
energy sources in production.

Conclusions

Our results showed evidence of a direct relationship 
between economic growth, air pollution and COVID-19 
pandemic in G7 countries. As economic expansion 
accelerates, so does the density of PM2.5 particulate 
matter in the atmosphere. Because of the linear link 
between COVID-19 and PM2.5, there is an upward 
trend from economic growth to PM2.5, and from 
PM2.5 to COVID-19 cases. In these circumstances, 
the negative impact on economic development will be 
exacerbated by COVID-19 cases and healthcare costs 
will rise as air pollution worsens. This will result in a 
vicious cycle of economic expansion, air pollution, and 
COVID-19 cases. Therefore, reducing exposure to high 
levels of PM2.5 concentration can prevent deaths due to 
the Covid-19 pandemic.

The COVID-19 virus’s economic cost, or its negative 
influence on economic growth, happens both indirectly 
and directly. Health expenditures include indirect 
costs. Direct costs are more visible in manufacturing 
and employment. Because intimate contact between 
numerous people increases the danger of transmission, 
many big and small businesses in the economic sector 
were forced to curtail or totally cease operations. The 

Table 6. Results of Panel Causality.
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extension of the pandemic era has resulted in staff 
layoffs in various industries. If an existing issue cannot 
be entirely removed, reducing its negative impacts 
will be extremely beneficial. In the current scenario, 
the COVID-19 virus is still present. There have been 
scientific studies that explain how people get infected by 
the virus and which environments are more dangerous 
in this context. It is true that measures like social 
isolation, mask use, travel restrictions, and curfews 
were effective in the fight against COVID-19 following 
the epidemic. Such efforts, however, are short-term, 
cyclical, and only apply during the epidemic. So, even if 
the pandemic is over, these are the measures to be taken 
again in the next pandemic. In addition, there are non-
cyclical but permanent measures different from cyclical 
measures. You do not need these measures again when 
they are applied once. Prevention of air pollution due to 
fossil fuels can be given as an example.

To break the vicious loop between economic growth, 
PM2.5, and the COVID-19 virus, and to minimize 
the number of COVID-19 cases, the fossil-fuel-based 
production system should be abandoned. Instead, 
alternative manufacturing models should be preferred. 
In this perspective, it is critical to prioritize and 
increase production based on renewable energy sources 
such as wind, solar, and hydro. Mitigation can be 
achieved through activities in the Land Use, Land-Use 
Change and Forestry (LULUCF) sector that increase 
the removals of greenhouse gases from the atmosphere 
or decrease emissions by halting the loss of carbon 
stocks [93]. This will also boost economic growth’s net 
contribution. Also, the effects of air pollution are mostly 
being observed in the major industrial countries. But air 
pollutants can be transported by wind, causing pollution 
to other countries. Therefore, international cooperation 
is crucial.
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