
Introduction

Over the past few years, due to large-scale 
industrialization water pollution has considerably 
increased in ecosystems and has become a rising 
aquatic environmental problem. The use of organic 
dyes in different industries lead to substantial amounts 

of colored wastewater [1]. It has been stated in the 
literature that 70% of these dyes impose as complex 
synthetic, hazardous azo structures and around 12-15% 
are discharged into the environment untreated causing 
severe threat to human health and environmental safety 
[2]. Rhodamine B (RhB) and Methylene Blue (MB) 
are the most frequently used dyes in paper, plastic, 
textile industries and can have mutagenic and toxic 
properties impacting the environment causing serious 
acute and chronic health issues in living organisms 
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[3]. Considering the rapid pollution increase, there 
is a growing demand for non-conventional processes 
that ensure the energy efficient purification of polluted 
water. Heterogeneous photocatalytic oxidation that 
involves free-radical reactions initiated by light 
irradiation of the photocatalysts’ surface is one of 
the promising purification methods [4, 5]. These 
photocatalytic semiconductors can operate under 
specific light spectrum range and their efficiency 
depend predominately on the electron-hole pairs’ 
mobility and on the accessibility of active sites, but is 
additionally influenced by other numerous factors [6, 7].

Titanium dioxide (TiO2) has been widely used as a 
photocatalyst due to its high oxidative power, photo-
stability and non-toxicity. Considering that TiO2 
photocatalyic efficiency depends on crystal structure, 
particle size and surface area, nano-sized TiO2, 
therefore has enhanced efficiency initiated by UV light, 
but due to inhalation toxicity and possible nanoparticle 
aggregation their application should be reduced [8]. 
In order to prevent the mentioned aggregation and 
inhalation, these nanoparticles could be loaded onto 
appropriate support. 

As environmental-friendly materials, used as both 
photocatalysts and photocatalyst support, layered  
double hydroxides (LDHs), also known as a class of 
synthetic two-dimensional nanostructured anionic 
clays, have been investigated. The general formula is 
[M(II)1-xM(III)x(OH)2]x+(An-x/n)·mH2O, where M(II) 
and M(III) are divalent and trivalent cations, An- 
the interlayer anions, x the ratio between M(III) and 
total metal amount (M(III)  +  M(II)) [9]. After thermal 
treatment, the layered structure of these materials 
collapses forming non-stoichiometric metastable mixed 
oxides with developed surface area and specific acid-
base and redox properties [10, 11].

The photocatalytic performance of materials depends 
on several important experimental variables (catalysts 
dosage, temperature of the thermal treatment, initial 
concentration of the contaminant, reaction time etc.). Even 
though data regarding various methods is available, there 
is a lack of standard characterization that complicates 
the reproduction and the comparison of reported data 
[12]. Considering that degradation mechanism by 
photocatalytic route is a quite complex phenomena 
and requires many sets of degradation experiments 
to optimize the dosage of catalyst and the pollutant 
concentration, reaction mechanisms, as well as the effect 
of operational parameters on the reaction is very difficult 
to define. Due to the complex nature of photocatalytic 
degradation processes and many experimental 
variables that influence the degradation efficiency in 
the experimental design, it is difficult to model these 
processes using traditional methods. Therefore, there is 
an ongoing search for an alternative well-adjusted model 
that would enable better comprehension, labor reduction 
and system identification. 

Artificial neural network (ANN) model is a suitable 
way to predict experimental trends in various systems, 

especially for catalytic processes since it is a promising 
tool because of the simplicity in simulation and 
prediction. Moreover, ANN has the ability to self-learn, 
self-organize, adapt, and has good nonlinear mapping. 
Therefore, through ANN, modeling and optimization 
can be achieved [13]. Considering the ANN advantages 
regarding the reduced time requirement for the 
development of the model than traditional mathematical 
models, this model has recently been applied in 
engineering and science [14]. The model is based on 
biological neural systems with an interconnection of 
functions and variables that are revealed in three main 
layers of neurons (input, hidden and output layers) 
which are adjusted with their weights and biases [15]. 
Besides the numerous advantages of the ANN model, 
this model can successfully be employed to simulate 
the process and define the significance of the various 
operating variables [16, 17]. 

In this present work, we propose a generalized 
predictive model for photodegradation behavior of a 
series of TiO2 containing ZnAl LDHs in the removal 
process of cationic azo dyes (Rhodamine B and 
Methylene Blue) using ANN modeling. The required 
dataset were collected from our publications and from 
the presented kinetic studies. The inputs for ANN 
included four experimental variables: TiO2 loading 
onto LDH, organic dye type (ODT), temperature  
of thermal treatment and reaction time, which basically 
covered all the experimental conditions. The two 
prediction outputs of ANN were removal efficiency 
and photo-degradation rate constants of the organic 
contaminants.

Experimental  

Synthesis of Photocatalysts 

Zn-Al layered double hydroxide with carbonate 
anions in the interlayer was synthesized by low 
supersaturation coprecipitation method at constant pH 
(9-9.5) and temperature (40ºC). The precipitates were 
aged (15 h), dried at 100ºC (24 h) and then calcined for 
5 h, at 500ºC in air. These dried samples were denoted 
as 0%-100ºC and calcined as 0%-500ºC (samples 
without TiO2 loading). Furthermore wet impregnation 
of TiO2 (VP Disp. W 2730 X Degussa) onto calcined 
ZnAl-LDHs was utilized for the preparation of  
TiO2-ZnAl LDH based photocatalysts where the 
TiO2-loading varied (1 mass%, 2 mass% and 3 mass%). 
These impregnated samples were dried at 100ºC for 12 h 
and designated as 1%-100ºC, 2%-100ºC and 3%-100ºC 
depending on the TiO2 dosage, whereas after calcination 
(5h, at 500ºC in air) the obtained samples were  
denoted as 1%-500ºC, 2%-500ºC and 3%-500ºC.  
The TiO2-samples without loading on ZnAl-LDH were 
also dried (100%-100ºC) and calcined (100%-500ºC). 
Detailed synthesis and preparation steps are presented 
in our previous published study [4, 8, 18]. 
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Photocatalytic Degradation of Methylene Blue 
and Rhodamine B 

The photocatalytic efficiency of MB and RhB 
degradation was studied for all synthesized and calcined 
samples in aqueous solution under UV-A light (Osram 
Eversun L40 W/79 K lamp) in an open cylindrical 
thermostated Pyrex reaction vessel. Before illumination, 
the reaction mixtures, 50 mg of catalysts and 100 ml of 
MB/RhB water solution (10 μmol/l), were stirred in the 
dark for 30 minutes to ensure adsorption/desorption 
equilibrium between the dye and the catalyst surface. 
The reaction solutions with the catalyst powder were 
stirred and analyzed at predetermined time intervals. In 
order to eliminate the influence of possible adsorption 
phenomena, blank samples - reaction solutions with 
catalysts, were kept in the dark and treated the same 
way as irradiated samples. 

The photocatalytic efficiency of ODT degradation, 
E, was calculated based on total conversion using the 
formula:

𝐸𝐸 =
[𝐶𝐶0 − 𝐶𝐶]

𝐶𝐶0
× 100 (%) 

          (1)

where C0 was the ODT concentration in blank sample and 
C the ODT concentration in irradiated samples, measured 
at defined time intervals. The ODT concentration was 
measured by UV-VIS spectrophotometry (EVOLUTION 
600 spectrophotometer) at λ = 554 nm for RhB and  
at λ = 664 nm for MB.

Kinetic Models 

The photodegradation of ODT is commonly defined 
by the pseudo first-order reaction that follows the 
Langmuir-Hinshelwood (L-H) kinetic model [19, 20]. 

𝑟𝑟𝑖𝑖 = −
𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐶𝐶𝑖𝑖  
              (2)

where ri is the reaction rate, t is the irradiation time, 
Ci is the concentration of the substrate and kapp is the 
observed apparent first-order photodegradation rate 
constant. 

Considering that Ci is the ODT concentration, after 
the integration of the previous equation (2), the model 
can be expressed by the following equation:

𝑙𝑙𝑙𝑙 �
[𝑂𝑂𝑂𝑂𝑂𝑂]0

[𝑂𝑂𝑂𝑂𝑂𝑂]𝑡𝑡
� = 𝑘𝑘𝑝𝑝 × 𝑡𝑡 

       (3)

where [ODT]t and [ODT]0 is the RhB or MB 
concentration at defined time periods, t (min). Since 
this can be presented as linear function with ln([ODT]0/
[ODT]t) vs. t, the kapp can be determined from the slope. 
In this study the Langmuir-Hinshelwood model was used 

to describe the reaction kinetics for the photocatalytic 
degradation occurring at the solid-liquid surface, as well 
as to determine the relationship of the apparent first-
order rate constant and the initial ODT concentration. 

Artificial Neural Network Architecture 

The artificial network data sets were normalized to 
bring all data within a specific range [21]:

𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − ∆𝐿𝐿 − ∆𝑈𝑈) ∙
𝑌𝑌 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚
+ ∆𝐿𝐿 

(4)

where: Ynorm and Y, are the normalized and measured 
values of efficiency or calculated values of reaction 
constant, whilst Ymin and Ymax are minimum and 
maximum values in data sets, respectively; ∆L and ∆U 
are the lower and upper limits for the normalization 
(with values of 0.01 for each limit).

The multi-layer feed-forward with backpropagation 
neural networks are the most popular and most 
widely used models in many practical applications 
especially for functional fitting. [22]. In this study  
the Levenberg-Marquardt (LM) training algorithm is 
selected due to its convergence rate and the performance 
of the network in seeking a optimal solution. The 
Lavenberg-Marquardt algorithm uses an early stopping 
criterion to improve network training speed and 
efficiency.

The data are divided into three randomized sets.  
The division of the dataset in the research work is 
70% for the training data, 15% for the validation data, 
and 15% for the testing data. The training set is for 
determining the weights and biases of the network. 
The validation data set is for evaluating the weights 
and biases and for deciding when to stop training.  
The validation error generally decreases at the 
beginning of the training process, but when the network 
starts to over-fit the data, the validation error begins to 
increase. The training is stopped when the validation 
error begins to increase and the weights and biases will 
then be derived at the minimum error. A maximum 
validation failure is set to default value of five epochs 
[23]. The last data set is for testing, the weights and 
biases are used to verify the capability of the stopping 
criterion and to estimate the expected network operation 
on new data sets. The randomization algorithm used,  
is built in Matlab function ‘randperm’.

Internal ANN features such as the number of hidden 
layers, the number of neurons in each layer, momentum 
factor, learning rate, transfer functions, and initial 
weight distribution have great impact on ANN model 
building. Default values were selected for some of these 
factors (momentum factor and learning rate), since 
they only affect the training time [24]. In our study, 
the maximum number of epochs, target error goal 
MSE (mean square error), and minimum performance 
gradient are set to 1500, 0, and 10–10, respectively. 
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extracted from network connection weights to assist 
in model development and experimental design [23]. 
Relative importance (RI) of input variable is calculated 
according to the following equation:

𝑅𝑅𝑅𝑅 =
∑ ��𝑖𝑖𝑣𝑣𝑣𝑣 /∑ 𝑖𝑖𝑘𝑘𝑘𝑘

𝑛𝑛𝑣𝑣
𝑘𝑘=1 �𝑂𝑂𝑗𝑗 �

𝑛𝑛𝐻𝐻
𝑗𝑗=1

∑ �∑ ��𝑖𝑖𝑣𝑣𝑣𝑣 /∑ 𝑖𝑖𝑘𝑘𝑘𝑘
𝑛𝑛𝑣𝑣
𝑘𝑘=1 �𝑂𝑂𝑗𝑗 �

𝑛𝑛𝐻𝐻
𝑗𝑗=1 �𝑛𝑛𝑣𝑣

𝑖𝑖=1

 

      (7)

where: nv is the number of input neurons, nH the number 
of hidden neurons, ivj the absolute value of connection 
weights between the input and hidden layers, and Oj is 
the absolute value of connection weights between the 
hidden and output layers.

Results and Discussion

Kinetic Studies 

Considering that the Langmuir-Hinshelwood  
(L-H) model the photocatalytic reaction is described 
as the reaction that takes place in the kinetic regime, 
the rate reaction constant was selected as the main 
kinetic parameter in the comparison investigation on 
photocatalytic efficiency of dye removal. The benefit 
of using rate constants in this investigation was the 
elimination of adsorption influence that potentially 
occurs. 

The calculated photocatalytic apparent degradation 
rate constant, kapp and the linear regression coefficients, 
R2, for the ODT photodegradation of all samples are 
given in Fig. 1 and Table 1. All samples in both MB/
RhB photodegradation reactions mostly followed the 
pseudo first-order reaction of the L-H kinetic model. 
High values of linear regression coefficients indicated 
that the photocatalytic reactions of all studied samples 
were well fitted with the suggested model, despite the 
difference in the component ratio, Table 1.

The lowest value of the rate constant in MB 
photodegradation reaction was detected for the 0%-100ºC 
and 0%-500ºC samples that additionally indicated 
the lowest photocatalytic efficiency when compared 
to the photocatalysts with TiO2-loading (Fig. 1 (a,b)). 
Determination of kinetic parameters for photocatalysts 
synthesized with different TiO2 content (1%, 2% and 
3%) revealed that increasing the TiO2 amount had 
a positive effect on photocatalytic performance. 
However, the experimental data of calcined samples in 
the MB photodegradation reaction deviated from the 
assumed kinetic model for the pseudo-first order reaction 
in the measured range of UV exposure, and followed 
the proposed kinetic model only at the beginning of 
the UV reaction. It can be suggested that longer UV 
exposure initiated a change in the reaction mechanism, 
which was reflected in the appearance of a “knee” 
(break) in the dependence diagrams of the mentioned 
samples, Fig. 1b). These discrepancies correlated with 

Training stops when the maximum number of epochs 
is reached or when either the MSE or performance 
gradient is minimized to reach at the predetermined 
goal.

Number of neurons in the hidden layer is critical 
for ANN model performance [25]. The small number 
of hidden neurons causes that the ANN is unable to 
predict experimental data precisely, whereas when the 
number of hidden neurons is too big the over-fitting 
problem may occur. Moreover, too many neurons do 
not propagate errors back efficiently [25] and therefore 
worsen the ability of the neural network to learn. A trial 
and error based method was selected for determining 
the number of neurons in the hidden layer.

Neurons in network layer are connected by different 
activation functions. The connection of hidden layer 
neurons to output layer was linear (purelin). In the case 
of input neurons connections to the hidden, two types 
of activation functions are examined i.e. log-sigmoid 
(logsig) or hyperbolic tangent sigmoid (tansig). 

The performance is calculated using the mean-
squared-error (MSE) and coefficient of determination, 
R2, according to Eqs. (5) and (6): 

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑎𝑎𝑎𝑎𝑎𝑎 �
2𝑛𝑛

𝑖𝑖=1

 

       (5)

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 
           (6)

where: n is the number of data points, Yexp,i and Ypred,i 
are the normalized experimental and predicted values 
obtained from the experiments and neural network 
model, respectively and Ypred,avg is the average of the 
predicted values.

Two ANN models were generated for efficiency of 
ODT degradation and photodegradation rate constant. 
The input layer for the first network consists of four 
neurons i.e. organic dye type (ODT), TiO2-loading onto 
LDH, temperature of thermal treatment and reaction 
time, while the output layer has one neuron efficiency 
of ODT degradation. The second neural network was 
used for photodegradation rate constant prediction 
(output), whilst inputs were organic dye type (ODT), 
TiO2-loading onto LDH and temperature of thermal 
treatment. The ANN predictive model simulations 
were carried out using mathematical software Matlab 
R2015b. 

Since the neural network is highly dependent upon 
the initial weights values and in order to achieve the 
best results, the neural networks were run 50 times and 
the average values of statistical indicators (MSE and 
R2), were used for comparing network performances 
[26].

ANN should not simply be used as black box model, 
since cause-effect information can be quantitatively 
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the results of the photocatalytic efficiency of the MB 
degradation of these samples [4, 18]. It was noticed 
that at mentioned shorter times of UV exposure, 
the photodegradation efficiency reached almost the 
maximum, after which a steady reaction regime was 
achieved and a plateau appeared in all calcined samples. 
Furthermore, the results indicated that calcined samples 
in MB photodegration reactions followed the Langmuir-
Hinshelwood kinetic model and that the degradation 
was a pseudo-first order reaction, which, however, most 
likely ends at shorter UV exposure times. According to 

the theory of the photocatalytic reaction process, after 
the reaction is initiated by photons, the final product 
is desorbed from the surface of the photocatalyst 
and transferred from the surface to the fluid mass by 
interfacial diffusion [17].

Kinetic investigation of the RhB photodegradation 
reaction suggested good correlation of the experimental 
results with the theoretical settings and revealed that all 
photocatalysts followed to the Langmuir-Hinshelwood 
model as a pseudo-first order reaction (Fig. 1 (c,d)). 
The calculated data of the correlation coefficient and 

Fig. 1. Pseudo-first order kinetics: a) 100ºC samples MB-UV irradiation; b) 500ºC samples MB-UV irradiation; c) 100ºC samples RhB-
UV irradiation and d) 500ºC samples RhB-UV-UV irradiation.

MB photodegradation RhB photodegradation

Samples R2 kapp(min-1) R2 kapp(min-1)

0%-100ºC 0.8221 0.0008 0.674 0.0001

1% -100ºC 0.9740 0.0029 0.988 0.0026

2% -100oC 0.9960 0.0079 0.996 0.0035

3% -100oC 0.9917 0.0090 0.996 0.0047

0% -500oC 0.804 0.0021 0.9014 0.0048

1% -500oC 0.9787 0.0304 0.9906 0.0028

2%-500oC 0.9655 0.0279 0.9629 0.0023

3% -500oC 1 0.055 0.9547 0.0020

100%-100oC 0.8699 0.036 0.9572 0.0259

100%-500oC 0.9148 0.0364 0.9778 0.0061

Table 1. Kinetic parameters for the pseudo-first reaction order.
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the rate constant of the RhB photocatalytic reaction for 
all samples are shown in Table 1. From the analysis of 
kinetic parameters the influence of the TiO2-loading 
on photocatalytic performance was observed. It was 
noticed that with the increase of the TiO2-loading 
amount there was an increase in the value of the constant 
rate of chemical reaction, which indicated improved 
photocatalytic performance and better photocatalytic 
efficiency of RhB degradation (Fig. 1c). On the contrary, 
when observing the kinetic parameters of the calcined 
samples, it was detected that the rate constant decreased 
with the increase of the TiO2-loading. This behavior 
can be explained by the textural characterization and 
phase composition [4, 8, 18] of calcined samples: higher 
amount of larger mesopores resulting in better active 
center accessibility and higher amount of photocatalytic 
active, non-stochiometric ZnAl(O) mixed oxides 
phase following this order: 0%-500ºC>1%-500ºC>2%-
500ºC>3%-500ºC. Nevertheless, all calcined samples 
showed high photocatalytic RhB removal efficiency.

This kinetic investigation confirmed that the 
mechanism of ODT photocatalytic reactions follow 
Langmuir-Hinshelwood kinetic model for all studied 
photocatalysts. 

The analysis showed that the rate of the photocatalytic 
reaction was influenced by the nature of the active 
sites. This can be supported by the assumptions that 
follow the L-H model: (i) the amount of the adsorption 
sites on the surface of the photocatalysts is limited; 
(ii) only monolayered adsorption is possible with one 
molecule per active site; (iii) adsorption on the surface 
is reversable; (iv) catalysts’ surface is homogeneous; (v) 
the adsorb molecule do not interact [27, 28]. 

Artificial Neural Network Results

The performance result of ANN model for the 
efficiency of ODT degradation is shown in the Fig. 2. 
It shows the mean squared error (MSE) variation for 
number of hidden nodes and type of activation function 

used for testing data. It can be seen that the MSE 
decreased up to 8 hidden neurons for both simulated 
ANN models. Further increase of hidden neurons 
number results in better predictive capacity of ANN 
model with logsig activation function as MSE continue 
to decrease. In the case of tansig activation function, 
MSE of model network increased. According to the 
MSE values better prediction are achieved with log sig 
activation function, as this network has smaller error 
values.

Coefficient of determination for the efficiency of 
ODT degradation was in range between 0.753 (single 
neuron) and 0.975 (11 neurons) for ANN with tansing 
activation function. After 11 neurons in hidden layer, the 
drop in R2 values was registered. Moreover, in the case 
of ANN with logsig activation function, coefficient of 
determination increased gradually up to the number of 
15 neurons in hidden layer. Further increase of neuron 
number above 15 resulted in decrease of R2 (data not 
shown). These comparative results showed that the ANN 
with logsig activation function yields higher accuracy 
in the case of the efficiency of ODT degradation. So, 
in this case the network with configuration 4-15-1 and 
logsig activation function was selected.

After training networks with a number of hidden 
neurons ranging from 1 to 15 (Fig. 3), the optimal 
activation function was tansig for the photodegradation 
rate constant data. Networks with a smaller number 
of hidden neurons had the lowest accuracy, adding 
additional neurons to the hidden layer improved 
the prediction of rate constant in the decomposition 
reaction.

The increase of neurons number in ANN with logsig 
activation function did not improve network predictions, 
as the best results were achieved for 13 neurons, R2 
and MSE were 0.746 and 0.0386, respectively. The 
optimal topology was determined to be a three-layer 
feed-forward ANN with 3 input neurons and 10 hidden 
neurons, 3-10-1. In this case (tansig activation function) 
the R2 and MSE were 0.982 and 0.0027, respectively.

Fig. 2. Relationship between MSE (left), R2 (right) and number of hidden layer neurons for the efficiency of ODT degradation.
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Fig. 4. shows a comparison between 
experimental (the efficiency of ODT degradation and 
photodegradation rate constant) values and predicted 
values using the ANN model.

The quality of linear regression model (intercept 
set at 0) was evaluated by the Pearson correlation 
coefficient (r) and coefficient of determination (R2) [23]. 
The values of r for the efficiency of ODT degradation 
and photodegradation rate constant data, 0.998 and 
0.961 respectively, showed strong positive relation 
between ANN predicted permeation flux values and 
experimental values. Furthermore, the values of R2 
revealed good linear fitting between ANN predicted 
permeation flux values and experimental values with 
model signifying that less than 1% of the total variation 
cannot be explained by linear model for the efficiency 
of ODT degradation (R2 value 0.998). For the R2 
value 0.961 around 4% of the total variation cannot be 
explained by linear model.

The relative importance (RI) of each input is 
presented in Fig. 5. The TiO2-loading onto LDH had 
the highest relative contribution (around 43%) on 
the outputs for the efficiency of ODT degradation 
(Fig.5.left). The reaction time had relative importance 
of 23%, while organic dye type and temperature of 
thermal treatment had similar importance values, 18% 
and 16%, respectively. 

The ANN trained for the prediction of 
photodegradation rate constant importance Fig. 5 right) 
also had the highest relative contribution of TiO2-
loading onto LDH (around 53%), whereas organic dye 
type and temperature of thermal treatment had 26% and 
21% importance, respectively. It can be summarized 
that in both neural networks the TiO2-loading onto LDH 
(input 3) presented the largest relative contribution. 
These results are in good correlation with the previous 
experimental studies, where it was determined that 
the photocatalytic active phases, as well as the content 

Fig. 3. Relationship between MSE (left), R2 (right) and number of hidden layer neuron for the photodegradation rate constant.

Fig. 4. Normalized experimental values versus ANN predictions for the efficiency of ODT degradation (left) and photodegradation rate 
constant (right). 



Hadnadjev-Kostic M., et al.4124

of TiO2 had a significant effect on the photocatalytic 
efficiency in both ODT removal reactions [4, 8, 18]. 
High efficiency originates from the interaction of TiO2 
with LDHs derived materials and from the formation of 
photocatalytic active semiconductor oxides.

Conclusions

An artificial neural network model was developed 
to predict the photocatalytic performance of TiO2–
LDH based photocatalysts in the cationic dye removal 
processes. The kinetic investigation revealed high 
values of linear regression coefficients confirming that 
the mechanism of MB/RhB photocatalytic reactions 
follow Langmuir-Hinshelwood kinetic model for all 
studied photocatalysts, despite the difference in the 
component ratio. The kinetic studies additionally 
suggested that the rate of the photocatalytic reaction 
was influenced by the nature of the active sites. The 
Artificial neural network model was employed to 
investigate the importance of each input variable and 
the optimal topology was determined to be a three-layer 
feed-forward ANN with 3 input neurons and 10 hidden 
neurons, 3-10-1. It was concluded that in both MB/
RhB removal processes and in both neural networks 
engaged the largest relative contribution was the 
amount of TiO2-loading among all the variables. The 
use of ANN as statistical tool enable the prediction of 
the photocatalytic MB/RhB removal over synthesized 
TiO2–ZnAl-LDH based photocatalysts. Predicted results 
were in good agreement with experiments and showed 
a significant increase of efficiency when TiO2-loading 
and exposed surface area increased. This investigation 
strongly suggests that ANN modeling is an effective 
and simple approach to successful description of 
complex photocatalytic removal processes, where 
the employed operational variables could trigger a 
combined effect, within the range of experimental 
conditions investigated. Therefore, this technique has 
proved to have potential in heterogeneous processes 

modeling, additionally contributing to the design, scale-
up and industrial application of water and wastewater 
treatment processes.
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