
Introduction

Biochar is the solid product of biomass pyrolysis 
that can be used in a huge number of applications such 
as heating, soil improvement, metal removal, flue gas 
cleaning, and power generation [1]. During pyrolysis, 
the cellulosic matter in the agricultural waste can be 
converted to stable carbon in biochar [2]. Wood-based 
biochar has been reported in used as a sustainable 
material for microbial fuel cell (MFC) electrodes that 
provide a higher potential than graphite granules [3]. 

Jiang et al. showed that macroporous wood biochar has 
a high potential for ion movement than microporous 
wood biochar that can enhance electricity generation 
[4]. Various biomass substrates have been used for 
biochar production such as peanut shell [5], tea saponin 
[6], eucalyptus scraps [7], cotton rose [8], sugarcane 
bagasse [9], and others.

Water hyacinth (Eichhornia crassipes) is interesting 
as the worldwide harmful and aquatic invasive plant 
produced approximately 140 million daughter plants 
annually that causes a huge problem in water flooding 
led to the decline of aquatic animals [10]. The water 
hyacinth has been used for biochar production.  
The water hyacinth biochar (WHB) has been applied  
in different benefits like heavy metal adsorption [11], 
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soil improvement [12], and dye adsorption [13]. None 
of the previous studies has reported using WHB as an 
MFC electrode.

The pharmaceutical wastewater is the most 
emergency wastewater for treatment owing it contains 
several contaminants, anti-inflammatory drugs and 
antibacterial drugs [14]. Various methods have been 
developed for pharmaceutical wastewater treatment 
such as adsorption, membrane filtration, oxidation 
process and biological degradation [15]. Furthermore, 
the previous report of Vinayak et al. displayed the 
MFC process has a high potential for pharmaceutical 
wastewater treatment and generation of electrical power 
[16]. The ß-lactam like cephalosporins and penicillin is 
the common type of antibiotics that are normally used 
in both humans and animals to avoid bacterial infection 
[17]. In this study, the modified WHB was prepared 
and used to produce electrical power from synthetic 
pharmaceutical wastewater using a dual-chamber 
ceramic separator MFC (CMFC).

Experimental  

WHB Preparation

The water hyacinth stem (E. crassipes) was 
collected from the freshwater resource in Thaksin 
University, Phatthalung province, Thailand. The stem 
was separated and cleaned with tap water to remove 
the sediment. The sample was dried at 80ºC until for  
7 days and cut into 0.5 cm size pieces. The dried sample 
was pyrolyzed at 350ºC for 30 mins (modified from 
Narayanan et al. [18]). 

Activation of WHB 

The WHB was activated according to Jiang et al. 
[4], the WHB was immersed into the 0.5 M of HNO3 
solution at room temperature for 12 hr. Then it was 
rinsed with deionized water to remove the covered 
particles before use (Fig. 1a).

Pharmaceutical Wastewater

The synthetic pharmaceutical wastewater was 
prepared according to Khoshvaght et al. [19] and Yang 
et al. [20], contains 21.00 mg/L MgSO4, 8.00 mg/L 
KH2PO4, 3.8 mg/L CaCl2, 3.43 mg/L (NH4)2SO4, 
1.28 mg/L K2HPO4, and 100 µg/mL penicillin.

CMFC Construction and Operation

The CMFC was constructed according to the 
modified model of Chaijak et al. [21], the 50 m2 of 
WHB (320 m2/g of specific surface area) was used as 
an anodic electrode. while the 50 m2 activated carbon 
granule (1,000 m2/g of specific surface area) was used 
as a positive control. The 30% silica modified ceramic 
plate with 2 mm of thickness was used as a proton 
separator.

For operation, the 4 mL of penicillin degrading 
consortium was inoculated into the anode chamber, 
then the 36 mL of synthetic wastewater for CMFC 
was filled and incubated for 48 hr to immobilized the 
bacterial on the electrode surface. The anolyte was fed 
out and replaced with fresh synthetic pharmaceutical 
wastewater. The 1 M KMnO4 was used as a catholyte. 
The opened-circuit voltage (OCV) was collected every 
10 mins for 12 hr. The closed-circuit voltage was 
monitored at 1-5,000 Ω for plotting the polarization 
curve. The current density and power density were 
calculated according to Ohm’s law.

Penicillin Removal

The effluent was fed out every 3 hr, and centrifuged 
at 5,000 rpm for 10 mins at 4ºC. The supernatant was 
collected and used for penicillin residue determination. 
The quantitative evaluation of penicillin was monitored 
according to Yang et al. [20], the absorbance was 
measured at 325 nm using UV-Vis spectrophotometry 
(Shimadzu, Japan) with the limit of operation  
of 0-200 µg/mL penicillin and the detective limit of 
0.01 µg/mL penicillin.

Fig. 1.  The activated WHB was used in this experiment a), and the opened-circuit voltage (OCV) was gained from the CMFC with the 
WHB and AC electrode b).
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Results and Discussion

For this experiment, the WHB biochar supercapacitor 
was prepared by pyrolysis at 350ºC for 30 mins for use 
as an alternative low-cost MFC electrode. The penicillin 
degrading consortium was grown in the anode chamber 
for 48 hr before the system was operated. The active 
consortium was coated on the surface of the anode 
electrode and releasing of oxidoreductase enzyme for 
penicillin degradation. The OCV of CMFC with the 
WHB and activated carbon granule (AC) was displayed 
in Fig. 1b). The maximal OCV of 0.554±0.003 V was 

gained from the CMFC with the WHB electrode. While 
the maximal OCV of 0.515±0.002 V was produced from 
the CMFC with AC (control).

According to the polarization, the maximal CD and 
PD of the CMFC with the WHB electrode based on the 
electrode area were 0.192±0.001 A/m2 and 0.032±0.001 
W/m2. while the maximal CD and PD based on 
the working volume were 33.250±0.001 A/m3 and 
4.422±0.002 W/m3 respectively. Although the maximal 
CD and PD of the CMFC with the AC electrode (control 
treatment) were 0.132±0.000 A/m2 (16.500±0.001 A/m3) 
and 0.007±0.000 W/m2 (0.833±0.001 W/m3) respectively. 

Fig. 3. The penicillin removal of the CMFC with the WHB electrode and the AC electrode.

Fig. 2. The polarization curve of the CMFC with the WHB a) and AC b).

MFC Types Biochar substrate Pyrolysis temperature (ºC) PD (W/m2) Reference

CMFC Water hyacinth 350 0.032±0.001 This study

Single chamber MFC Water hyacinth 900 0.027 [25]

Single chamber MFC Egg plant 800 0.667 [26]

Stack MFC Corn cob 100-500 0.038 [27]

Dual chamber MFC Rice straw 450 NA [28]

Table 1. Comparison of biochar-based electrodes used in MFC.
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The penicillin removal was monitored every 3 hr. The 
results showed the maximal penicillin removal of the 
CMFC with WHB electrode was slightly higher than 
the AC electrode. The maximal penicillin removal of 
65.12±0.02% was gained from the WHB electrode when 
the initial penicillin concentration was 100 µg/mL.

The low-cost biochar electrode has been developed 
for a decade. The coconut shell biochar has been 
mixed with the metal and used for MFC electrodes. 
The maximal PD of 0.038 W/m2 was reached [22]. 
Chakraborty et al. displayed the biochar prepared from 
the microalgae by pyrolysis at 900ºC can use as an 
MFC electrode. The maximal PD of 12.86 W/m3 was 
produced from the MFC system with a microalgae 
biochar electrode [23]. Besides, the biochar electrode has 
been prepared from the olive mill waste and pistachio 
nutshell. The results indicated that the maximal PD 
of 0.27 W/m2 has been found [24]. A comparison of 
biochar-based MFC was shown in Table 1. No previous 
study has been used the WHB integrated with CMFC 
for electricity generation.

Moreover, the MFC has been used for antibiotics, 
sulfamethoxazole, sulfadiazine, and sulfamethazine 
removal from the swine waste. The maximal OCV of 
0.536 V was reached [29]. Wen et al. indicated that 
the constructed wetland-microbial fuel cell (CW-
MFC) plated with Canna indica can generate the 
maximal OCV of 0.464 V whereas the maximal PD of  
0.074 W/m3 was gained [30]. Furthermore, the MFC 
with metal cathodic electrode showed that the maximal 
PD of 0.446 W/m2 was gained where 61% of 10 mg/L 
sulfamethoxazole was removed [31]. In Jiang et al., the 
MFC showed high performance for sulfamethoxazole 
removal of 87.52% where the initial antibiotic 
concentration of 20 mg/L was used. In this study, the 
maximal PD of 1.18 W/m2 was generated [32].

Conclusions

In conclusion, the WHB supercapacitor electrode 
integrated with the CMFC was considered for the 
low-cost electricity generation and pharmaceutical 
wastewater treatment system. The results showed the 
maximal power output of 0.032±0.001 W/m2. While 
the penicillin removal of 65.12±0.02% was reached. 
The WHB showed a high potential for use in the MFC 
electrode.
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