
Introduction

Land resources are important for the survival 
and development of human society [1]. In China, the 
current baseline national condition is characterized by 
more people and less land [2]. With the acceleration 
of industrialization, informatization, and urbanization, 

the demand for land resources has escalated, creating 
an increasingly prominent mismatch between people 
and land. The most significant problems affecting land 
resources include deforestation, grassland reclamation, 
and the use of inefficient and extensive land use and 
management models to address soil erosion, declines 
in soil fertility/quality/carrying capacity, ecological risk 
intensification, and other issues [3]. Thus, the efficient, 
scientifically determined, and rational allocation of 
limited land resources is an urgent issue for local and 
foreign researchers alike.
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Abstract

Structural contradictions among cities, agriculture, animal husbandry, and ecosystems in agriculture/
pastoral zones have become increasingly prominent. This study analyzed land use change for a typical 
farming-pastoral interlacing area in the Keerqinzuoyihou Banner, China, using land use status data 
from 2009 to 2017. The drivers of land use changes were determined using logistic regression analysis. 
The Conversion of Land Use and its Effects at Small Region Extent (CLUE-S) model simulated four 
scenarios (i.e., natural evolution, ecological, economic, and social benefits maximization), and there 
were three key findings. First, land use structure mainly consisted of cropland, forest, and grassland; 
these accounted for nearly 90% of the total land area. There was a rapid increase in cultivated and 
built-up areas from 2009 to 2017. Second, the Kappa coefficient of the CLUE-S simulated results and 
actual land use was 0.936, indicating high model accuracy and applicability for simulating spatial land 
use distribution in the study area. Third, under the natural evolution scenario, forest, grassland, water 
bodies, sandy land, and unused land decreased from 2017 to 2025, whereas cropland and built-up land 
increased. This provides a reference to guide government land use planning and measures to improve 
land use efficiency and optimize the industrial structure.

    
Keywords: land use change, CLUE-S model, scenario simulation, optimal allocation of land use

*e-mail: 136839724@qq.com
**e-mail: yeyuansen@126.com 

DOI: 10.15244/pjoes/151909 ONLINE PUBLICATION DATE: 2022-10-03  



Zhang Y., et al.5964

Remote sensing satellite data have become 
increasingly abundant (e.g., National Oceanic and 
Atmospheric Administration  [NOAA]/Advanced 
Very High Resolution Ra-diometer  [AVHRR] [4], 
Systeme Probatoire d’Observation de la Terre  [SPOT]/
Vegetetion [5], Terra, Aque/Moderate-Resolution 
Imaging Spectroradiometer  [MODIS] [6], Landsat 
Multispectral Scanner  [MSS]/Thematic Mapper  [TM]/
Enhanced Thematic Mapper Plus  [ETM+]/Operational 
Land Imager [OLI] [7], Advanced Land Observation 
Satellite  [ALOS]/Advanced Visible and Near Infrared 
Radiometer Type  [AVNIR] [8], and Sentinel [9]). These 
sources provide valuable land use information and lay 
the foundation for the study of regional land use change. 
As such, researchers have accumulated large quantities 
of data and research results on land-use patterns [10-
11], spatio-temporal processes, driving forces, and 
environmental effects (ecology/soil/atmosphere) at 
global and regional scales. However, there is a relative 
lack of research on how to use these results to optimize 
regional land allocation under different levels of 
economic development. This optimization may inform 
decision-making related to the allocation of land 
resources.

Optimal land use allocation involves two parts: (1) 
land use structure optimization; and (2) space layout 
optimization. In-depth studies have been conducted 
on both aspects to optimize land use structures. 
Multiple objective functions are set to determine the 
optimal ratio of various land use types under different 
situations using historical land use change data and 
mathematical models [12]. Optimizing the spatial land 
use distribution involves reasonably allocating land 
use structures in space [13]. However, it has become 
difficult to carry out spatial land use optimization due 
to spatial characteristics, multiple objectives, and the 
diversity of land use types. Researchers have developed 
many spatial layout optimization algorithms, such as 
genetic algorithms [14-16], particle swarm optimization 
[17-19], the artificial immune algorithm [20], artificial 
fish algorithm [21], annealing algorithm [22-23], and the 
ca model [24-26]. These algorithms calculate the spatial 
layout of different economic benefit maximization 
scenarios; however, these methods involve lengthy 
processes. Compared with existing algorithms and 
models, the Conversion of Land Use and its Effects at 
Small Region Extent (CLUE-S) model demonstrates 
good spatial allocation ability and considers the natural 
and human drivers of land use change in the spatial 
allocation process [27]. As such, this model has been 
widely used to simulate various land uses including 
built-up urban, small-area farmland, and oasis are-as. 
The CLUE-S model requires sufficient historical land 
use change information in order to provide an accurate 
spatio-temporal transformation relationship on land use 
[28].

As a part of the farming-pastoral interlacing in 
northern China, the Keerqinzuoyihou Banner represents 

a typical ecologically fragile area that is sensitive to 
global climate change. From the 1960s to 1990s, large 
land reclamation activities have led to a significant 
increase in the extent of desertification. Since 1999, a 
series of ecological restoration pro-jects implemented 
by the Chinese government have drastically altered 
the land use situation in northern China; agriculture 
and animal husbandry have become key ecological 
restoration projects. Many studies have investigated 
the spatio-temporal change process [29], driving 
forces [30-31], and environmental effects [32] of land 
use in the ecotone between agriculture and animal 
husbandry; however, there is still a lack of scenario-
based simulations of future land use patterns. The study 
of land use patterns under different future scenarios 
is considered an effective means to understand the 
mutual feed mechanism between land use systems and 
terrestrial ecosystems and reduce potential ecological 
risk from future land use processes.

This study carried out a case study in the farming-
pastoral ecotone of the Keerqinzuoyihou Banner 
to achieve three key objectives. First, land use data 
obtained from ALOS satellite remote sensing data 
were visually interpreted to analyze land use change 
from 2009 to 2017 (a total of five periods). Second, 
to simulate spatial land use patterns in 2017 based on 
the CLUE-S model using land use data from 2009 to 
2015, the reliability of simulation results was verified 
by comparing with actual land use data. Third, we 
predicted the natural evolution in 2025 at the land 
use scale using the gray prediction model. Then, the 
analytic hierarchy process and linear programming 
method were used to predict the social, ecological, and 
economic benefits in 2035 at this same scale. These 
results will help highlight ecologically fragile zones 
and inform optimal land use allocation in key areas, 
providing benefits as a reference and demonstration.

Materials and Methods

Study Area

The Keerqinzuoyihou Banner is located in the south 
of Tongliao City, Inner Mongolia Autonomous Region, 
with a spatial position between 121°30'-123°43'E  
and 42°40'-43°42'N, covering an area of approximately 
1.15 × 104 km2 (Fig. 1). The region has a temperate 
continental climate, with high temperatures and rain 
in summer and cold, dry winters. The annual average 
temperature is 5.8ºC, the annual average precipitation is 
451.1 mm, and 60%-70% of precipitation is concentrated 
in summer (June to August). The topography is 
generally high in the west and low in the east, with an 
altitude of 89-301 m and a slope of 0°-10.58°. The main 
soil types are aeolian sand and meadow soils, while 
alkaline, swamp, and peat soils are scattered throughout 
the study area.
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Data Collection and Pre-processing

 Land use data and Digital Elevation 
Model datasets

The land use dataset was derived from the 
multispectral data acquired by the Avnir-2 sensor of the 
Japanese ALOS satellite and obtained through manual 
visual interpretation. Avnir-2 multispectral data consists 
of four bands: blue (420-500 nm), green (520-600 nm), 
red (610-690 nm), and near-infrared (760-890 nm); it 
has a spatial resolution of 10 m and an image width of 
70 km. The land use data spanned from 2009 to 2017, 
with an interval of two years, and a total of five data 
periods. The accuracy of the visual interpretation was 
verified by field sampling points; the overall accuracy 
was 93.7%.

Digital elevation model (DEM) data were obtained 
from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer Global Digital Elevation 
Model (ASTER GDEM) dataset jointly produced by 
the Ministry of Economy, Trade and Industry (METI) 
of Japan and the National Aeronautics and Space 
Administration. These data may be downloaded from 
the Geospatial Data Cloud Platform of the Chinese 
Academy of Sciences (http://www.gscloud.cn/), with  
a 30 m spatial resolution.

Socio-economic data

The socio-economic data required for the 
CLUE-S model were obtained from the Statistical 
Yearbook of Inner Mongolia Autonomous Region, 
Statistical Yearbook of Tongliao City, Work Report of 
Keerqinzuoyihou Banner Government, and the Statistics 
Bureau of Inner Mongolia Autonomous Region from 
2009 to 2017 (http://tj.nmg.gov.cn/).

Methods

The effect of the CLUE-S model on medium and 
small scale land use scenarios was apparent. The model 
consisted of two parts: non-spatial land use demand 
analysis, and land use spatial allocation.

Non-spatial land use demand analysis

In this part, historical land use change within 
a certain period was used to obtain the quantity 
of different land uses in the target year; this was 
established as the constraint for spatial allocation. The 
specific calculation process involved three key steps. 
First, the land use changes from 2009 to 2017 were 
calculated. Second, the gray prediction model (GM 1.1) 
[33] was used to calculate the land use demand area 
for each land use type in 2025. Third, based on the 
linear programming method [34], objective functions 
under three scenarios maximizing social, ecological, 
and economic benefits [35] in 2035 were established to 
simulate and calculate the area required for each land 
use type. The benefit weight was determined by the 
analytic hierarchy process (AHP) method [36], and the 
target, criterion, and index layers were selected for each 
scenario.

Spatial land use allocation

This part includes three processes: model parameter 
settings, logistic regression, and CLUE-S model 
calculation and testing.

The model parameters mainly include driving 
factors, land use transfer rules, regional constraints, land 
use quantity demand, and initial land use data. Direct 
or indirect driving factors may generate instability in 
land use change, particularly for the ecologically fragile 
Keerqinzuoyihou Banner farming-pastoral ecotone. 

Fig. 1.  Location of study area. 
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Nine drivers (i.e., distance from rural residential areas, 
distance from cities, distance from main roads, distance 
from main rivers, distance from reservoirs and lakes, 
slope, aspect, and elevation; Table 2) were selected 
based on the existing literature on the drivers of land 
use change in the arid and semi-arid areas of northern 
China. Using ArcGIS software for rasterization, the 
spatial resolution was set to 200 m.

The conversion coefficient and transfer matrix 
were also established for land use transfer rules. The 
former describes the conversion difficulty between 
different land use types, with a value between 0 and 
1; the specific value was determined based on expert 
knowledge and the status quo of land use transfer in 
the study area from 2009 to 2017. The land use transfer 
matrix used a change-detection algorithm.

The regional constraint was a separate constraint 
on specific areas where land use change did not 
occur. Here, the basic cropland protection area in the 

Keerqinzuoyihou Banner of Horqin was the regional 
constraint, set as -9998, while other areas were set as 
the land use change zone.

The demand value for land use included the land use 
demand from 2009 to 2017 and demand under different 
scenarios; the initial land use plan was established in 
2009.

Logistic regression was used to establish the 
relationship between driving factors and land use types; 
it was determined using Equation (1): 

 (1)

where pi represents the probability of each grid element 
appearing in a certain category; X1–Xn represents each 
driver; β1, β2...........βn represents the regression coefficient 
corresponding to each driver; and β0 represents the 
constant of the regression analysis.

Table 1. Parameter settings for AHP model under different scenarios.

Table 2. Logistic regression coefficient distribution of different land use types.

Scenario

Social effect Ecological benefit Economic benefit

Target layer Ecological benefits of land Ecological benefits of land Ecological benefits of land

Rule layer

The population density; park area 
per capita; per capita cultivated 
area; per capita residential area; 

per capita income

Green plant coverage; species 
richness; per capita industrial sulfur 
dioxide emissions; per-site industrial 
wastewater discharge; Investment in 

environmental pollution

Local retail sales of consumer 
goods per capita; land per capita 

labor input; per capita fixed assets 
investment; GDP per land; tax 

revenue per land

Index layer Cropland, forest, grassland, built-up, water bodies, sandy land, unused land

Factor Cropland Forest Grass-land Built-up Water bodies Sandy land Unused land

ROC value 0.735072 0.75633 0.870304 0.75633 0.871849 0.737562 0.750919

Constant 2.163326 -2.471573 -2.274552 -1.720939 -0.168546 -4.912449 -3.546635

Distance from rural 
settlements -0.000646 0.000083 0.0004 -0.001057 -0.000125 0.00005 -0.000317

Distance from town -0.00001 0.000016 0.000008 -0.00003 -0.000047 -0.000009 -0.000022

Distance from main 
highway -0.000025 -0.000005 0.000012 - - 0.000028 -

Distance from the 
railway -0.000008 0.000016 -0.000004 -0.000015 - -0.000006 0.000043

Distance from major 
rivers -0.000022 -0.00002 0.000026 -0.000006 - -0.000007 0.000039

Distance from the 
reservoir lake 0.000019 - 0.000009 - -0.000804 -0.000032 -0.000102

Elevation -0.008728 0.001791 0.00573 - -0.007741 0.0101 -0.004538

Slope 0.13148 0.287827 -0.215791 - - -0.731889 0.179005

Slope direction -0.000261 - - - - 0.000424 -

Note: ‚-’ represents the factor removed after logistic regression.
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Table 2 presents the regression coefficients 
calculated in this study. Logistic regression analysis 
[37] determined the contribution of each driver to land 
use change and predicted and simulated future changes. 
Regression results were verified using the receiver 
operating characteristic (ROC) curve [38].

Following input from all parameter files, the CLUE-S 
model was run to output the simulated map of the spatial 
land use layout in 2017 for the Keerqinzuoyihou Banner. 
Simulation accuracy was verified using the calculated 
kappa coefficient with real results; the spatial land use 
layout under different scenarios in 2035 was obtained 
based on this verification. The kappa coefficient was 
calculated as follows:

c

c

p
ppKappa

−
−=

1
0

                  (2)

where p0 represents the correct scale to simulate; and pc  
represents the correct ratio expected to be simulated in 
the random case.

Results and Discussion

Spatio-temporal changes in land use 
from 2009 to 2017

Table 3 shows the proportion of area in each land use 
type in the Keerqinzuoyihou Banner from 2009 to 2017. 
The areas of cropland (23.01%), forest (15.57%), and 
grassland (51.38%) accounted for 89.96% of the entire 
study area. The areas of built-up (2.48%), water body 
(0.95%), sandy land (4.06%), and unused land (2.54%) 
accounted for only 10.04% of the study area. Over the 
nine years, the cropland and built-up areas increased 
annually, while forest land, grassland, and unused land 
decreased each year; the area of water bodies and sandy 
land remained unchanged.

The probability transfer matrix of land use was 
established to more conveniently and intuitively reflect 
the mutual transformation among various land use types 

from 2009 to 2017 (Appendix Table 1). The results show 
that a very small amount of cropland was transferred 
to built-up areas, whereas built-up areas were not 
transferred. Forest land, grassland, water bodies, 
sandy land, and unused land were all transformed into 
cropland and developed by the end of 2017. At this time 
point, only the cropland and built-up areas increased, 
while other land use types decreased. In addition, 
0.47% of sandy land was converted to arable land, 
0.06% of sandy land was converted to built-up land, 
and there was no transfer to other land use types. This 
indicates that although the Keerqinzuoyihou Banner 
has emphasized desertification control, the effect of this 
emphasis has not been significant. Unused land, as a 
reserve resource, decreased by 6.64% in just nine years 
and was mainly converted into cropland.

Fig. 2 shows that from 2009 to 2017, land use 
changes in the Keerqinzuoyihou Banner were mainly 
distributed in Ganqika, Hailuto, Jinbaotun, and Charisu 
towns. Among them, Ganqika, as the resident of the 
banner government, was a centralized distribution 
area for new built-up areas. New croplands were 
mainly distributed in Hailutu, Charisu, Jinbaotun, and 
Aduqinsumu towns, and mainly manifested through the 
conversion of grassland into cropland. The reduced area 
of cropland was mainly converted to built-up areas, 
distributed in Ganqika. The reduced area of forest 
was mainly converted into built-up areas, distributed 
in Ganqika, Jinbaotun, Aduqinsumu, and Maodao 
Tusumu towns. The reduced area of grassland was 
mainly converted into cropland, distributed in Ganqika, 
Jilgalang, Hailutu, Zharisu, and Aduqin Sumu towns.

Simulation Accuracy Verification of Spatial Layout 
of Land Use 

To test the accuracy of the CLUE-S model in terms 
of spatial land use layout, the 2017 spatial layout was 
simulated based on the 2009 land use status map and 
compared with the actual land use status map (Appendix 
Fig. 1). The results show that 27617 grids were correctly 
simulated, accounting for 94.5% of the total number of 
grids (287418). In this study, seven land use types were 

Land use types
Area percent (%)

2009 2011 2013 2015 2017 Mean

Cropland 22.25 22.82 22.87 23.47 23.62 23.01

Forest 15.65 15.6 15.59 15.58 15.45 15.57

Grassland 52.09 51.54 51.49 50.89 50.87 51.38

Built-up 2.36 2.43 2.49 2.54 2.6 2.48

Water bodies 0.95 0.95 0.95 0.95 0.95 0.95

Sandy land 4.08 4.07 4.06 4.05 4.06 4.06

Unused land 2.62 2.58 2.54 2.51 2.45 2.54

Table 3. Area percentage of different land use types in the study area from 2009 to 2017.
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included, and the correct simulation ratio of each type of 
land use grid was 1/7 in the stochastic simulation state. 
Therefore, the Kappa coefficient calculated by Equation 
(2) was 0.936, indicating high simulation accuracy that 
could be used to predict the spatial layout of future land 
use in the Keerqinzuoyihou Banner.

Multi-Scenario Simulation of Land Use Change

Natural evolution scenario simulation in 2025

Under the natural evolution scenario, forest land, 
grassland, water body, sandy land, and unused land 
decreased by 2513.40, 14573.242, 24.21, 320.60 and 
1834.13 hm2, respectively. The cropland and built-up 
increasing to 16232.17 and 3033.41 hm2, respectively.

The probability matrix of land use transfer was 
established (Appendix Table 2) to clearly present the 

transfer situation among land classes. From 2017 to 
2025, approximately 0.13% of cropland was converted 
to grassland and built-up areas, and 5.44% of the built-
up area was converted to cropland. Forest land and 
grassland were mainly converted to arable land at 1.74% 
and 2.09%, respectively. Water bodies, sandy land, and 
unused land all changed, albeit on a smaller scale.

Fig. 3 shows that most land use change in the study 
area was concentrated along major highways and 
near major rivers and lakes. Among them, the area of 
increasing cropland was primarily located in Nugustai, 
Ganqika, Changsheng, Charisu, Hailutu, Jinbaotun, 
Jirigalang and Shuangsheng towns. Increased built-
up areas were distributed across Nugustai, Ganqika, 
Changsheng, Charisu and Aduqin Sumu towns. The 
conversion of cropland to grassland was mainly 
concentrated in Charisu, Hailutu and Jinbaotun towns.

Fig. 2. Spatial distribution of land use change from 2009 to 2017. 

Fig. 3. Spatial land use change distribution under the natural evolution scenario for the Keerqinzuoyihou Banner from 2017 to 2025.
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scenario where social benefits were maximized (as 
per Fig. 4a). Here, cropland increased based on the 
transformation of other land types from 2025 to 2035; 
these transformations were distributed in Nugustai, 
Ganqika, Charisu, Hailutu, and Jinbaotun towns. 
During this period, the increased built-up area was 
concentrated in Changsheng, and a small amount of new 
built-up area was distributed in the south of Ganqika, 
north of Nugustai, and at the junction of Charisu and 
Hailutu.

Scenario Simulation of Ecological Benefit Maximization 
in 2035 

In the maximum ecological benefit scenario, 
cropland, forest, grassland, and unused land were 
maintained at a scale of 2025. Although cropland did 
not increase, the decreases in forest land, grassland, 
and unused land were effectively contained. The 
built-up area showed a small increase of 547.04 hm2, 
while the areas for water bodies and sandy land 
experienced a small decrease of 53.02 and 494.03 hm2, 
respectively.

Scenario Simulation for Maximizing Social Benefits 
in 2035 

Under the maximum social benefit scenario, 
cropland and forest will maintain the scale of 2025, 
while the scale of grassland, water bodies, sandy land 
and unused land will decrease by 650.76, 53.02, 494.03 
and 2183.99 hm2; built-up areas will increase at a rate of 
3381.79 hm2.

The proportion of unused land transferred from 
2025-2035 was the highest at approximately 7.41%, 
with an area that can reach 1951.96 hm2. The area of 
cropland and forest was essentially flat. The area of 
grassland turned out was up to 1104.40 hm2, and the 
area of grassland turned in was only 453.64 hm2; as 
such, its performance is reduced. The transfer of built-
up areas was only 99.82 hm2, while the transfer area 
was 3481.61 hm2, showing an increasing change. The 
area of water bodies, sandy land and unused land had 
essentially remained the same; as such, this area had 
decreased (Appendix Table 3) .

According to the spatial distribution there was an 
increase to the cropland and built-up areas under a 

Fig. 4. Spatial distribution of increases to the cropland and built-up areas under the social benefit maximization scenario.
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Sandy land had the highest proportion and cropland 
had the largest area, at 771.69 hm2. The area of 
cropland, forest land, grassland, and unused land were 
essentially the same. The transferred built-up area was  
168.35 hm2, and the transferred area was 715.39 hm2, 
indicating an overall increase. The area of water 
bodies and sandy land only had a small turn area, as 
demonstrated by the area reduction (Appendix Table 4). 
Under the premise of the highest ecological benefit, land 
use scale and spatial land use distribution were closest 
to the forecasted situation under the current change 
trend in 2025.

Fig. 4b) shows that when ecological benefits are 
maximized, there is little change in land use types 
in terms of space and quantity by 2035. In terms of 
quantity, the cropland and built-up areas increased 
slightly. However, there was no spatial concentration 
change, and their distribution was sporadic within the 
study area. The cropland increases from other land 
use type transformations were mainly distributed in 
Ganqika, and some of the increased cropland was 
scattered in Nugustai, Changsheng, and Jinbaotun 
towns. During this period, the increased built-up areas 
were concentrated in Changsheng, and a small amount 
of new built-up areas were distributed in the south of 
Ganqika, the north of Nugustai, and the junction of 
Charisu and Hailutu. As such, under this ecological 
benefits scenario, the transformation of other land 
types to built-up areas was effectively reduced, and 
considerable areas of forest, grassland, and unused land 
were reserved. This protects further development space 
for the Keerqinzuoyihou Banner.

Scenario simulation of economic benefit maximization 
in 2035 

Under the maximum economic benefit scenario, 
the proportion of unused land and the grassland 
were the highest, reaching 19760.76 hm2. The area 
of cropland transferred out was 1283.22 hm2, and the 
area transferred in was 22226.50 hm2; this indicates an 
overall increase in area. The areas of forest and grassland 
transferred out were 4225.54 and 19 760.76 hm2,
and the areas of forest and grassland transferred in were 
1517.31 and 874.96 hm2, respectively; this indicates 
a decrease in area. The transferred built-up area  
was 2460.93 hm2, although the transferred area was 
5842.72 hm2. The area transferred from grassland was 
the largest (3385.92 hm2), leading to an increase in 
built-up areas. The trends for water bodies, sandy land, 
and unused land were similar to those in the social 
benefit scenario (Appendix Table 5) .

Fig. 4c) shows that the spatial layout of cropland and 
built-up areas increased through the transformation of 
other land use types from 2025 to 2035. This increase 
produced a spatial layout similar to the land use 
change layout under the natural evolution scenario. 
This demonstrates that the current land use layout in 
the Keerqinzuoyihou Banner mainly seeks economic 

benefits and lacks awareness of socially balanced 
development and ecological protection.

 Conclusions

To optimize spatial land use allocation in the 
Keerqinzuoyihou Banner, a county-scale CLUE-S 
model was constructed utilizing current land use data 
from 2009 to 2017. Spatial land use distribution in the 
natural evolution scenario in 2025 and the maximization 
of social, ecological, and economic benefits in 2035 were 
predicted and simulated. The following conclusions 
were drawn:
1. 	 In 2009, the land use structure of the 

Keerqinzuoyihou Banner was dominated by 
cropland, forest, and grassland, accounting for 
22.25%, 15.65%, and 52.09%, respectively, of the 
study area. Together, these combined land use types 
accounted for nearly 90% of the total land area. 
During 2009–2017, the cropland and built-up areas 
increased rapidly, reaching 271579.49 and 29931.38 
hm2 respectively, in 2017.

2. 	 The CLUE-S model was used to simulate the spatial 
land use layout in the Keerqinzuoyihou Banner in 
2017. The Kappa coefficient between the simulated 
results and actual land use was 0.936, indicating 
that the CLUE-S model is highly accurate and 
reliable for simulating spatial land use layout in the 
Keerqinzuoyihou Banner.

3. 	 Under the natural evolution scenarios, the areas of 
forest, grassland, water bodies, sandy land, and 
unused land decreased from 2017 to 2025, while 
cropland and built-up areas increased. When social 
benefit was maximized, the unused land area was the 
largest. When ecological benefits were maximized, 
the proportion of sandy land and cropland area 
was the highest. When economic benefits were 
maximized, the proportion of unused land was the 
highest, and the area of grassland was the largest.

4. 	 The high efficiency and intensification of 
construction should be taken as the goal at the time of 
formulating land use policy, so the unreasonable land 
expansion can be prevented. For this, some measures 
are proposed as follows, such as considering the 
growth and decline of urban and rural built-up areas, 
making the optimization of the layout of built-up 
areas, as well as achieving the economic sustainable 
development mode of complementary advantages. 
In the aspect of ecological land use, the number and 
spatial distribution of ecologically effective land use 
such as forest land, cropland and water bodies should 
be guaranteed. The high standard of basic farmland 
construction standards and ecological landscape 
should be used to design and plan the regional 
ecological land use in advance. The comprehensive 
playing of its greening role and ecological effect 
is the design idea, so as to guarantee the food and 
ecology security. 
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Appendix

Table 1. Land use probability transfer matrix from 2009 to 2017.

Table 2. Land use probability transfer matrix table from 2017 to 2025.

2017
2009 Cropland Forest land Grassland Built-up Water bodies Sandy land Unused land

Cropland 99.82% 0 0 0.18% 0 0 0

Forest 0.95% 98.73% 0 0.32% 0 0 0

Grassland 2.06% 0 97.65% 0.26% 0.01% 0 0.01%

Built-up 0.01% 0 0 99.99% 0 0 0

Water bodies 0.35% 0 0 0.05% 99.60% 0 0

Sandy land 0.47% 0 0 0.06% 0 99.46% 0

Unused land 6.14% 0 0 0.50% 0 0 93.36%

2025
2017 Cropland Forest Grassland Built-up Water bodies Sandy land Unused land

Cropland 99.63% 0.09% 0.13% 0.13% 0.01% 0 0

Forest 1.74% 98.05% 0.14% 0.07% 0 0 0

Grassland 2.09% 0.10% 97.33% 0.46% 0.01% 0.01% 0.01%

Built-up 5.44% 0.18% 0.07% 94.26% 0.01% 0.02% 0.02%

Water bodies 1.07% 0 0.16% 0.06% 98.69% 0 0.01%

Sandy land 0.81% 0.02% 0.10% 0.04% 0 99.03% 0

Unused land 2.03% 0.10% 0.17% 4.23% 0.01% 0 93.46%
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Table 3. Land use probability transfer matrix under social benefit maximization scenario in 2025–2035.

Table 4. Land use probability transfer matrix table under the maximizing ecological benefit scenario from 2025 to 2035.

Table 5. Land use probability transfer matrix under the maximizing economic benefits scenario from 2025 to 2035

2035
2025 Cropland Forest Grassland Built-up Water bodies Sandy land Unused land

Cropland 99.56% 0.02% 0.17% 0.25% 0 0 0

Forest 0.03% 99.92% 0.02% 0.03% 0 0 0

Grassland 0.03% 0.01% 99.81% 0.15% 0 0 0

Built-up 0.13% 0.06% 0.09% 99.70% 0 0.02% 0

Water bodies 0.15% 0 0.06% 0.04% 99.76% 0 0

Sandy land 0.89% 0.01% 0.07% 0.01% 0 99.02% 0

Unused land 0.13% 0.02% 0.12% 7.14% 0 0 92.60%

2035
2025 Cropland Forest Grassland Built-up Water bodies Sandy land Unused land

Cropland 99.74% 0.03% 0.13% 0.10% 0 0 0

Forest 0.04% 99.93% 0.01% 0.01% 0 0 0

Grassland 0.02% 0 99.93% 0.04% 0 0 0

Built-up 0.10% 0.03% 0.05% 99.50% 0 0 0.31%

Water bodies 0.10% 0 0.03% 0.03% 99.83% 0 0

Sandy land 1.47% 0.01% 0.10% 0.08% 0 98.35% 0

Unused land 0.01% 0.01% 0.02% 0 0 0 99.95%

2035
2025 Cropland Forest Grassland Built-up Water bodies Sandy land Unused land

Cropland 99.57% 0.13% 0.17% 0.12% 0 0 0

Forest 2.13% 97.59% 0.18% 0.09% 0 0 0

Grassland 2.69% 0.13% 96.54% 0.59% 0.01% 0.02% 0.01%

Built-up 7.10% 0.23% 0.08% 92.56% 0 0 0.02%

Water bodies 1.05% 0 0.13% 0.08% 98.73% 0 0

Sandy land 1.39% 0.01% 0.20% 0.04% 0 98.36% 0

Unused land 2.46% 0.05% 0.19% 5.38% 0 0.01% 91.90%
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Fig. 1.  Land use status in 2017: a) simulation and b) results. 

a) b)


