
Introduction

Nowadays, climate change has become a major 
global challenge for mankind [1]. It is figured out in 
the Sixth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC) that climate warming 
is mainly caused by greenhouse gas emission produced 
by human activities. Thus, carbon dioxide, as one of 
the most important greenhouse gases, is closely related 
to climate change. In order to achieve sustainable 
development, and in the context of “low-carbon”, 
various countries have proposed corresponding low-
carbon action plans, such as the British low-carbon 
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mixed distribution, initially forming the development trend of „overall mixed distribution and partial 
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action plan and Japanese low-carbon social action plan, 
etc. And China, as the world‘s largest emitter of carbon 
dioxide, has long been focusing on energy conservation 
and emission reduction for the national development 
strategy. During the 13th Five-Year Plan period, the 
goal of archiving green and low carbon development 
was continuously strengthened and the carbon emission 
intensity decreased by 18% in 2020 when compared 
with 2015. Besides, within the 14th Five-Year Plan 
period, in order to achieve the target for the 2030 
nationally determined contribution on climate change, 
an action plan for peaking carbon dioxide emissions 
by 2030 was formulated. Therefore, it is easy to figure 
out that achieving carbon peak and carbon neutrality 
is both an inherent requirement for China to achieve 
high-quality economic development and the country’s 
commitment to the international community. Hence, 
measuring the performance level of carbon emission 
in China, finding its spatial evolution rule from spatial-
temporal dimension, and exploring its relationships 
with economic development, technological progress, 
energy consumption structure and other factors can 
help provide practical and feasible policy suggestions 
for the country to determine the regional responsibility 
of carbon emission reduction and to deploy carbon 
emission reduction actions.

On the basis of the discussed background, „emission 
reduction“ and „low carbon“ quicky become research 
hotspots in academic domain, whereinto, carbon 
emission performance, as the significant substance of 
environmental performance evaluation, has attracted 
the attention of scholars from all over the world.  
In terms of theory, some scholars keep presenting new 
evaluation methods starting with model construction 
on the one hand while on the other hand, they 
interpret the concept, connotation and compensation 
mechanism of low-carbon economic development 
from theoretical analysis, which are represented by the 
scenario development model of long-term low-carbon 
society at the urban scale [2-3], the regional social-
economic development model designed by Shimada 
[4] and the regional development model considering 
climate factors by Truepenny [5]. Empirically, Song 
et.al. [6] utilized RAM model to measure the carbon 
emission efficiency of prefectural and municipal cities 
in Shandong province, finding out that the carbon 
emission efficiency of 17 cities in Shandong province 
was spatially aggregated. Besides, Xie et.al. [7] used 
DEA model and Malmquist total factor productivity 
index to analyze the performance and influencing 
factors of low-carbon economic development in China. 
The results showed that the development level of static 
performance of low-carbon economy in China was 
not high, but there were significant differences among 
provinces. The green coverage rate and total carbon 
emission of built-up areas were the main reasons 
affecting the performance of low-carbon economic 
development. Meanwhile, Wang et. al. [8] used the 
super-efficiency SBM model to explore the spatial-

temporal dynamic evolution characteristics of China‘s 
carbon emission performance, revealing that the carbon 
emission performance of China’s cities showed a trend 
of fluctuation and rise, and the overall level was low. Ma 
et al. [9] used DEA-BCC model and DEA-Malmquist 
model to measure the carbon emission performance 
and driving factors of China‘s logistics industry, 
finding that the overall carbon emission performance 
of China‘s logistics industry was at a medium level. 
Lin et al. [10] used the Comparative Study on Urban 
Transport and the Environment (CUTE) framework to 
identify the driving factors of China’s logistics carbon 
emissions showed that technical intensity and transport 
structure promoted carbon emissions, while technical 
efficiency and agglomeration curbed carbon emissions. 
Chen et al. [11] employed the Tapio decoupling analysis 
method and the environmental Kuznets curve (EKC) 
model to represent speed decoupling and quantity 
decoupling and examined the decoupling relationship 
between Zhejiang Province’s carbon dioxide (CO2) 
emissions and economic growth. Zeng et al. [12] 
utilized STIRPAT model to study the influencing 
factors of CO2 emissions in Chengdu-Chongqing urban 
agglomeration, finding that population, GDP, natural 
gas and electricity consumption and industrial structure 
were the main reasons affecting carbon emissions. And 
Liu et al.  [13] used the non-angular mixed directional 
distance function model to study the carbon emission 
performance of the Yangtze River Delta region, 
revealing that the carbon emission performance of 
central cities was better than that of non-central cities, 
and technological progress and efficiency deterioration 
affected their carbon emission performance to varying 
degrees. Xie et al.  [14] used DEA model to measure the 
carbon emission performance of manufacturing industry 
in 11 provinces and cities in western China, believing 
that the carbon emission performance of manufacturing 
industry in western China showed a trend of decreasing 
fluctuation and was generally at a low level. Lin et al.  
[15] used two-stage Super SBM model, spatial analysis 
and spatial econometric model to analyze the temporal 
and spatial evolution characteristics and influencing 
factors of industrial carbon emission efficiency in the 
Beijing-Tianjin-Hebei region, finding that the industrial 
carbon emission efficiency kept improving during the 
research period, the productivity level, industrial R&D 
investment and the level of opening-up have a positive 
effect on industrial carbon emission efficiency, and 
energy consumption intensity is always negatively 
correlated with industrial carbon emission efficiency. 
Yamaji [16] defined the ratio of total CO2 emissions to 
GDP as CO2 productivity to study the level of carbon 
emissions in Japan. Zhang et al. [17] in the system on 
the basis of combing the strengths and weaknesses of 
the existing carbon dioxide emissions targets, think 
that industrialization and cumulative emissions and 
per capita emissions per unit of GDP per capita the 
new evaluation index reflects the more scientific, fair 
and reasonable principle, and in a typical developed 
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countries and developing countries as a representative 
for the calculation and comparison.

By reason of the foregoing, in terms of carbon 
emission performance and its influencing factors, 
domestic and foreign scholars have done a lot of 
researches and achieved a series of valuable research 
results, but there is still some room for improvement. 
In terms of research topics, scholars mainly study the 
estimation methods, influencing factors, intensity and 
performance of CO2 emissions.  From the perspective 
of the research scale, most scholars take a certain region 
as the research object, which mainly reflects the inter-
regional carbon emission performance level, while 
the national carbon emission performance research is 
insufficient. In terms of research perspective, scholars 
mainly take carbon index energy intensity and carbon 
emission intensity as indicators to measure carbon 
emission performance, instead of fully considering 
the technology and scale efficiency of relevant 
input factors, and fail to take economy, energy and 
environment as a unified whole, resulting in different 
degrees of deviation in the evaluation results. In the 
aspect of research methods, current studies mostly use 
panel data regression model to analyze the impact of 
different factors on carbon emissions performance. 
traditional panel regression usually assumes that 
the impact of each factor on carbon emissions is 
independent of each other, which obviously deviates 
from the reality. But the geographical detector method 
can make up for this deficiency better, because it can 
detect both numerical data and qualitative data, thus 
offsetting the intense subjectivity shortcoming caused 
by the current evaluation indicators being mostly 
processed by assigning values. Furthermore, with its 
interactive detection function, the relationship between 
the influence factors can be analyzed from a deeper 
level. In view of this, this paper selects four time node, 
2005, 2010, 2015 and 2019 and uses DEA model to 
measure China‘s carbon emissions performance and 
spatial visualization and trend surface analysis method 
to explore its space-time evolution law, on the basis 
of using the geographic detector to explore China‘s 
carbon emissions performance influence factors, so as 

to provide decision-making reference for promoting 
carbon performance, developing low-carbon economy 
and achieving carbon peak and carbon neutrality in 
China.

 Data and Methods

Data Sources

This paper takes 30 provinces and regions in China 
as the research objects (except Hong Kong, Macao and 
Taiwan, and Tibet Autonomous Region is not included 
in the research object due to the lack of some data). 
The data is obtained from China Statistical Yearbook 
and national statistical website in 2006, 2011, 2016 and 
2020. For a few missing data, the method of supplement 
value is used. Carbon emission data are obtained by 
multiplying the total consumption of various energy 
sources by the average low calorific and carbon dioxide 
emissions. Since the total carbon emission is unexpected 
output index, the total carbon emission is handled by 
reciprocal transformation.

On the basis of referring to related research [18], 
this paper selects car ownership, green coverage rate of 
built-up area, urban built-up area, number of employees 
at the end of the year, total investment in fixed assets 
and power consumption as input indicators, and total 
carbon emission and GROSS national product as output 
indicators. The carbon emission performance evaluation 
indicator system constructed is shown in Table 1.

methods

DEA model

Data Envelopment Analysis is performed by 
input and output to estimate the production frontier 
[19-20]. Now it’s provided that the carbon emission 
performances of K provinces shall be evaluated, and 
the evaluation indexes are assumed as type L input 
index and type M output index. It is assumed that xij 
represents the input amount of resource i for low-carbon 

Table 1. Evaluation index system of carbon emission performance.

Index attribute Index selection Index description

Input index

The number of car ownership / 10,000 vehicles   Transportation input

Green coverage rate of built-up area/%   Afforesting input

Urban built-up area /km2 Land input

Number of employees at year-end/ten thousand people  Labor input

Total investment in fixed assets / 100 million yuan   Capital input

Electricity consumption amount/gigawatt hours   Energy input

Output index
Total carbon emission amount / 10,000 tons   Environment load  

GNP / 100 million yuan   Economic benefit
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economic development of Province J and yjm stands 
for the output amount of resource m for low-carbon 
economic development of Province J. Then, for the n-th 
(n = 1, 2, 3..., k) province, there is the following DEA 
application model in the following form [4]: 

    (1)

In the formulas: In Equation (1): θ(0<θ≤1) denotes 
the technical efficiency index; λj(λj≥0) represents 
the weight variable; s-(s-≥0) Represents the slack 
variable; s+(s+≥0) represents the remaining variables;  
εstands non-archimedean infinitesimally small;  
eT1 = (1, 1,…, 1)∈Em; eT2 = (1, 1,…, 1)∈Ek are m 
and k-dimensional unit vector Spaces, respectively. 
The closer θ is to 1, the higher is the carbon emission 
performance of the NTH province; otherwise,  
the lower is the carbon emission performance. If θ = 1, 
it indicates that the carbon emission performance  
of the province runs on the optimal production  
frontier, and the output of the low-carbon economic 
development of the province is optimal relative to the 
input.

   
Trend Surface Analysis

Trend surface analysis is a mathematical method  
to simulate the spatial distribution and variation  
trend of geographical system elements by using 
mathematical surface [21-22].  Through trend surface 
analysis, the spatial distribution rule of geographical 
elements is simulated to show the variation trend  
of geographical elements in regional space. Trend 
surface analysis takes the coordinate points x and y in 
the 3 D coordinate system as the independent variable, 
and the value of point z as the dependent variable  
to investigate the change trend of this z value in 
space, so as to reveal the trend and law of the spatial 
distribution of geographical elements. If it is assumed 
that the actual observed value of carbon emission 
performance in a certain region is zi(xi, yi) (i = 1, 2, 
3... N) and the fitted value of the trend is ẑı(xi, yi), then 
the equation is shown as:

               (2)

In the formula, εi is the residual value and it is 
apparent that when (xi, yi) is changing in space, the 
above equation describes the interaction between the 
actual distribution surface, trend surface and residual 
surface of carbon emission performance.

The core of trend surface analysis: the trend surface 
is calculated from the actual observed values, and  
the regression analysis method is generally adopted  
to minimize the sum of squares of residuals, namely:

        (3)

That is, the trend surface fitting in the least 
squares sense.  Generally speaking, polynomials are 
usually used as the trend surface equation. This is 
because any function can always be approximated by 
polynomials within a certain range, and the degree of 
polynomials can be adjusted to meet the needs of trend 
surface analysis. In general, the higher the number of 
polynomials, the trend value is closer to the observed 
value, while the smaller the remaining value. Therefore, 
in practical work, the number of trendlines must be 
appropriately selected, which is rarely more than 5 or 
6 times.

Geographical Detector

Geographical detector is a method used to detect 
spatial differentiation and explore its influencing factors  
[23-24]. This method can detect not only numerical data 
but also qualitative data, and can detect the interaction 
between two factors, and overcome the traditional 
regression model to judge the interaction between two 
factors simply by the multiplication relationship.  The 
model is shown as follows [25]:

             (4)

           (5)
                                      

In Equations (4) and (5): i =1,2... ,l, is the stratification 
of independent variable X and dependent variable Y, 
N and Ni, are the number of units and layer i in the 
whole region respectively; δ2 and δi

2 are the variances 
of Y value and layer i of the whole region respectively. 
Meanwhile, what q value measures is the explanatory 
power with a range of 0 to 1. The larger q value is, the 
stronger the explanatory power of independent variable 
X to dependent variable Y is; otherwise, the weaker  
it is.

Results and Discussion

Measurement and Descriptive Statistics of China‘s 
Carbon Emission Performance

Based on DEA-SOLVER Pro software, this study 
obtains the carbon emission performance of 30 
provincial units in 2005, 2010, 2015 and 2019, and 
the carbon emission performance (crste) as well as its 
decomposition items (pure technical efficiency (vrste) 
and scale efficiency (scale) scores in 4 years (Table 2).

According to Table 2, the performance 
characteristics of China‘s carbon emissions can be 
concluded as follows:
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Firstly, in general, China’s carbon emission 
performance is not high and most provinces and cities’ 
performances remain below the optimal level. China‘s 
carbon emission technology efficiency in 2005, 2010, 
2015 and 2019 only reached 87%, 89%, 80%, and 85%, 
and the score was 0.87,0.89,0.80 and 0.85 respectively. 
The four-year average was 0.85, which shows that 
China‘s carbon emission performance has only played 
85% of the optimal level, with large development 

potential and improvement space. According to 
provincial analysis, in 2005, 2010, 2015 and 2019, there 
were 8, 12, 5 and 7 provinces in China whose carbon 
emission performance technical efficiency score was 1, 
respectively. The technical efficiency score of Beijing, 
Shanghai, Hainan and Qinghai provinces had always 
been 1 during the study period, indicating that these 
provinces and regions have a high level of low-carbon 
economic development. The reason may be that Beijing 

Table 2. Performance scores of China‘s carbon emissions in 2005, 2010, 2015 and 2019.

DUM
2005 2010 2015 2019

crste vrste scale crste vrste scale crste vrste scale crste vrste scale 

Beijing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Tianjin 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hebei 0.88 0.95 0.92 0.90 0.93 0.96 0.79 0.86 0.93 0.77 0.77 1.00

Shanxi 0.83 0.85 0.97 0.80 0.81 0.99 0.61 0.63 0.96 0.81 0.84 0.95

Inner Mongolia 0.62 0.68 0.92 0.93 0.93 1.00 0.75 0.75 1.00 0.87 0.88 0.99

Liaoning 0.72 0.72 1.00 0.83 0.89 0.94 0.78 0.85 0.92 0.89 0.90 0.99

Jilin 0.90 0.90 1.00 1.00 1.00 1.00 0.95 0.99 0.96 0.58 0.68 0.86

Heilongjiang 1.00 1.00 1.00 0.94 0.94 1.00 0.80 0.83 0.97 0.68 0.72 0.95

Shanghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Jiangsu 0.99 1.00 0.99 0.90 1.00 0.90 0.81 1.00 0.81 0.99 1.00 0.99

Zhejiang 0.81 1.00 0.81 1.00 1.00 1.00 0.86 1.00 0.86 0.86 0.95 0.90

Anhui 0.89 0.90 0.99 0.82 0.82 1.00 0.67 0.68 0.99 0.79 0.79 1.00

Fujian 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.94 1.00 1.00 1.00

Jiangxi 1.00 1.00 1.00 0.97 0.99 0.98 0.77 0.77 0.99 0.77 0.78 0.99

Shandong 0.95 1.00 0.95 0.89 1.00 0.89 0.74 1.00 0.74 0.71 0.77 0.91

Henan 0.90 1.00 0.90 0.88 1.00 0.88 0.78 1.00 0.78 0.88 1.00 0.88

Hubei 0.87 0.88 1.00 0.99 0.99 1.00 0.91 0.99 0.92 0.96 1.00 0.96

Hunan 0.96 0.96 1.00 1.00 1.00 1.00 0.97 1.00 0.97 1.00 1.00 1.00

Guangdong 1.00 1.00 1.00 0.88 1.00 0.88 0.73 1.00 0.73 0.79 1.00 0.79

Guangxi 0.85 0.86 0.99 0.76 0.81 0.95 0.66 0.67 0.98 0.66 0.68 0.98

Hainan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chongqing 0.86 0.86 1.00 0.92 1.00 0.92 0.89 0.90 0.99 0.84 0.87 0.96

Sichuan 0.77 0.77 1.00 0.78 0.84 0.94 0.74 0.87 0.85 0.93 0.97 0.95

Guizhou 0.68 0.75 0.90 0.69 0.73 0.95 0.69 0.71 0.96 0.69 0.72 0.96

Yunnan 0.73 0.77 0.95 0.72 0.74 0.97 0.68 0.70 0.97 0.87 0.89 0.98

Shaanxi 0.78 0.84 0.93 0.97 0.98 1.00 0.84 0.84 1.00 0.81 0.83 0.98

Gansu 0.79 0.85 0.92 0.77 0.79 0.96 0.57 0.63 0.90 0.70 0.78 0.89

Qinghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ningxia 0.55 0.90 0.61 0.71 0.93 0.76 0.67 0.94 0.72 0.87 1.00 0.87

Xinjiang 0.79 0.79 1.00 0.70 0.82 0.86 0.46 0.52 0.89 0.78 0.80 0.97

mean 0.87 0.91 0.96 0.89 0.93 0.96 0.80 0.87 0.92 0.85 0.89 0.96
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and Shanghai have developed economies, more high-
tech industries and high utilization rate of resources. 
Hainan province is located in the southernmost part 
of China, with sufficient light and heat and high 
vegetation coverage rate. Moreover, Hainan province 
has vigorously developed green industries, making its 
superior environment and a high level of low-carbon 
economic development. Qinghai province is located 
in a plateau, with its unique geographical location and 
climate conditions contributing to its optimal carbon 
emission performance. But other provinces’ technical 
efficiency scores were not optimal and fluctuated 
differently, meaning that their performance is unstable 
and have great development potential.

Secondly, pure technical efficiency is the main factor 
affecting carbon emission performance. In 2005, 2010, 
2015 and 2019, pure technical efficiency was 0.91, 0.93, 
0.87 and 0.89 respectively, and the average was 0.90, 
indicating that the pure technical efficiency reached 
90% of the optimal value, which also proves that the 
technical efficiency of China‘s low carbon economy has 
been fully developed in the process of development. 
In terms of provinces and regions, in 2005, 2010, 2015 
and 2019, the number of provinces with the best pure 

technical efficiency in China was 13, 14, 12 and 12, 
respectively, more than the provinces with the best 
technical efficiency in the same period. Among them, 
Beijing, Tianjin, Shanghai, Jiangsu, Fujian, Hainan 
and Qinghai provinces always had the best pure 
technical efficiency during the research period. It can 
be concluded from Figure 1 that during the research 
period, China‘s low-carbon economy development 
was mainly affected by pure technical efficiency, and 
the change trend of carbon emission performance 
was almost consistent with the trend of pure technical 
efficiency. Therefore, pure technical efficiency is the 
main factor affecting the development of low-carbon 
economy.

Thirdly, there are also more provinces with the 
best scale efficiency than the provinces with the best 
technical efficiency. Scale efficiency is an effective way 
to improve the development of low-carbon economy. In 
2005, 2010, 2015, and 2019, China’s carbon emission 
scale efficiency scores were 0.96, 0.96, 0.92, and 
0.96, respectively, with an average of 0.95, reaching 
95% of the optimal level. It shows that with the social 
development and national policy support, the level of 
resource allocation in China‘s low-carbon economic 

  
Fig. 1. Radar map of China‘s carbon emission performance in 2005, 2010, 2015 and 2019.
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types of carbon performance regions, there were 12, 12, 
8 and 9 provinces in high performance levels in 2005, 
2010, 2015 and 2019, respectively, while the number of 
provinces in relatively high and medium performance 
levels remained basically unchanged, fluctuating 
between 14 and 15. The number of provinces in low-
performance areas was 3, 4, 8 and 6, respectively. This 
also reflects the declining development level of carbon 
performance in China.

Secondly, the provinces of different performance 
types have a large change trend, presenting a pattern 
of „overall mixed distribution and partial aggregation“ 
among different performance types. For the years,  
2005-2010, carbon emission performance type zone 
changed in 12 provinces, namely, Heilongjiang, 
Jilin, Inner Mongolia, Shandong, Jiangsu, Zhejiang, 
Guangdong, Guangxi, Yunnan, Xinjiang, Shaanxi, 
Shanxi and from 2010 to 2015, changes involved 
provinces such as Heilongjiang, Liaoning, Hebei, 
Shandong, Jiangsu, Zhejiang, Guangdong, Guangxi, 
Jiangxi, Anhui, Henan, Inner Mongolia, Shaanxi, 
Shanxi and Gansu while in 2015-2019, 15 provinces, 
including Xinjiang, Inner Mongolia, Heilongjiang, 
Jilin, Liaoning, Hebei, Shandong, Jiangsu, Yunnan, 
Hubei, Sichuan, Shaanxi, Shanxi, Henan and Ningxia 
were included, showing that the carbon emission 
performance level of Chinese provinces and regions 
fluctuates greatly, and the carbon emission performance 
has not formed a stable spatial pattern yet. From 2005 
to 2010, carbon emission performance showed a trend 
of contiguous distribution, but seen from the change 
trend of 2015 to 2019, there existed an obvious trend 
of decentralized distribution. Generally speaking,  
the national carbon emission performance witnesses  
the central and eastern regions being higher than that  

development is relatively reasonable. In terms of 
provinces and regions, in 2005, 2010, 2015 and 2019, the 
number of provinces with the best scale and efficiency 
of low-carbon economy development in China was 15, 
14, 7 and 9 respectively, more than the provinces with 
the best technical efficiency in the same period.

Spatial Differentiation and Evolution Rule of 
China’s Carbon Emission Performance

Based on the calculated cross-section sample of 
the mean values of the four typical years 2005, 2010, 
2015 and 2019 in China, the spatial distribution map 
of China‘s carbon emission performance is drawn with 
the help of ArcGIS software, and the carbon emission 
performance of China is divided into four categories 
using the natural discontinuity point method: areas 
of high performance level, higher performance level, 
medium performance level and low performance level 
(Fig. 2).

It can be seen from the figure that the spatial 
variation characteristics of China‘s carbon emission 
performance from 2005 to 2019 are as follows:

Firstly, the space difference ofcarbon emission 
performance is significant. In 2005, 2010, 2015 and 2019, 
China had the highest carbon emission performance 
score of 1, while the lowest provinces were slightly 
different and distributed in Guizhou and Ningxia. The 
average carbon performance level of the two provinces 
was 0.69 and 0.70, respectively, indicating that the low-
carbon economic development efficiency of the two 
provinces only reached 69% and 70% of the optimal 
level. It shows that the gap of low-carbon economic 
development level between different provinces and 
regions in China is slightly larger. In terms of various 

  
Fig. 2. Spatial distribution characteristics of China’s carbon emission performance. 
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of the western regions, while that of the southern 
regions being higher than that of the northern regions.

In order to further explore the spatial distribution 
characteristics of China’s carbon emission performance 
and identify the spatial data structure of carbon emission 
performance, this paper uses the trend analysis tool for 
data mining in ArcGIS, selects 2005, 2010, 2010 and 
2019 as samples, and forms a three-dimensional trend 
chart (Fig. 3) with the X, Y and Z axes representing 
the due east direction, the due north direction and 
the vertical direction respectively, visualizing the 
agglomeration effect and spatial interaction mechanism 
of China‘s carbon emission performance.

In the trend analysis chart, each vertical bar stands 
for the carbon emission performance and geographical 
location of a data point, which is projected onto an east-
west and a north-south orthogonal plane. Through the 
projected points, a line of best fit can be drawn, which 
can be used to simulate an existing trend in a particular 
direction. From what is shown in Fig. 3, it can be figured 
out that in the east-west direction, China‘s emissions 
performance trend during 2005-2019 showed an obvious 
reversed „U“ type relationship, showing that the western 
Xinjiang, Gansu, Guizhou, Yunnan and other provinces 
had slightly low carbon emission performance and were 
in low performance level areas, the central Shaanxi, 
Hubei, Henan, Jiangxi and other provinces were 
generally in high level areas, while Shandong and Hebei 
in the east were generally in medium performance 
level areas, suggesting that there was a large spatial 
difference between east and west, which was consistent 
with the spatial distribution characteristics of China‘s 
carbon emissions. In the north-south direction, the 
curve was smooth, indicating the difference between 
the north and south was insignificant and the southern 
change trend was slightly lower than the north. For 

example, Hunan, Fujian and Hainan had high carbon 
emission performance in the research period, while 
Sichuan remained medium for three consecutive years. 
The carbon emission performance of Inner Mongolia in 
the north had changed from „low-high-medium-high“, 
and Shaanxi had experienced the trend of „medium-
high-high-medium“. On the whole, China‘s carbon 
emission performance was relatively high in 2005 and 
2010, declined slightly in 2015, and was high in 2019 
again, demonstrating that China‘s low-carbon economic 
development level is generally good, with slight 
fluctuations in stable development. From 2005 to 2010, 
the penetration rate of motor vehicles in China was 
low, and the number of cars was small. Most people 
used green travel, and the urban built-up area was 
small, resulting in high carbon emission performance. 
and more haze days in China during 2013-2015 might 
be the reason for the slightly declined performance in 
2015. With the high-quality development of China‘s 
economy, the construction of ecological civilization and 
the proposal of dual carbon goal, China‘s low-carbon 
economic level has been continuously improved since 
2019.

Influencing Factors Analysis of Carbon Emission 
Performance

Factors influencing carbon emission performance 
mainly include the degree of opening-up, energy 
structure, industrial structure, government intervention, 
technology progress and economic development, foreign 
investment and ownership structure, which involve 
numerous statistical indicators. Since many indicators 
are connecting significantly, excessively complicated 
index design may generate uncertain results. Therefore, 
this paper selects the most representative indicators 

  
Fig. 3. Trend line of spatial pattern change of China‘s carbon emission performance.
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(Table 3) to reflect the main influencing factors listed 
above respectively through comparing and screening 
multiple indicators and reviewing existing literature 
in accordance with the principle of scientific data and 
availability [26-27].

This paper expresses the degree of opening-up 
by the proportion of total import, uses the export 
trade in GDP and the proportion of coal consumption  
in the energy structure of each province as the energy 
evaluation index, so as to measure the carbon emission 
performance of each city, takes the proportion of 
the added value of the tertiary industry in GDP as 
the index for the industrial structure measurement, 
represents the degree of government intervention 
with the proportion of fiscal expenditure of each local 
government in GDP, displays technological progress 
by the proportion of internal expenditure of research 
and development expenditure in GDP of each region 
and economic development by the ratio of total GDP 
to total population while employing the proportion of 
the number of employees of state-owned enterprises 
in the total number of employed persons to show 
the ownership structure and the proportion of total 
industrial output value of foreign-invested enterprises 

(including Hong Kong, Macao and Taiwan) to present 
foreign investment.

This paper uses Arcgis10.2 to create a vector 
grid in China‘s administrative region map of  
3.5 km×3.5 km, grid center point to extract the data 
of dependent variable carbon emission performance 
and 8 independent variables, and Geodetector software 
to conduct factor detection and interactive detection 
analysis on the influencing factors of China‘s carbon 
emission performance.

Analysis of Detection Results of Influencing Factors

This study uses factor detectors to obtain q values of 
2005, 2010, 2015 and 2019, and as what has been shown 
in Table 4, the explanatory power of each factor passes 
the significance level test of 1%.

During the study period, as time went by, each 
factor showed a changing trend of fluctuation. Firstly, 
the q value of the degree of opening-up had a relatively 
large change, with a small increase from 2005 to 2010,  
a sharp decline from 2010 to 2015, and a gradual 
increase from 2015 to 2019. However, compared with 
2005, it had an overall downward trend, indicating 

Table 3. Index system of influencing factors of China‘s carbon emission performance.

Target layer Index layer

Degree of opening-up X1: Proportion of total import and Export trade in GDP of each region

Energy structure X2: Proportion of coal consumption in total energy consumption

Industrial structure X3: Proportion of added value of tertiary industry in GDP

Degree of government intervention X4: Proportion of fiscal expenditure of local governments in GDP

Technological progress X5: Proportion of internal expenditure on research and development in GDP by region

Economic development X6: Total GDP/total population

Ownership structure X7: Number of employees of State-owned enterprises/Total number of employed persons

Foreign investment X8: Proportion of total industrial output value of foreign-invested (including Hong Kong, Macao 
and Taiwan) enterprises

Table 4. Detection results of spatial differentiation factors of China’s Carbon emission performance. 

Factor
2005 2010 2015 2019

q Ranking q Ranking q Ranking q Ranking

X1 0.6231 5 0.6443 3 0.3160 8 0.3889 8

X2 0.6710 2 0.6253 5 0.5126 7 0.6559 3

X3 0.4590 8 0.5536 8 0.7522 1 0.5111 7

X4 0.6706 3 0.5780 7 0.7515 2 0.7400 1

X5 0.5184 7 0.6586 2 0.5183 6 0.6075 5

X6 0.5767 6 0.5804 6 0.7393 3 0.6668 2

X7 0.6233 4 0.6602 1 0.6860 5 0.6445 4

X8 0.6857 1 0.6397 4 0.7169 4 0.5699 6
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that with the gradual improvement of China‘s level 
of opening to the world, the degree of opening-up’s 
influence on carbon emission performance decreases 
gradually in the selected factors. In terms of energy 
structure, the q value dropped from 0.67 in 2005 to 
0.51 in 2015, showing a downward trend, and gradually 
increased its influence in 2015-2019, but the overall 
change was slight and showed steady development. 
Moreover, basically relying on coal in industrialization, 
China becomes one of the few countries using coal 
as the main energy source, thus forming an energy 
consumption structure that has a relatively large 
and stable impact on carbon emission performance. 
Thirdly, the influence of industrial structure on 
carbon emission performance showed an upward 
trend from 2005 to 2015, but began to decline from 
2015 to 2019. Specifically, from 2005 to 2015, with 
the rapid development of energy-consuming tertiary 
industries such as transportation, storage and postal 
services, the impact on carbon emission performance 
gradually increased and from 2015 to 2019, with the 
development and application of new technologies, its 
impact on carbon emissions gradually decreased. Then, 
the degree of government intervention has the greatest 
influence on carbon emission performance, with q 
value above 0.55 in all four years and over 74% in 2015 
and 2019, indicating that the Chinese government has 
played an important role in the development of low-
carbon economy and the measures taken have achieved 
obvious results. Therefore, the degree of government 
intervention has a great influence on carbon emission. 
Fifthly, the influence of technology on carbon emission 
performance has not changed much, and it is basically 
maintained between 0.5 and 0.65, which shows that 
China has been quite mature in technology on the road 
to achieve carbon emission reduction. Furthermore, 
from the aspect of economic development level, q value 
changed slightly, showing an upward trend from 2005 to 
2015, reaching 74% in 2015, and then slightly decreased. 
In addition, economic development is conducive to 
increasing people‘s income and enhancing people‘s 
awareness of environmental protection, which is the 
way to low-carbon economic development indicating 
its influence. Besides, the influence of ownership 
structure is stable, basically maintaining at about 
65%, indicating its little influence on carbon emissions 
while that of foreign investment became slighter and 

slighter. Its strength went through decrease, increase 
and then significant decrease, showing that with the 
development of China‘s economy and the enhancement 
of independent innovation capacity, the degree of 
industrial development relying on foreign investment is 
becoming less and less.

Analysis of Interactive Detection Results

To further explore the impact of interaction 
between different driving factors on carbon emission 
performance, this paper selects and classifies the pair-
based interaction results of 8 factors to summarize  
the top 5 interaction results in each year, as shown  
in Table 5.

Interaction detection can analyze whether  
there is an interaction on the carbon emission 
performance of each driving force. The interactions 
can be divided into the following five categories:  
if q(Xi ∩ Xj )<Min(q(Xi),q(Xj )), then the interaction 
between the two is nonlinear weakening; if Min(q(Xi), 
q(Xj))<q(Xi ∩ Xj)<Max(q(Xi), q(Xj)), it is a single-factor 
nonlinear weakening; If q(Xi ∩ Xj)>Max(q(Xi),q(Xj)), it 
is double-factor enhancing; If q(Xi ∩ Xj) ＝ q(Xi)+q(Xj),
it is independent; If q (Xi ∩ Xj)>q(Xi)+q (Xj), it 
is nonlinear enhancing. The study shows that the 
influence of interactor interaction on carbon emission 
performance is far more than the monofactor effect, 
namely, the combined effect of two factors will improve 
the spatial variation and explanatory power of carbon 
emission performance. In terms of action type, a non-
linear enhancement effect was produced between the 
factors. This shows that carbon emission performance 
is the result of the combination of multiple factors, 
with a complex integration of influencing factors 
and spatial differentiation characteristics. As can be 
seen from the table, in 2005, the strongest interaction 
explanatory power was the degree of foreign investment 
and government intervention, and the energy structure 
and government intervention degree ranked second.  
In 2010, it was mainly affected by technological progress, 
industrial structure and the degree of government 
intervention; in 2015, by government intervention, 
ownership structure and industrial structure, and in 
2019, by industrial structure, government intervention 
and opening up. It can be seen from the analysis that 
the degree of government intervention and industrial 

Table 5. The top five influencing factors of interaction factor detection.

Ranking 2005 2010 2015 2019

1 X8 ∩ X4 X5 ∩ X7 X4 ∩ X5 X3 ∩ X7

2 X2 ∩ X4 X3 ∩ X8 X7 ∩ X5 X4 ∩ X8

3 X5 ∩ X3 X4 ∩ X2 X3 ∩ X8 X1 ∩ X6

4 X6 ∩ X5 X6 ∩ X7 X3 ∩ X5 X7 ∩ X5

5 X7∩ X5 X4 ∩ X8 X2 ∩ X5 X3 ∩ X5
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structure had the greatest impact on the spatial 
distribution of China‘s carbon emission performance, 
and the interaction effect of government intervention 
and other factors had always had a significant influence 
in four years, indicating that the Chinese government 
has made a great contribution to carbon emission 
reduction. Industrial structure also had a great impact 
on it, which shows that the development of the tertiary 
industry is conducive to adjusting the energy structure, 
thus promoting the sustainable development of low-
carbon economy. In terms of technological progress and 
opening-up, the improvement of the opening up level is 
conducive to the introduction of advanced science and 
technology level and management methods, so as to 
improve energy utilization efficiency and reduce carbon 
emissions.

Discussion

Carbon emission is both a hot spot of global 
concern and a frontier field of academic research that 
involves complex scientific issues, such as the scientific 
selection of indicators and evaluation criteria, as well 
as the applicability and rationality of research methods, 
which have not yet formed a unified understanding in 
the academic community. Compared with previous 
studies, this paper is based on the data in 2005, 2010, 
2015, 2019, referring to the IPCC method, estimating 
China’s carbon emissions, and using DEA model and 
geographic detector method for empirical research, 
which better reveals the evolution of carbon emission 
performance and its factors and provides scientific 
basis for relevant government departments to develop 
differentiated carbon reduction strategy. For example, 
Local government departments in recognizing 
the region carbon emissions under the premise of 
performance level, from the energy structure, the degree 
of government intervention, technological progress, 
industrial structure and economic development index, 
combined with the situation in the region, under the 
premise that ensure the quality of residents to take 
targeted measures, in order to realize the regional 
sustainable development. 

Meanwhile, further exploration and improvement 
is still requisite for the following aspects in this study. 
First of all, the performance level of carbon emission 
is affected by many aspects. When establishing 
the input-output index system, this paper considers 
the use of alternative data for the accessibility and 
convenience of data, but the research accuracy is still 
slightly inadequate. For example, the use of electricity 
consumption to replace energy input does not take into 
account the energy consumption of different provinces 
and the use of employment number at the end of the 
year to replace labor input ignores the impact caused 
by differences in labor types and quality in different 
industrial structures. Therefore, it is necessary to further 
refine data comprehensiveness and accuracy and select 
evaluation indicators more carefully since constructing 

an indicator system of carbon emission performance 
evaluation remains as a complex comprehensive task. 
Moreover, There are many variables affecting carbon 
emission performance, and this paper lacks an in-depth 
analysis of whether the index selection is comprehensive 
and which are the most fundamental influencing 
factors. Therefore, in the context of carbon peak and 
carbon neutrality, how to derive it from the theory or 
through the establishment of microscopic models needs 
to be further studied. Besides, due to time limit, This 
paper only studies the carbon emission performance 
from a macro perspective, but the selection of different 
perspectives will have different conclusions on the 
carbon emission performance level of different regions. 
In the future, the development level of carbon emission 
in different regions can be studied from multiple 
perspectives such as industry, agriculture and service 
industry to provide more targeted carbon emission 
reduction measures. Last but not least, the selection of 
research scale units has a great impact on the spatial 
differentiation characteristics of carbon emission 
performance, and different research scales will even 
produce large different differentiation rules. Limited by 
the availability of data, this paper explains and analyzes 
exploratorily base on national macro pattern, without 
comparing the development characteristics of multi-
scale regional carbon emissions performance. If we can 
compare the performance characteristics or influencing 
factors of carbon emissions at city, county, town or 
multi-scale in China in the future, we can reveal the 
influencing factors of the performance pattern change 
and spatial differentiation of carbon emissions at 
different scales in depth, so as to explore the spatial 
characteristics and formation mechanism of low-carbon 
economic development in a more detailed way.  

Ulteriorly, in the results of this paper, the pure 
technical efficiency is the main factor affecting the 
carbon emission performance, which is consistent 
with the conclusion of the scholar Xie Zhixiang [4]. 
In terms of spatial differences, the overall carbon 
emission performance is characterized by „high in 
southeast and low in northwest“, which is basically 
consistent with the conclusions of Wang Shaojian [6] 
and Jiang Hong [40]. In terms of influencing factors, 
the degree of government intervention and ownership 
structure have a great impact on the carbon emission 
performance in China, which is roughly the same as the 
research conclusions of scholars Cao Ke [41] and Wang 
Qunwei [42].

 Conclusions

This paper takes 30 provincial units in China as the 
research object by virtue of DEA model in measuring 
carbon emission performance of China in 2005, 2010, 
2015 and 2019 and explores and analyzes the spatial-
temporal evolution rule of carbon emission performance 
in China by geographic detector on the basis of spatial 
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visualization and trend surface analysis The conclusions 
are shown as follows:

(1) The overall level of carbon emission performance 
in China is not high. Except for Beijing, Shanghai, 
Hainan and Qinghai provinces, the carbon emission 
performance of most provinces and municipalities 
has not yet reached the best, and there is great room 
for improvement. The fluctuation of carbon emission 
performance in various provinces and regions in China 
changes greatly, which is manifested as the larger 
change trend in the east-west direction than the north-
south direction. 

(2) There are significant spatial differences in 
China‘s carbon emission performance. Generally 
speaking, the performance of the central and eastern 
regions is higher than that of the western regions, while 
that of the southern regions is higher than that of the 
northern regions. There is no obvious agglomeration 
effect among the various types of areas, showing a trend 
of „overall mixed distribution, partial aggregation“.

(3) In terms of influencing factors, the degree of 
single factor government intervention has a strong 
explanatory power to the spatial differentiation of the 
performance, followed by ownership structure, foreign 
investment, energy structure, technological progress, 
industrial structure, and the degree of opening-up. 
Meanwhile, the effect of factor interaction on carbon 
emission performance far exceeds nonfactor effects and 
shows nonlinear enhancement.
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