The Removal of Heavy Metals by Low Molecular Organic Acids (LMWOAs) from Contaminated Soils and Key Influencing Factors: A Literature Review

Cai-Hong Gao1,2, Rong-Bing Fu1,2*

1State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China

Received: 9 September 2022
Accepted: 18 October 2022

Abstract

With the widespread consensus on the sustainable development of economy and society, the environmental issues of heavy metal pollution in soils have received considerable attention. Confronted with these issues, soil washing has been widely studied, due to its advantages of simple operation, wide application, high efficiency and low costs. However, reducing the secondary contamination of the washing agents and selecting the best washing agents have been a barrier to the development of washing technology. Based on this background, this study comprehensively investigated the concentration levels of heavy metals in different types of contaminated sites, analyzed the current research status in this field, and pointed out the urgency and challenge of soil remediation for heavy metal pollution. Meanwhile, the advantages and disadvantages of different remediation techniques and their application case studies for heavy metal contaminated soils were summarized. In addition, the washing effects of different types of low molecular weight organic acids on heavy metal pollutants in soils and their key influencing factors were also fully discussed. Finally, the limitation in this field area and future research directions were pointed out. This review would be expected to provide practical engineering application and development for soil washing.

Keywords: heavy metals, soil remediation, soil washing, low molecular organic acids, influencing factors

*e-mail: furongbing@tongji.edu.cn
Introduction

As an important part of the ecosystem, soil are the source and sink for the migration and transformation of pollutants. Over the past 200 years, the continued industrialization worldwide has led to severe soil contamination [1]. According to incomplete statistics, 15% of agricultural land in China has been polluted by anthropogenic activities during the past 10 years. Soil heavy metal pollution is one of the most serious environmental problems worldwide. Several pollution sources contribute to heavy metal pollution in soils, including weathering of soil parent materials, mining, smelting, traffic, pesticide, and fertilizer use. Heavy metal pollutants in soils can transfer through soil-food chain-human body and other exposure routes. Because of their bioaccumulation and non-degradation, their significant enrichment will damage the functions of human small intestine, stomach, kidney, lung and cardiovascular tissues, and even may lead to cancer, malformation and mutation [2]. According to the Institute for Health Metrics and Evaluation (IHME), lead (Pb) exposure amounted to 540,000 deaths worldwide in 2016, and the annual cost of cognitive defects of children attributed to Pb contamination was 1154 billion US dollars [2]. Consequently, heavy metal pollution in soils has received widespread attention and is considered as a key indicator of pollution.

From the perspective of sustainable utilization and development of lands, it is urgent to develop economically feasible, environmentally friendly and efficient remediation technologies. It has witnessed an increase in papers about soil remediation during 1985-2022. In particular, the publication number of papers on soil remediation and soil remediation with heavy metal pollution has increased dramatically since 2010. It is clearly illustrated that the studies on the remediation technologies of contaminated soil, especially heavy metal contaminated soils, have attracted worldwide attention (Fig. 1). Soil remediation can reduce pollutants or prevent pollutants from entering the human bodies. Furthermore, it facilitates the redevelopment and use of abandoned contaminated lands, aiding economic and social development. In terms of the remediation principle, soil remediation refers to the removal of heavy metal pollutants from soils and the reduction of their mobility in soils. The remediation techniques can prevent heavy metals from posing the potential threats to human beings, animals and plants, and restoring the ecological function of soils [4]. For example, washing reagents such as surfactants, chelating agents and desorbents can remove heavy metals from contaminated soils, while chemical stabilization materials can significantly reduce their mobility and bioavailability. When it comes to the types of soil remediation technologies, physical remediation (soil replacement, electrokinetic and thermal desorption), chemical remediation (chemical washing, chemical stabilization, solidification/stabilization, chemical oxidation/reduction), bioremediation (phytoremediation, microbial remediation, plant–assisted remediation and microorganism–assisted remediation) are included [5-6]. It is reported that the application rates of physical, chemical and biological remediation technologies used for the remediation of heavy metal contaminated sites from Guangxi, Fujian, Liaoning and Yunnan provinces in China have reached up to 27.1%, 18.9% and 10.7%, respectively [7]. The case studies of the application of different remediation techniques are summarized in Table 1. In fact, these techniques have their own advantages and disadvantages, in terms of applicability, efficiency and costs. Physical remediation technology can directly remove or separate heavy metals from contaminated soils, but the workload and remediation costs are high, and it is also easy to destroy soil structure. Bioremediation by the use of plants and microorganisms can reduce the concentrations and toxicity of heavy metals in contaminated soils without secondary pollution, but the remediation time is long and the subsequent treatment faces significant challenges [8]. The serious defect of chemical stabilization remediation is that long-term sampling is needed to
monitor the release of heavy metal pollutants in the post remediation stage, and thus the remediation cost is too high [9-10]. Soil washing refers to the leaching of heavy metal pollutants from contaminated soils through chemical mechanism such as desorption, chelation and dissolution with the addition of specific solutions. Compared with other remediation technologies, soil washing has the advantages of flexible application, simple operation, short time, low cost and high removal efficiency [11]. Especially, the removal of heavy metal pollutants from soils can be accomplished with no need for subsequent long–term monitoring and remediation. As a result, soil washing has recently been studied extensively.

Based on the present scientific backgrounds, the main aims of this review were to (i) analyze the heavy metal pollution in contaminated sites, and then point out the urgency and challenge of soil remediation; (ii) introduce the principle and its research status of soil washing; (iii) present the application cases of low molecular organic acids as soil washing agent and highlight the key factors affecting their washing effects, and (iv) present the research perspective on the development trends of soil washing.

Results and Discussion

Pollution Characteristics of Heavy Metals in Contaminated Sites

The contaminated site is an area where soil contamination has been identified as posing the potential risks to humans, ecosystems or other receptors. Over the past few decades, the number of contaminated sites has increased dramatically at global scale [12]. There are over 10 million contaminated sites worldwide [12]. Australia has about 80,000 contaminated sites [13]. According to EU statistics, there are about 2.5 million potentially contaminated sites in European countries, most of which need to be urgently remediated [14]. At present, there are about 38000 potentially contaminated sites in China [15]. According to relevant reports, there are more than 200,000 contaminated sites in China, of which 320 are ranked in seriously polluted, covering 5.48 million hectares [16]. Based on the search results of Web of Science, large quantities of studies on contaminated sites have been conducted globally. The investigation results of about 2500 sites in 75 counties from China indicated that there are more
Gao C.-H., Fu R.-B.

than 500 industries, which have produced or used 20644 kinds of chemicals and 1012 kinds of pollutants [17]. As shown in Fig. 2, 2483 research and review papers were published during 1968-2022. Among them, the number of research papers were 181 about heavy metal contaminated sites, indicating that heavy metal contaminated soils are the most common research hotspots in environmental science. Heavy metals generally refer to metals and metalloids with a density greater than 5 g/cm, such as As, Hg, Zn, Cu, and Ni. Heavy metals are the most important inorganic pollutants in contaminated sites, accounting for about 34.8% of the soil pollution [18]. More than 5 million sites worldwide are reported to have heavy metal pollution in soils [19].

Although the studies on heavy metal pollution in contaminated sites have increased rapidly in the past decades, there is still a lack of the pollution investigation and assessment on the heavy metal concentrations in contaminated sites. Non-ferrous metal mining and smelting, electronic dismantling, electroplating, tanning, as well as other industrial production activities are the main sources of metal pollution. For example, about 9.03 million tons of Zn were released into the environment, due to mining and smelting activities in China in 2018 [20]. Approximately 1.29×10^3 tons of Cr are released into the environment globally each year, most of which accumulate in soils, resulting in serious soil chromium contamination [21]. Hence, Table 2 summarized the contamination level of heavy metals in soils from different types of contaminated sites. The results showed that heavy metals such as Pb, Cd, As, Zn, Cr, Mn, Co, Hg and Ni were significantly enriched in soils, which were higher than their corresponding risk screening values of soil environmental quality standard in China (GB 15618-2018). To date, due to strict laws and regulations, some factories, companies or enterprises with pollutant emission have been recently closed or relocated, and thus resulted in many abandoned contaminated sites, most of which are difficult to be redeveloped and reused. It is worth noting that industrial contaminated sites not only cause the serious pollution of soil, groundwater and surface water, but also directly endanger public health. In recent years, there have been lots of safety incidents caused by contaminated sites with heavy metals [22-23]. For example, a serious pollution incident occurred in a high school campus in Changzhou, China in September 2015. The school is located opposite a chemical plant. About 500 students were found to suffer from dermatitis, abnormal blood indicators and other diseases that drew widespread concern in society [24-25]. Therefore, soil remediation with heavy metals has been a hot topic at the global environmental engineering community. In the United States, more than 1,000 mercury-contaminated sites have been taken account into the national priority remediation lists [26], and more than 1,300 contaminated sites have been added to the national priorities list by superfund. According to the action plan for the prevention and control of soil pollution of China, the safe utilization rates of contaminated land in China will reach more than 90% by 2020 and 95% by 2030, respectively [27]. In addition, local governments have a strong demand for the remediation and redevelopment of contaminated sites in order to sell land to increase fiscal revenue. Therefore, China is one of the fastest growing markets for soil remediation of contaminated sites worldwide. However, site remediation is very expensive, amounting for several percent of the country's GDP per year. In recent years, it has invested lots of money into soil remediation to promote social and economic development. For example, in May 2015 alone, Chinese government provided 2.8 billion yuan for the prevention and control of soil heavy metal pollution in 30 key areas [28]. In addition, the costs used for management and remediation of contaminated sites were EUR 6.53 billion per year in European countries [29].
Table 2. The pollution levels of heavy metals in contaminated soils.

<table>
<thead>
<tr>
<th>Smelters</th>
<th>Location</th>
<th>Heavy metal concentrations</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mineral smelters distributed on the edge of the main urban areas of Daye</td>
<td>Hubei province, China</td>
<td>Cd (1.14 mg/kg), Co (14.7 mg/kg), Cr (35.5 mg/kg), Cu (176 mg/kg), Mn (672 mg/kg), Ni (28.1 mg/kg), Pb (103 mg/kg), Zn (257 mg/kg)</td>
<td>[71]</td>
</tr>
<tr>
<td>Daye Cu smelter</td>
<td>Hubei province, China</td>
<td>Cu (664 mg/kg), Ni (90.6 mg/kg), Pb (4501 mg/kg), Cd (186 mg/kg), As (480 mg/kg)</td>
<td>[72]</td>
</tr>
<tr>
<td>Zhuzhou Zn smelter</td>
<td>Hunan province, China</td>
<td>Cu (945 mg/kg), Ni (186 mg/kg), Pb (2523 mg/kg), Cd (557 mg/kg), As (240 mg/kg)</td>
<td>[72]</td>
</tr>
<tr>
<td>Smelting-contaminated soils</td>
<td>Hunan province, China</td>
<td>Pb (2052 mg/kg), Mn (652 mg/kg)</td>
<td>[73]</td>
</tr>
<tr>
<td>Smelting-contaminated soils</td>
<td>Yunnan province, China</td>
<td>Pb (1118 mg/kg), Mn (687 mg/kg)</td>
<td>[73]</td>
</tr>
<tr>
<td>Três Marias smelting plant</td>
<td>Minas Gerais State, Brazil</td>
<td>Cd (612 mg/kg), Cu (1054 mg/kg), Pb (4729 mg/kg), Zn (32827 mg/kg)</td>
<td>[74]</td>
</tr>
<tr>
<td>Pb smelter</td>
<td>England, The UK</td>
<td>Pb (1450106000 mg/kg), Zn (384080 mg/kg), Cd (9200~44700 mg/kg)</td>
<td>[75]</td>
</tr>
<tr>
<td>Pb smelter</td>
<td>Australia</td>
<td>Pb (1506~7796 mg/kg)</td>
<td>[76]</td>
</tr>
<tr>
<td>Lead contamination of the smelting district</td>
<td>Mitrovica, Kosovo</td>
<td>Pb (1.25×10² mg/kg)</td>
<td>[77]</td>
</tr>
<tr>
<td>a former non-ferrous metal refinery plant</td>
<td>Chungchungnamdo, Korea</td>
<td>As (61.2 mg/kg)</td>
<td>[78]</td>
</tr>
<tr>
<td>Non–ferrous metals mining in Baiyin district</td>
<td>Gansu province, China</td>
<td>As (11802070 mg/kg), Cd (55.174.7 mg/kg), Cu (49207090 mg/kg), Pb (33404820 mg/kg), Zn (2450~3480 mg/kg)</td>
<td>[79]</td>
</tr>
<tr>
<td>Leiyang mining area</td>
<td>Hunan province, China</td>
<td>Cd (15.0 mg/kg), Cu (97.0 mg/kg)</td>
<td>[80]</td>
</tr>
<tr>
<td>A typical Pb/Zn mine</td>
<td>Guizhou Province, China</td>
<td>Pb (1.70×10³ mg/kg), Zn (913 mg/kg), Mn (2.51×10¹ mg/kg), Cu (343 mg/kg), Cd (2.45 mg/kg), As (127 mg/kg)</td>
<td>[81]</td>
</tr>
<tr>
<td>Tongling Shizishan Copper mining area</td>
<td>Anhui Province, China</td>
<td>Cu (219 mg/kg), Zn (673 mg/kg), Pb (324 mg/kg), Cd (6.67 mg/kg), Ni (39.6 mg/kg)</td>
<td>[82]</td>
</tr>
<tr>
<td>Non–ferrous metal mining areas</td>
<td>Inner Mongolia, China</td>
<td>Cr (37.2 mg/kg), Ni (29.3 mg/kg), Cu (37.2 mg/kg), Zn (565 mg/kg), As (84.2 mg/kg), Cd (1.30 mg/kg), Pb (56.1 mg/kg)</td>
<td>[83]</td>
</tr>
<tr>
<td>Lanping and Huize Pb/Zn mining district</td>
<td>Yunnan Province, China</td>
<td>Pb (1.51×10⁴ mg/kg), Zn (1.32×10⁴ mg/kg), Cd (19.5 mg/kg)</td>
<td>[84]</td>
</tr>
<tr>
<td>Duobaoshan copper mine</td>
<td>Heilongjiang Province, China</td>
<td>As (12.1 mg/kg), Cd (0.110 mg/kg), Cr (73.7 mg/kg), Cu (53.3 mg/kg), Hg (0.0450 mg/kg), Pb (22.2 mg/kg), Zn (74.6 mg/kg), Mo (1.59 mg/kg), Mn (962 mg/kg)</td>
<td>[85]</td>
</tr>
<tr>
<td>Tongshan copper mine</td>
<td>Heilongjiang Province, China</td>
<td>As (12.8 mg/kg), Cd (0.130 mg/kg), Cr (62.5 mg/kg), Cu (29.1 mg/kg), Hg (0.0470 mg/kg), Pb (26.9 mg/kg), Zn (90.4 mg/kg), Se (0.169 mg/kg), Mo (1.27 mg/kg), Mn (1.24×10⁴ mg/kg)</td>
<td>[85]</td>
</tr>
<tr>
<td>A typical Pb/Zn mining area</td>
<td>Jiangxi Province, China</td>
<td>Pb (2028 mg/kg), Zn (3794 mg/kg), Cd (14.8 mg/kg)</td>
<td>[86]</td>
</tr>
<tr>
<td>Derbyshire Pb mining area</td>
<td>England, The UK</td>
<td>Pb (464061720 mg/kg), Zn (3173310 mg/kg), Cd (6.4~48.1 mg/kg)</td>
<td>[75]</td>
</tr>
<tr>
<td>The abandoned Lasail copper mining area</td>
<td>Oman</td>
<td>Zn (69896 mg/kg), Cu (17468196 mg/kg), As (16~22 mg/kg)</td>
<td>[87]</td>
</tr>
<tr>
<td>E-waste contaminated soils</td>
<td>Guangdong Province, China</td>
<td>Cr (27.9 mg/kg), Ni (13.1 mg/kg), Cu (33.8 mg/kg), Zn (141 mg/kg), As (20.6 mg/kg), Cd (0.500 mg/kg), Pb (34.4 mg/kg)</td>
<td>[88]</td>
</tr>
</tbody>
</table>
Table 2. Continued.

<table>
<thead>
<tr>
<th>Guizhou e-waste recycling areas</th>
<th>Location</th>
<th>Heavy metal concentrations</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qingyuan electronic waste dismantling site</td>
<td>Guangdong Province, China</td>
<td>Cr (3.32–54.6 mg/kg), Cd (0.140–115 mg/kg), Cr (20.5–712 mg/kg), Cu (34.3–29730 mg/kg), Hg (0.01–8 mg/kg), Mn (63–2613 mg/kg), Ni (3.24–1169 mg/kg), Pb (34.8–71655 mg/kg), Sb (3.81–2298 mg/kg)</td>
<td>[89]</td>
</tr>
<tr>
<td>Wenling electronic waste dismantling and scrap plant</td>
<td>Zhejiang Province, China</td>
<td>Cd (3.8–8.8 mg/kg), Cu (406–1450 mg/kg), Ni (42.4–155 mg/kg), Pb (47.4–252 mg/kg), Zn (68.9–1230 mg/kg)</td>
<td>[90]</td>
</tr>
<tr>
<td>Ziya electronic waste plant</td>
<td>Tianjin, China</td>
<td>Cd (0.62 mg/kg), Hg (0.29 mg/kg), As (0.68 mg/kg), Cu (135 mg/kg), Pb (48.5 mg/kg), Cr (112 mg/kg), Zn (222 mg/kg), Ni (50 mg/kg)</td>
<td>[91]</td>
</tr>
<tr>
<td>An e–waste dumpsite</td>
<td>Lagos State, Nigeria</td>
<td>Cu (8650 mg/kg), Pb (6800 mg/kg), Zn (1960 mg/kg)</td>
<td>[92]</td>
</tr>
<tr>
<td>Informal e–waste recycling hubs</td>
<td>Delhi, India</td>
<td>Pb (1570–2628 mg/kg), Al (81246–9864 mg/kg), Cu (3847–4109 mg/kg), Zn (354–676 mg/kg), Cd (2.41–3.36 mg/kg)</td>
<td>[93]</td>
</tr>
<tr>
<td>Informal e–waste recycling sites</td>
<td>Douala, Cameroon</td>
<td>Cr (2.42 mg/kg), Co (4.41 mg/kg), Cd (5.09 mg/kg), As (6.25 mg/kg), Ni (9.45 mg/kg), Hg (11.3 mg/kg), Zn (46.3 mg/kg), Pb (246 mg/kg), Cu (570 mg/kg)</td>
<td>[94]</td>
</tr>
<tr>
<td>An e–waste separating household area</td>
<td>Buriram province, Thailand</td>
<td>As (<0.012–1.38 mg/kg), Pb (0.110–15.3 mg/kg), Cd (<0.014–0.284 mg/kg), Cu (1.18–380 mg/kg)</td>
<td>[95]</td>
</tr>
<tr>
<td>Bui village e–waste recycling</td>
<td>Vietnam</td>
<td>Pb (460 mg/kg), Cd (8.22 mg/kg), Cr (57.5 mg/kg), Ni (93.6 mg/kg), As (8.70 mg/kg)</td>
<td>[96]</td>
</tr>
<tr>
<td>Electroplating contaminated soils</td>
<td>Location</td>
<td>Heavy metal concentrations</td>
<td>Ref.</td>
</tr>
<tr>
<td>An electroplating plant</td>
<td>Jiangsu Province, China</td>
<td>As (9.88 mg/kg), Hg (0.590 mg/kg), Cd (0.20 mg/kg), Pb (155 mg/kg), Cr (1324 mg/kg), Cu (615 mg/kg), Ni (324 mg/kg), Zn (436 mg/kg)</td>
<td>[97]</td>
</tr>
<tr>
<td>A contaminated site in an electroplating city</td>
<td>Guangdong province, China</td>
<td>Cr (4.7–2580 mg/kg), Cd (0.01–5.11 mg/kg), Pb (7.3–154 mg/kg), Cu (8.4–7240 mg/kg), Zn (8.5–30100 mg/kg), Ni (2.9–2790 mg/kg)</td>
<td>[98]</td>
</tr>
<tr>
<td>An electroplating plant</td>
<td>Guangdong province, China</td>
<td>Cu (78 mg/kg), Cr (VI) (61 mg/kg), Ni (146 mg/kg), Zn (38.6 mg/kg), Pb (58.1 mg/kg), Cd (0.14 mg/kg), As (3.57 mg/kg), Hg (0.064 mg/kg)</td>
<td>[99]</td>
</tr>
<tr>
<td>An electroplating plant</td>
<td>Beijing, China</td>
<td>Cu (77.6 mg/kg), Cr (15160.8 mg/kg), Cr (VI) (9441.6 mg/kg), Ni (51.6 mg/kg), Zn (1420 mg/kg), Pb (23.3 mg/kg)</td>
<td>[100]</td>
</tr>
<tr>
<td>A chrome plating site</td>
<td>Hebei province, China</td>
<td>Cr (948 mg/kg), Cr (VI) (139 mg/kg)</td>
<td>[101]</td>
</tr>
<tr>
<td>An abandoned plating site</td>
<td>Jiangsu Province, China</td>
<td>Zn (3849 mg/kg), Cr (9538 mg/kg), Cr (VI) (2175 mg/kg), Pb (68.7 mg/kg)</td>
<td>[102]</td>
</tr>
<tr>
<td>Relocation site of a typical electroplating plant</td>
<td>Guangdong province, China</td>
<td>Pb (117 mg/kg), Cd (0.7 mg/kg), Cr (178 mg/kg), Ni (278 mg/kg), As (21.3 mg/kg), Cu (984 mg/kg), Zn (136 mg/kg), Hg (0.1 mg/kg)</td>
<td>[103]</td>
</tr>
<tr>
<td>Tannery contaminated soils</td>
<td>Location</td>
<td>Heavy metal concentrations</td>
<td>Ref.</td>
</tr>
<tr>
<td>The former tannery campus of Hazaribagh</td>
<td>Zhejiang Province, China</td>
<td>Ni (69.1 mg/kg), Co (41.6 mg/kg), Cr (27200 mg/kg), Cr (VI) (51.5 mg/kg), Ti (3885 mg/kg), Mn (830 mg/kg), Ba (572 mg/kg)</td>
<td>[104]</td>
</tr>
<tr>
<td>The former tannery area</td>
<td>Dhaka, Bangladesh</td>
<td>Pb (54 mg/kg), Cr (4321 mg/kg), Zn (287 mg/kg), Cu (131 mg/kg), Ni (9 mg/kg)</td>
<td>[105]</td>
</tr>
<tr>
<td>Illegal disposal of tannery waste site</td>
<td>Campania, Italy</td>
<td>Cr (151–1705 mg/kg), Zn (166–609 mg/kg)</td>
<td>[106]</td>
</tr>
<tr>
<td>A tannery soil</td>
<td>India</td>
<td>Cr (28400 mg/kg), Pb (49.6 mg/kg), Cd (24.3 mg/kg), Ni (44.6 mg/kg)</td>
<td>[107]</td>
</tr>
<tr>
<td>The largest inhabiting tanneries area</td>
<td>Punjab Province, Pakistan</td>
<td>Cr (779 mg/kg)</td>
<td>[108]</td>
</tr>
<tr>
<td>Kombolcha tannery surrounding soil</td>
<td>Ethiopia</td>
<td>Cr (22.6 mg/kg), Cr (VI) (0.017 mg/kg)</td>
<td>[109]</td>
</tr>
</tbody>
</table>
The publication number of papers on soil washing/flushing is shown in Fig. 3. From the Web of Science database, it has been found that the publication number on soil washing/flushing increased rapidly from 1975 to 2022, especially from 2010 to 2022, with a cumulative total of 526 publications. Moreover, China has the highest publications number on soil washing/flushing with 357 papers, which plays an important role in this domain, followed by the United States, Korea and Italy. As shown in Fig. 3, soil washing involves soil excavation, screening of oversized soil particles, and then mixing with the washing solution to desorb heavy metal contaminants from soil particles. In some cases, the eluent forms soluble complexes with the contaminants, causing the minerals containing the contaminants to dissolve or facilitating the desorption of the contaminants through competitive adsorption. Redox reactions may also occur during the washing process, causing changes in the valence states of metal ions, thereby affecting their bioavailability and toxicity [30]. In addition, multi-stage washing is adopted until the concentration of heavy metal contaminants is within the acceptable concentration range. In the final step, the waste solution needs to be reasonably treated and then recovered for their reuse in soil washing.

In the past years, many chemical agents, including inorganic salts, dilute acids and bases, organic acids, surfactants, and chelating agents, have been used to remove heavy metals from contaminated soils. Soil flushing generally is used in connection with in situ remediation. Typical soil flushing solutions include water and other solutions. By surface flooding or subface injection at contaminated sites, the contaminants are displaced or transferred to the flushing solution [31]. The remediation effects of soil washing/flushing are mainly influenced by soil properties (hydraulic permeability, particle size distribution and organic matter content, etc.), the occurrence states of heavy metal pollutants, the types of washing agent, as well as washing conditions. Among these factors, different washing agents have their distinct characteristics and remediation mechanisms. Therefore, how to choose an appropriate washing agent is a the most key factor influencing the performance of soil washing.

Common washing agents include surfactants, inorganic agents (acids, bases, salts), chelating agents (artificial chelating agents, natural chelating agents), etc. Compared with the washing agents that do damage to soil structure, and are also toxic to plants and animals, low molecular weight organic acids (LMWOAs) are classified as biodegradable chelating agents, such as citric acid, tartaric acid, oxalic acid,
malic acid, acetic acid, propanedioic acid, fulvic acid, humic acid, hamaleic acid, lactic acid, methanesulfonic acid, salicylic acid, aspartic acid, ascorbic acid, etc. LMWOAs are able to be extracted from industrial and agricultural solid waste with additional economy benefits [32]. As a green and efficient soil remediation agent, LMWOAs play a vital role in reducing the absorption of heavy metals by plants, and can also mitigate the pollution risks from heavy metals entering the biological chain. Therefore, LMWOAs have been widely utilized in soil washing [33].

Different Types of Low Molecular Organic Acids and Their Application Effects

LMWOAs can be classified into the types of carboxyl, ammonium, sulfhydryl, according to the functional groups. It is proved that the LMWOAs with carboxylic groups can not only promote metal ion desorption by providing protons and increasing the net positive charge of soil mineral surface, but also enhance the mobility of heavy metal ions through solubilization, complexation, redox and competition for adsorption sites [34]. Besides that, LMWOAs with ammonium groups are able to form complexes with almost all metal ions [35]. Hoffmann et al. [36] demonstrates that sulfhydryl group is an important thiol intermediate in organic sulfur metabolism in soils, and that the functional group enables heavy metals with high valence to be reduced, controlling the migration and transformation of heavy metals in soils. For example, the influence of the different functional groups on the release of As followed the order of sulfhydryl > ammonium > carboxyl, according to a previous study by Xu et al. [37]. This may be related to the fact that sulfhydryl groups are more reductive for As in the forms of oxides/iron oxides in soils. Furthermore, the number of functional groups also has a profound effect on soil washing. Generally, the removal efficiency of heavy metals from soils follows the decreasing orders of ternary carboxylic acid > dicarboxylic acid > monocarboxylic acid. The more functional groups and the larger molecular weight of the LMWOAs have, the more charge they may carry, and the stronger competitive adsorption and complexation they also show [38]. It was reported that the desorption process is a heterogeneous diffusion–reaction associated with the size of reaction interface [39]. Therefore, the number of functional groups from LMWOAs may also influence the release kinetics of metal desorption. The recent case studies of LMWOAs on heavy metal removal from soils are shown in Table 3.

The Main Factors Affecting the Washing Effects of LMWOAs

The concentrations of washing agents: When using the same types of LMWOAs, the removal rates of

<table>
<thead>
<tr>
<th>LMWOAs</th>
<th>Soil types</th>
<th>Heavy metals</th>
<th>Washing condition</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid</td>
<td>Contaminated soil from Pb/Zn mine</td>
<td>Cd, Pb and Zn</td>
<td>pH = 4.0, solid-liquid ratio of 1:10, and a washing time of 120 min, citric acid (0.2 M)</td>
<td>The removal efficiency of heavy metals in two soils were about 30~40%</td>
<td>[112]</td>
</tr>
<tr>
<td></td>
<td>Suzhou National Hi-Tech District (SND)</td>
<td>Zn and Cu</td>
<td>pH = 6.58, solid-liquid ratio of 1:8; reaction less than 2 hours, citric acid (0.8 M)</td>
<td>The removal rate of Zn (II) and Cu (II) were more than 90%</td>
<td>[113]</td>
</tr>
<tr>
<td></td>
<td>Soil on impact berm at military firing range</td>
<td>Pb</td>
<td>pH 5.65, at 3% soil slurry density, in a single batch for 4 h, citric acid (0.5 M)</td>
<td>The removal efficiency of Pb achieved 90.3%</td>
<td>[114]</td>
</tr>
<tr>
<td></td>
<td>Agricultural soil near an old recycling lead smelter in Vietnam</td>
<td>Pb, Cu and Zn</td>
<td>pH = 3.5, solid-liquid ratio of 1:20, reaction 24 hours, citric acid (0.2 M)</td>
<td>The removal efficiencies of Pb and Zn were about 60%</td>
<td>[115]</td>
</tr>
<tr>
<td></td>
<td>Agricultural soil in Dabaoshan District, Shaoquan City, Guangdong Province</td>
<td>Cu and Pb</td>
<td>pH = 4.51, solid-liquid ratio of 1:20, and contact time 360 min, 4:1 volume ratio (PFA: CIT = 4:1) of potassium fulvate (PFA, 3.2%) and citric acid (CIT, 0.16 M)</td>
<td>The removal efficiencies of Cu and Pb were 42.3% and 50.5%, respectively</td>
<td>[116]</td>
</tr>
<tr>
<td>Methanesulfonic acid</td>
<td>Devon Great Consols (DGC) Cu/As tailings</td>
<td>As, Cu</td>
<td>pH = 3.33, solid-liquid ratio of 1:10, shaking for 24 hours, Methanesulfonic acid (1 M)</td>
<td>The removal rates of As and Cu were 56% and 29%, respectively</td>
<td>[117]</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>Qingdao Hongxing Chemical Plant Chrome-containing Slag Dump</td>
<td>Cr</td>
<td>pH >7.7, solid-liquid ratio of 1:4, Oxalic acid (0.5M)</td>
<td>The most cumulative leaching amounts of Cr was 2304 mg/kg</td>
<td>[118]</td>
</tr>
</tbody>
</table>
heavy metals increase at the initial stage followed by a slow decrease. This phenomenon may be related to the adsorption and desorption equilibrium between washing agents and heavy metals. It was demonstrated that the Cr released by citric acid increased from 107 to 147 mg/kg, while Cr released by malic acid ranged from 101 to 126 mg/kg, when the organic acid concentrations in the desorption solution increased from 5 to 20 mmol/L [38]. Xiao et al. observed a significant increase in the release of metal ion with the addition of LWMOAs in the range of 10 to 60 mmol/L [40]. It is proposed that the amount of washing agents contacting with per unit mass of contaminated soils increased in the initial stage, which provides more binding sites and promotes the formation of metal complexes [40]. In the later stage, although the concentration of washing agents is higher, heavy metals are predominantly adsorbed specifically in soils and less mobile, and thus their desorption rates are slower and less likely to be desorbed. For example, it was shown that the washing efficiency of As decreased, when oxalic acid concentrations were greater than 80 mg/L, which may be due to the formation of precipitates by oxalic acid at the higher concentration [41].

The pH of washing agents: The solubility of heavy metal contaminants is influenced by pH (Fig. 5). Significant high and low pH of washing solution tend to promote the mobility of heavy metals in soils. The lower solution pH is, more protons (H\(^+\)) it will contain. Low solution pH also means more competitive adsorption with heavy metal ions, which promotes the desorption of metal ions from soil particles. Moreover, low washing solution pH also enhances the solubility of metal hosting minerals in soils, resulting in the release of heavy metals from mineral lattices and increasing the mobility of heavy metal pollutants [42]. Higher solution pH can lead to metal sulfides being easily oxidized in the presence of dissolved oxygen, and thus heavy metals are more easily released from soils. When solution pH increases, the functional groups of LMWOAs carry more negative charges and obtain the stronger ability to chelate heavy metals, thus promoting the migration of metal ions from soils [43]. However, it should be considered that with the increase in solution pH, the amount of OH\(^-\) increases, which can promote precipitating with metal ions. In addition, metal ions are more easily adsorbed on clay minerals at high solution pH, which reduces their mobility in soils [44].
Fig. 4. Schematic diagram of soil washing process and principal mechanism.

Fig. 5. Effect of pH on leaching, formation and migration of heavy metals (Compiled from literature [44]).
For example, it was found that when the pH value of EDTA–tartaric acid system increased from 3.0 to 7.0, the removal efficiency of Zn decreased from 82.1% to 69.5%, since appropriate pH value was conducive to the dissolution and further complexation removal of heavy metals, especially at low pH values [38]. Similarly, it was shown that the extraction of As, Pb, Fe and Mn increased with decreasing solution pH, reaching 70% at pH = 0.63 and only 1.6% at pH = 9.8 [45]. Therefore, it is necessary to master the leaching characteristics of different heavy metals under different pH conditions to determine the optimal pH of washing solution.

Solid-liquid ratio: The solid-liquid ratio has a significant effect on the contact areas and mass transfer process between the washing agents and heavy metals. The smaller the solid/liquid ratio is, the shorter the mass transfer time is and meanwhile the larger the desorption amounts of metal ions will be. The general solid–liquid ratio is between 1:3 and 1:20. When the fine soil fractions are at high percentage, it is suggested that lower solid–liquid ratio could promote the mixing of soils and washing agents and increase washing efficiency. The higher solid–liquid ratio is not conducive to agitation, while the lower ratio increases the consumption of washing agents, and the treatment costs of wastewater [46]. For example, Cheng et al. [47] found that the removal efficiency of Ni increased from 66.1% to 82.1%, when the solid-liquid ratio of citric acid-EDTA agent ranged from 1:5 to 1:10. However, when the solid-liquid ratio decreased from 1:10 to 1:20, the removal efficiency of Ni did not change significantly [47]. Similarly, Tan et al. [48] reported that the optimal solid–liquid ratio was 1:10, and the removal rate of Cr(VI) by citric acid was 73.5%, taking the treatment cost and washing effect into account [48]. Generally, the optimal solid-liquid ratio is set according to the results of feasibility experiments and pilot scale tests to achieve the balance between cost and efficiency.

Washing time: The effects of washing time is also related to the release kinetics of metal ion from soils. At the initial stage, the weakly bound metals in soils desorbed quickly, the acid solubilization of H+ increases the release of non-targeted elements such as Ca, Fe Mg, K and Na with time, which consumes some of the reactive sites of the chelator and decrease the chances of them contacting with heavy metals. Meanwhile, chelating agents will be gradually adsorbed on soil particles, thus reducing their removal efficiency [49]. For example, Qin et al [50] found that when acetic, malic or citric acid was used for soil washing, the desorption amount of Cu, Cd and Pb from soils for 10 weeks were only 51.7%-87.6% of that in the first two days. Similarly, it was shown that the removal rates of Cu, Ni and Zn by EDTA-tartaric acid increased, as reaction time increased from 0 to 360 min, and their removal rates then tended to be stable, due to the slow release of strongly bound metal ions in soil particle [47]. The washing time of inorganic reagents is shorter than that of organic reagents. The washing time usually ranges from 20 to 120 min. It has been shown that the extension in the washing time is beneficial to the removal of heavy metal pollutants, but will increase the treatment cost. Consequently, the pilot and field scales experiments need to be conducted determine the optimal washing time.

The occurrence forms of metal contaminants: Chemical extraction methods and instrumental characterization are often used for the studies on the geochemical behavior of metal contaminants. For instance, heavy metals in soils can be divided into four chemical fractions, according to the optimized BCR extraction method: acid extractable, exchangeable fraction, easily reducible, oxidizable and residual fractions. Among them, acid extractable and reducible fraction are considered to be unstable, because of their higher bioavailability and detriment to the environment. Previous studies have indicated that different chemical extraction methods differ in the classification of heavy metal fractions. Moreover, there are some problems in determining the chemical partitioning of heavy metals in soils. A typical example is that BCR methods can to a certain extent show errors in the exchangeable metal fraction. Meanwhile, BCR methods are not suitable to determine the fractionation classification of heavy metals in calcareous soils [51]. Thus, the uncertainty of chemical extraction methods will interfere with the determination of the actual chemical metal fractions. Fortunately, with the development of spectroscopic techniques, it has been possible to physically analyze the occurrence forms of heavy metals in soils from more microscopic perspective. For example, X-ray diffraction (XRD) can identify the main mineralogical composition in soil samples. However, XRD is not applicable for the identification mineral phase with poor crystallization in soils. As a new generation technique, X-ray absorption fine structure (XAFS) and X-ray absorption spectroscopy (XAS) can be used to study both crystalline and non-crystalline mineral phase [52]. Moreover, X-ray photoelectron spectroscopy (XPS) can also be used to characterize the changes in the valences and proportions of metal species in soils [53]. Additionally, Fourier transform infrared spectroscopy (FTIR) method is useful to compare soil mineralogy in specific areas [54]. However, there have been overlapped peaks in conventional FTIR. Two-dimensional correlation spectroscopy can resolve the overlapped peak by extending spectra along the second dimension and provide information about the relative directions and sequential orders of structural variations. Therefore, two-dimensional FTIR technique can be applied for further investigation of the interactions between heavy metals and the main components of dissolved organic materials [55].

In general, the unstable metal fractions are higher in smelter contaminated sites than that in the mine sites. In addition, there are significant differences in the geochemical fractions of different heavy metals in soils from different types of contaminated sites, which
are mainly related to their hosting mineral phases in soils. For example, fayalite, lead oxide, apatite, galena and wollastonite were identified as the dominant As, Cd, Pb and Zn bearing minerals in a typical Pb/Zn smelter contaminated soils [56]. Additionally, As is closely related to Fe (hydro) oxides and Fe bearing oxides, such as scorodite (Fe(AsO$_4$)$_2$H$_2$O, containing 34.6% Fe oxides and 49.8% arsenic pentoxide), and the non-specific/specific adsorbed As were present in goethite [57].

The desorption capacity of heavy metals by washing agents is closely related to their occurrence states in soils. A previous study by Yang et al. [58] showed that when 87% of Cd in soils was mainly present in the exchangeable and reducible fractions, citric acid reduced the exchangeable and reducible fractions of Cd by 78% and 55%, respectively. Similarly, Adamo et al. [59] found that the removal efficiency of Zn was lower than that of Cd, which was mainly due to the fact that Cd was mainly presented in the extractable fraction, while Zn mainly existed in the residual fraction. In addition, Xu et al. [60] showed that the existence of LMWOAs can transform residual As and Fe oxides bound As into adsorbable As in soils, i.e., the conversion of heavy metals from the stable fractions to the unstable fractions leads to their higher mobility.

Conclusions

Various anthropogenic activities not only have caused lots of abandoned contaminated sites, but also caused serious heavy metal pollution in soils, which poses the potential threat to the residents nearby. Among the remediation techniques, soil washing has been proved to be one of the best remediation techniques for heavy metals in contaminated soils. The selection of green, cheap and efficient chemical agents is an important factor to be considered in their application in soil washing. There may be some possible limitations in this study, and it is recommended to focus on the following aspects:

(i) Due to the complexity of the site characteristics and pollutant properties, as well as the treatment efficiency of single soil remediation technology, it is time to make full use of their respective advantages to combine different technologies and maximize the remediation efficiency. For example, more attention has been paid to the development of soil washing enhancement technologies, such as ultrasonic, microwave, photocatalytic and other physical enhancement, chemical redox enhancement and electrochemical enhancement.

(ii) From the aspect of managerial insights, the modern analytical instrumentation with high precision should be sued to determine the hosting mineral phases of the major heavy metal pollutants in soils. Meanwhile, it is useful for soil washing to identify their occurrence forms by a suitable chemical sequential extraction method. The effects of washing agents on the structure of different types of minerals need to be further studies.

(iii) The appropriate chemical agents and conditions of soil washing are reasonably chosen to reduce the amounts of waste solution. Meanwhile, studies on the washing process that can recycle the washing agents need to be carried out to reduce the remediation costs.

(iv) LWMOAs monomers generally show the lower remediation effects than artificial chelating agents (e.g., EDTA), which limit their wide application in practical remediation scenarios. It is suggested that LWMOAs polymers contain more functional groups that can react with heavy metal ions, which have wide application prospects. For example, polyacrylic acid, itaconic acid–acrylic acid copolymer, caboxyethylthiosuccinic acid, maleic acid–acrylic acid copolymer and epoxy polysuccinic acid have been proved to be able to significantly enhance the removal efficiency of heavy metals from soils.

Acknowledgments

This research was supported by the Science and Technology Commission of Shanghai Municipality, China (20dz1204502) and National Key Research and Development Program of China (2019YFC1805205).

Conflict of Interest

The authors declare no conflict of interest.

References

5. XU D.M., FU R.B., LIU H.Q., GUO X.P. Current knowledge from heavy metal pollution in Chinese smelter

of Environmental Chemical Engineering, 10 (2), 107141, 2022.

32. DERMENTZI G., BERGERON M., MERCIER G., RICHÉR-
LAFLÈCHE M. Soil washing for metal removal: A review of
physical/chemical technologies and field applications.

33. ANTONIADIS V., LEVIZOU E., SHAHEEN S.M.,
OK Y.S., SEBASTIAN A., BAUM C., PRASAD M.,
WENZEL W., RINKLEBE J. Trace elements in the soil
plant interface: Phytoavailability, translocation, and
phytoremediation – A review. Earth-Science Reviews, 171,

34. DEBELA F., AROCENA J.M., THRING R.W.,
WHITCOMBE, T. Organic acids inhibit the formation of
pyromorphite and Zn-phosphate in phosphorous amended
Pb- and Zn-contaminated soil. Journal of Environmental

35. WANG S.L., MULLIGAN C.N. Effects of three low-
molecular-weight organic acids (LMWOAs) and pH on
the mobilization of arsenic and heavy metals (Cu, Pb, and Zn)
from mine tailings. Environ Geochem Health, 35 (1), 111,
2013.

36. HOFFMANN M., MIKUTTA C., KREITZSCHMAR R.
Bisulfide Reaction with Natural Organic Matter Enhances
Arsenite Sorption: Insights from X-ray Absorption
Spectroscopy. Environmental Science & Technology, 46
(21), 11788, 2012.

Enhanced mobilization of arsenic from tailing soil by four
types of low molecular weight organic acids with different
functional groups. Journal of Soils and Sediments, 21 (12),
3834, 2021.

38. CHEN H.X., DOU J.F., XU H.B. The effect of low-
molecular-weight organic-acids (LMWOAs) on
treatment of chromium-contaminated soils by compost-
phytoremediation: Kinetics of the chromium release and
fractionation. Journal of Environmental Sciences, 70, 45,
2012.

39. AHARONI C., LEVINSON S., RAVINA I., SPARKS
D.L. Kinetics of Soil Chemical Reactions: Relationships
between Empirical Equations and Diffusion Models. Soil

40. XIAO R., ALI A., WANG P., LI R.H., TIAN X.H., ZHANG
Z.Q. Comparison of the feasibility of different washing
solutions for combined soil washing and phytoremediation
for the detoxification of cadmium (Cd) and zinc (Zn) in

41. TINDANZOR E., GUO Z.H., LI T.S., XU R., XIAO X.Y.,
PENG C. Leaching and characterization studies of heavy
metals in contaminated soil using sequenced reagents of
oxalic acid, citric acid, and a copolymer of maleic and
acrylic acid instead of ethylenediaminetetraacetic acid.
Environmental Science and Pollution Research, 2022.

42. XU D.M., FU R.B., LIU H.Q., GUO X.P. Current
knowledge from heavy metal pollution in Chinese smelter
contaminated abandoned mine soils and fate of arsenic

43. ZHANG H., XU Y.X., KANYERERE T., WANG Y.S.,
SUN, M.H. Washing Reagents for Remediating Heavy-
Metal-Contaminated Soil: A Review. Frontiers In Earth
Science, 10, 901570, 2022.

44. CHENG S.L., LIN Q.T., WANG Y.P., LUO H.Y., HUANG
Z.F., FU H.Y., CHEN H.R., XIAO R.B. The removal of
Cu, Ni, and Zn in industrial soil by washing with EDTA-
organic acids. Arabian Journal of Chemistry, 13 (4), 5160,
2020.

45. TABELIN C.B., IGARASHI T., VILLACORTE-TABELIN
M., PARK L., OPIO E.M., ITO M., HIROYOSHI N.
Arsenic, selenium, boron, lead, cadmium, copper, and
zinc in naturally contaminated rocks: A review of their
sources, modes of enrichment, mechanisms of release, and
mobilization strategies. Science of The Total Environment,

46. FAZLE BARI A.S.M., LAMB D., MACFARLANE G.R.,
RAHMAN M.M. Soil washing of arsenic from mixed
contaminated abandoned mine soils and fate of arsenic

47. RENELLA G., LANDI L., NANNIPIERI P. Degradation
and eluent drainage system to remove Cd and Cu from

48. TAN S.L., XIN Y., LIU K., ZHANG E.Z., LI S.J., ZHAO
M., GAO H.F. Remediation of Cr (VI)-Contaminated
Soils by Washing with Low-Molecular-Weight Organic
Acids Based on the Distribution of Heavy Metal Species.

49. ONIRETI O.O., LIN C. Mobilization of soil-borne arsenic
by three common organic acids: Dosage and time effects.
Chemosphere, 147, 352, 2016.

50. QIN F., SHAN X.Q, WEI B. Effects of low-molecular-
weight organic acids and residence time on desorption
of Cu, Cd, and Pb from soils. Chemosphere, 57 (4), 253,
2004.

51. GABARRÓN M., ZORNOZA R., MARTÍNEZ-
MARTÍNEZ S., MUÑOZ V.A., FAZ A., ACOSTA J.A. Effect of land use and soil properties in the feasibility of
two sequential extraction procedures for metals

52. KELLY S., HESTERBERG D., JENKINS B. Analysis of
soils and minerals using X-ray absorption spectroscopy.
Methods of soil analysis part 5-mineralogical methods, 5,
387, 2008.

53. XU D.M., FU R.B. Mechanistic insight into the release
behavior of arsenic (As) based on its geochemical fractions in
the contaminated soils around lead/zinc (Pb/Zn) smelters.

54. SANCHEZ-SANCHEZ A., CERDAN M., JORDA
J.D., AMAT B., CORTINA J. Characterization of soil
mineralogy by FTIR: application to the analysis of
mineralogical changes in soils affected by vegetation

55. SUN F.S., POLIZZOTTO M.L., GUAN D.X., WU
J., SHEN Q.R., RAN W., WANG B.R., YU G.H.
Exploring the interactions and binding sites between
Cd and functional groups in soil using two-dimensional
correlation spectroscopy and synchrotron radiation based
spectromicroscopies. Journal of Hazardous Materials, 326,
18, 2017.

56. XU D.M., FU R.B., WANG J.X., AN B.H. The
geochemical behaviors of potentially toxic elements in
a typical lead/zinc (Pb/Zn) smelter contaminated soil with
quantitative mineralogical assessments. Journal of

57. KIM E.J., YOO J.C., BAEK K. Arsenic speciation and
bioaccessibility in arsenic-contaminated soils: Sequential
extraction and mineralogical investigation. Environmental
Pollution, 186, 29, 2014.

58. GAO C.-H., Fu R.-B. Feasibility of a combined solubilization
and eluent drainage system to remove Cd and Cu from
agricultural soil. Science of The Total Environment, 807,
150733, 2022.
The Removal of Heavy Metals by Low Molecular...

98. CHEN Z., ZHAO S., ZHOU J., JIANG X., PENG X., LEI G. Pollution characteristics and ecological risk assessment of heavy metals in contaminated site of a typical electroplating factory. Environmental Pollution & Control, 35 (10), 1-4+11, 2013 [In Chinese].

99. HOU W.J., GONG X., ZHAN Z.B., LIU F., HUANG Z.H., YANG L.H., LIN X.C. Heavy Metal Contamination and Migration in Correspondence of an Electroplating Site on the Hilly Lands of the Guangdong-Hong Kong-Macau Greater Bay Area, China. Huan jing ke xue= Huanjing kexue, 40 (12), 5604, 2019 [In Chinese].

