
Introduction

Drought is a major factor limiting plant growth and 
crop productivity [1], and is expected to increase by 
the end of the 21st century due to projected temperature 
rise [2]. Drought stress ranged from mild to severe can 
accelerate leaf senescence and induce osmotic stress 
[3], eventually lead to death. In fact, even short-term 

drought stress can lead to significant annual losses in 
crop yields and hinder sustainable agriculture [4].

Drought stress induces the production of reactive 
oxygen species (ROS) [5], which causes cellular 
oxidative damage [6]. Plants have evolved complex 
ROS scavenging mechanisms, including non-enzyme 
(such as ascorbic acid (ASC), glutathione (GSH) and 
flavonoids) and enzyme systems (superoxide dismutase 
(SOD), ascorbate peroxidase (APX), catalase (CAT),  
peroxidase (POD) and glutathione reductase (GR)) [7]. 
Specifically, the ascorbic acid-glutathione (AsA-GSH) 
cycle is considered to be the most critical participant 
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Abstract

The mitigation mechanism of endophytic fungus EF0801 on rice seedlings under PEG stress was 
examined in the present study. Rice seedlings were divided into endophyte infection (E+) group and 
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Pro, TASC, TGSH and GSH result in the decreases in the contents of hydrogen peroxide (H2O2), O2

– 
and MDA, and the increases in plant height and aboveground dry weight in E+ group. These results 
suggested that endophytic infection promoted ascorbic acid-glutathione cycle, thereby inhibiting 
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in the antioxidant metabolic system that scavenges 
abnormal ROS [8]. Proline (Pro) as protective agent 
plays a key role in protecting cell redox potential and 
scavenging free radicals under stress [9]. Drought 
resistance strategies include the use of plant biological 
stimuli or plant hormones to improve the adaptability 
of plants against environmental stress [10]. The 
effectiveness of these drought resistance methods can 
be examined from morphological and physiological 
characteristics, including the ability to maintain canopy, 
root growth and Pro accumulation [11].

In addition to using plant biological stimuli or plant 
hormones, beneficial microorganisms in the soil, such 
as mycorrhizal fungus and endophytes, are promising 
ways to promote plant growth under water deficit 
conditions [12, 13]. Endophytic fungal-plant symbiosis 
can increase water stress and salt stress tolerance 
[14-16]. Presently, there is still an active discussion 
regarding the function of endophytic fungus is suitable 
for sustainable resources as natural antioxidants [17-19].

Rice is one of the most important staple foods for 
more than half of the world’s population [20]. However, 
drought stress largely limits rice productivity [21]. 
Although plant drought tolerance has been profusely 
addressed in the literature, the application of endophytic 
fungus has rarely been attempted under PEG stress. 
The present study aimed to elucidate the mechanisms 
underlying increased tolerance to drought stress in rice 
conferred by endophyte EF0801 through regulating 
AsA-GSH cycle. It also provides new ideas and a basis 
for the study of plant drought resistance.

 
Materials and Methods

Cultivation and Treatment of Materials

Endophytic fungus EF0801 is congeneric to 
Sordariomycetes sp, with 99% similarity [16], was 
isolated from the leaves of Suaeda salsa in saline-alkali 
land in China, and its PEG tolerance was screened [13]. 
EF0801 was transferred into a sterilized conical flask 
containing 125 mL potato dextrose broth medium and 
cultured in a constant temperature oscillator at 24±1ºC 
and 125 rpm for 10 d. The fermentation broth was used 
to infect rice seedlings.

The rice seeds were sterilized in 1% sodium 
hypochlorite solution for 20 min, rinsed and 
germinated. Following transferring seeds (100 seeds) 
on a plastic beaker (700 mL) containing sterilized 
Hoagland nutrient solution and cultured in the artificial 
climate chamber (16 h/8 h light/dark, light intensity 
10000 lux, 28ºC/26ºC day/night, and relative humidity 
80%). Four days seedlings were divided into E+ group 
(inoculated with 5% fermentation broth) and E- group 
(non-inoculated). Seedlings of each group were cultured 
in the nutrient solution containing 0, 5, 10, 15 or 20% 
PEG. The endophytic fungus was colonized in rice 
roots, and the inoculation degree was determined by 

Liu and Chen [22]. EF0801 colonized more than 90% 
in E+ group seedlings, while no colonized in E- group 
seedlings. Each group was supplemented Hoagland 
solution every day. Each treatment was repeated 
three times. Physiological and biochemical indexes of 
seedlings were measured after 6 days of treatment.

Determination of Growth Indexes and Biomass

Plant height, root length and fresh weight (FW) of 
ten seedlings were measured, and they were oven-dried 
at 100ºC until reached a constant weight and dry weight 
(DW) was determined.

Determination of Proline Content

Pro content was determined according to the 
method of Zhang and Qu [23]. 0.5 g fresh leaves were 
homogenized in 5 mL 5-sulfosalicylic acid (3%) and 
heated at 100ºC for 10 min. After centrifugation at 3000 ×g 
for 15 min, 2 mL supernatant was added with 2 mL 
acetic acid, 4 mL acidic ninhydrin and 2 mL distilled 
water, boiled for 1 h. Then 4 mL toluene was added 
after the ice bath cooling for 30 s. After separating red 
toluene by oscillation, the absorbance of the colored 
solutions was measured at 520 nm.

Determination of Oxidative Status 
and Electrical Conductivity

MDA content was determined by following 
the method of Heath and Packer [24]. Fresh leaves  
(0.5 g) were homogenized in the ice bath with 4 mL 
0.1% trichloroacetic acid (TCA). 1 mL supernatant was 
added to 4 mL of 0.5% thiobarbituric acid (TBA) in 20% 
TCA. The mixture was incubated at 100ºC for 30 min 
and immediately cooled to stop the reaction. Finally, 
the mixture was determined by the spectrophotometer 
at 532 nm.

The determination of H2O2 content was according 
to Gao [25]. Fresh leaves (0.5 g) were homogenized 
in precooled acetone (3 mL) at 4ºC and centrifuged at 
12000×g at 4ºC for 15 min. After 1 mL supernatant 
was added with 0.1 mL sulfuric acid (5%) and 0.2 mL 
concentrated ammonia water and centrifuged at 4000×g 
for 10 min. The precipitate was washed three times with 
acetone, and then dissolved with 4 mL sulfuric acid  
(2 M), then dissolved with 4 mL sulfuric acid (2 M). 
The mixture was determined by the spectrophotometer 
at 520 nm.

The determination of O2
– content was according 

to the method of Wang and Luo [26], with slight 
modifications. Fresh leaves (0.5 g) were homogenized 
in 4ºC pre-cooling phosphate buffer (5 mL, pH 7.8) 
and centrifuged at 4ºC (12000×g) for 15 min. 1 mL 
supernatant was added with 10 mM hydrochloric acid 
amine (1 mL) and incubated at 30ºC for 1 h. Following, 
17 mM p-aminobenzenesulfonic acid (1 mL) and 7 mM 
α-lactam (1 mL) were added and the mixed liquor was 
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incubated at 30ºC for 20 min. The change of absorbance 
at 530 nm by spectrophotometer.

Electric conductivity (EC) was determined by 
referring to the method of Dionisio-Sese and Tobita 
[27].  Fresh leaves (0.1 g) were immersed in deionized 
water at 30ºC for 2 h, the initial conductivity (EC1) was 
measured using a conductivity meter. The tubes were 
incubated at 121ºC for 20 min and the final EC (EC2) 
was measured.: EC = EC2-EC1.

Determination of Antioxidant Enzyme Activities

Fresh leaves (0.3 g) were homogenized in 3 mL 
50 mM phosphate buffer solution containing 0.1 mM 
EDTA, 4% (w/v) polyvinylpyrrolidone (PvP-40) and 
TritonX-100 (pH 7.5) in ice bath, then centrifuged at 
10000×g (4ºC, 30 min). The supernatant was used to 
analyze the activities of GR and APX.

GR activity was measured according to Ma and 
cheng [28]. The supernatant (0.1 mL) was added into 
3 mL reaction solution (0.1 mM Tris-HCl (pH 8.0),  
0.2 mM NADPH, 1 mM glutathione oxide (GSSG)).  
The changes in absorbance of the mixture were 
measured at 340 nm. 1 unit GR activity (U) is 1 μmol 
NADPH oxidized per minute.

APX activity was determined using the methods 
of Nakano and Asada [29]. The supernatant (0.05 mL) 
was added to 3 mL reaction solution (containing 50 mM 
Hepes-NaOH, 1.0 mM H2O2 and 0.5 mM ASC), and the 
changes in absorbance of the mixture were measured 
at 290 nm. 1 unit APX activity (U) is 1 μmol ASA 
oxidized per minute.

Determination of Antioxidant Content

Fresh leaves (0.4 g) were homogenized in a pre-cooling 
bowl with 4 mL 5% (w/v) TCA and quartz sand, and 
then centrifuged at 10000×g for 20 min at 4ºC, the 
supernatant was collected for the analysis of TASC, 
ASC, TGSH and GSH.

TASC content and ASC content were determined as 
described by Lu [30] and Wu [31].

The supernatant (1 mL) was added to 0.25 mL 
0.1 M phosphate buffer (pH 7.7) and 0.25 mL 2 mM 
dithiothreitol, respectively. After reaction at room 
temperature for 10 min, 0.4 mL TCA solution (10%),  
0.4 mL phosphoric acid (44%), 0.4 mL 2,2-bipyridine 
(4%) and 0.2 mL Fe2Cl3 (3%) were added, fully 
shaken, and then kept at 37ºC for 1 h. The absorbance  
was measured at 525 nm to determine the content of 
TASC.

The supernatant (1 mL) was mixed with 0.5 mL 
phosphate buffer (0.1 M, pH 7.7). After 30 s, the 
operation was performed according to the above TASC 
content method to determine the content of ASC. 

TGSH and GSH content was determined as 
described by Ellman [32].

TGSH content was determined. The supernatant  
(1 mL) was mixed with 0.5 mL phosphate buffer  

(0.1 Mm, pH 7.7), and then 1 mL NADPH (0.15 mM) 
and 1 U GR were added. After the reaction at room 
temperature for 2 min, 0.6 mL DTNB (0.6 mM) was 
added immediately, and then the mixture was kept 
in water bath at 30ºC for 5 min. The absorbance was 
measured at 412 nm.

GSH content was determined. The supernatant 
(1 mL) was mixed with 2.5 mL phosphate buffer  
(0.1 mM, pH 7.7), and then 0.6 mL DTNB (0.6 mM) 
was added immediately. The mixture was kept in water 
bath at 30ºC for 5 min. Following, the absorbance was 
measured at 412 nm.

Statistical Analysis

All data were analyzed by SPSS 25.0 software 
package. Significantly difference between treatments 
was conducted using LSD multiple comparison 
(p<0.05). Two-factor analysis of variance (ANOVE) 
was used to analyze the difference between the 
experimental treatments.

Results

Growth and Biomass in Rice Seedlings

With the increasing PEG concentrations, plant height 
and root length were significantly reduced in both of  
E- group and E+ group (Fig. 1a, b, c). Plant height of 
E+ group was significantly higher than that of E- group, 
however, root length of E+ group was shorter than that 
of E- group at 0, 5 and 10% PEG concentrations.

The aboveground dry weight of E- group and E+ 
group significantly decreased with the increasing PEG 
concentrations (Fig. 1d). However, the aboveground dry 
weight of E+ group was higher than that of E- group 
under 5% and 15% PEG stress. The underground dry 
weight of E- group and E+ group first increased and 
then decreased with the increasing PEG concentrations, 
and no significant difference was observed between E- 
group and E+ group (Fig 1e). 

Oxidative Stress Indicators in Rice Leaves

With the increasing PEG concentrations, EC 
significantly increased in E- group, but first increased 
and then decreased in E+ group (Fig. 2a). Under 15% 
and 20% PEG stress, EC of E+ group was significantly 
lower than that of E- group. Correspondingly, MDA 
content of E- group and E+ group increased with the 
increasing PEG concentrations (Fig. 2b). There was a 
significant difference between E+ group and E- group 
under PEG stress. 

H2O2 and O2
- are ROS produced by cellular 

metabolism under stress. H2O2 and O2
- content in 

E- group firstly decreased and then increased with the 
increasing PEG concentrations, but those of E+ group 
(except for 20% PEG) showed no significant change 
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(Fig. 2c, d). Nevertheless, H2O2 content under 0, 
5 and 10% PEG treatment and O2

- content under 0%, 
15 and 20% PEG treatment of E+ group were 
significantly lower than that of E- group.

Proline content in E+ group significantly increased 
with the increasing PEG concentrations, while there 
was no significant change in E- group (Fig. 2e). Pro 
content of E+ group was significantly higher than that 
of E- group under PEG stress.

Antioxidant Capacity of Rice Leaves

GR activity of E- group decreased with the 
increasing PEG concentrations, but there was no 
significant difference, while that of E+ firstly increased 
and then decreased (Fig. 3a). Under 5% and 10% PEG 
stress, GR activity of E+ group was significantly 
higher than that of E- group. APX activity of E- group 
and E+ group was significantly decreased with the 
increasing PEG concentrations (Fig. 3b), but there was 
no significant difference between the E+ group and the 
E- group under PEG stress.

In E- group, TASC content firstly decreased and then 
unchanged with the increasing PEG concentrations, but 
ASC content significantly decreased (Fig. 3c, d). In E+ 
group, TASC  content gradually increased, however, 
ASC content firstly increased and then decreased. TASC 
content under 5-20% PEG stress and ASC content under 

5% and 10% PEG stress of E+ group were significantly 
higher than those of E- group.

TGSH and GSH content of E- group and E+ group 
significantly decreased with the increasing PEG 
concentrations (Fig. 3e, f). Under PEG stress, TGSH 
and GSH content of E+ group was significantly higher 
than those of E- group.

GR and APX activities as well as TASC, ASC, 
TGSH and GSH contents of E+ group were higher than 
those of E- group (Fig. 3g). In each treatment, GSH 
content of rice seedlings was the lowest but TASC 
content was the highest.

Discussion

Drought stress adversely affects the physiological 
and biochemical processes of plants and ultimately 
reduces crop yield [33]. Mild drought improved root 
growth [34], our result showed that underground 
dry weight increased in rice seedlings treated with 
inoculated and uninoculated endophytic fungus 
in both of E- group and E+ group under 5% PEG 
concentration. Shoots and roots became shorter at 
other PEG concentrations, suggesting that drought 
stress inhibited the shoot and root growth [35]. Similar 
results were found in this study. The endophytic  
fungus can benefit host plants by evolutionary adaptation 

Fig. 1. Effects of endophyte on the growth a), the plant height b), root length c), aboveground dry weight d) and underground dry weight 
e) of rice seedlings exposed to PEG stress for 6 days. The data are means ± SD of ten replicates. Different letters show significant 
differences with P<0.05.
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Fig. 2. Effects of endophyte on EC a), MDA content b), H2O2 content c), O2
- content d) and Pro content e) of rice seedlings exposed to 

PEG stress for 6 days. The data are means ± SD of three replicates. Different letters show significant differences with P<0.05.

Fig. 3. Effects of endophyte on GR activity a), APX activity b), TASC content c), ASC content d), TGSH content e) and GSH content f) 
and heatmap g) of rice seedlings exposed to PEG stress for 6 days. The data are means ± SD of three replicates. Different letters show 
significant differences with P<0.05.
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transcription factors, and producing antioxidants and 
antioxidant enzymes, etc [52]. Therefore, it is necessary 
to further study the molecular mechanisms and their 
utilization of endophytes in the mitigation of various 
environmental stresses on plant. 

Conclusions

Drought stress increased EC and MDA content, 
resulting in plasma membrane damage and inhibiting 
plant growth. The endophytic fungus used in this study 
can inhibit oxidative stress by increasing the contents of 
antioxidants and the activities of antioxidant enzymes. 
Proline as an osmotic regulator and membrane protector 
improved plant resistance. These findings indicated 
that endophytic fungus could be operated to improve 
drought resistance of rice seedlings in an ecologically 
friendly manner.
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