
Pol. J. Environ. Stud. Vol. 32, No. 3 (2023), 2281-2291

              Original Research              

Impact of Land Cover Changing on Wetland 
Surface Temperature Based on Multitemporal 

Remote Sensing Data
         

Nurlina1,4*, Syarifuddin Kadir2, Ahmad Kurnain3, Wahyuni Ilham2, Ichsan Ridwan4   
  

1Doctoral Program of Agriculture Science, Postgraduate Lambung Mangkurat University, Banjarbaru, 
South Kalimantan, Indonesia

2Faculty of Forestry, Lambung Mangkurat University, Banjarbaru 70714, South Kalimantan, Indonesia
3Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru 70714, South Kalimantan, Indonesia

4 Faculty of Mathematical and Natural Science, Lambung Mangkurat University, Banjarbaru 70714, 
South Kalimantan, Indonesia

     

Received: 10 September 2022
Accepted: 14  December 2022

Abstract

Changes in land use and land cover (LULC) have been studied in recent years. Urban/rural planning, 
temperature analysis, and environmental monitoring can benefit from examining these variations.  
Land surface temperature (LST) has a great potential to act as a global indicator of the status of 
wetlands and changes in their hydrological and evapotranspiration regimes, which are often linked to 
land use and cover changes. Using remote sensing data, several studies have examined LULC changes 
on LST. This multi-temporal analysis used images from Landsat during 2005 to 2020. This study 
compares surface biophysical properties to sub-pixel heat changes. This result shows that LULC classes 
have different LST. Expansion of Oil Palm plantations decreases LST, while bare land and impervious 
surface increases it. The LST declined 3ºC (0.115ºC each year) over 20 years in the research area. This 
research provides information demonstrating how plantation growth from deforestation raises the 
surface temperature. Meanwhile, plantation from shrub and bareland decrease the surface temperature. 
The development of LST trend maps and time series charts on an operational basis give wetland 
managers with a fast and dependable single indicator of the effect of land processes on water and energy 
flows, allowing them to better managing their wetlands. Continuous monitoring of LULC dynamics is 
needed to design sustainable land use regulations for environmental preservation and regional economic 
development.
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Introduction

In addition to offering a wide range of functions, 
wetland habitats have numerous values [1]. In some 
circumstances, wetlands provide the only source of 
natural resources available to rural communities, 
allowing them to survive and thrive. Their plant 
communities contain a vast range of vegetation types, 
densities, and water demands and availability, among 
other characteristics. It is difficult to predict wetland 
environment such as their water requirements and 
consequences on streamflows, and agricultural activities 
have a significant impact on their operation. Remote 
sensing imaging has been frequently employed for 
monitoring wetlands because it can offer information on 
their environmental status that is both regionally spread 
and temporally frequent [1-3].

Most monitoring systems employ LULC change 
techniques or optical [4] or radar time series to 
map water surface dynamics [5]. Thermal infrared 
data is rarely used, yet it can help understand 
evapotranspiration in groundwater-dependent 
ecosystems. LST-based evapotranspiration estimations 
produced from thermal data are useful in water 
management and water rights issues [1, 6]. Using LST 
fluctuations, it may be feasible to detect changes in land 
management methods without a direct change in land 
cover types [7] and to map wetlands beneath aquatic 
vegetation [8]. LST reacts to drought earlier than NDVI, 
which is a benefit [9]. When working with LST data, 
one of the most challenging aspects is the considerable 
temporal variability of the data; it is highly dependent 
on meteorological and lighting circumstances, and 
assessing the change in LST between two single points 
in time is ecologically insignificant [10]. Landscape 
change patterns impacting water balances and energy 
fluxes can be revealed through the analysis of dense 
LST time series. Especially essential in highly dynamic 
and water-dependent ecosystems such as wetlands is the 
concept of resiliency. While having a coarse resolution 
(1 km), the daily MODIS LST products are appropriate 
for time series analysis due to the fact that they have 
been providing daily LST data at a global level since 
2000 [11].

In addition to the noise caused by atmospheric 
effects, distinguishing between seasonal correlations, 
gradual correlations, and abrupt correlations, all 
of which are combined in time series data [7, 12], 
is a second challenge that must be overcome when 
analyzing LST time series. This challenge was 
previously mentioned. Temporal series analysis can 
be carried out through the extraction of data and its 
subsequent aggregation into statistical parameters [13], 
through the application of harmonic analysis [7], or by 
utilizing change detection algorithms and unsupervised 
classification of the changes [7, 14]. In order to address 
these issues, methods such as Breaks For Additive 
Seasonal and Trend (BFAST) [15], and greenbrown 
[16, 17] have been developed. They examine data by 

breaking it down into three components: seasonal 
fluctuation, trend, and a residual portion of the data 
[18]. Break spots resulting from abrupt changes in the 
land cover attributes are identified and marked.

Unpredictable time steps generated by gaps owing 
to clouds and other phenomena provide a third problem, 
which results in low pixel quality, which is labeled as 
such in the quality band. It has been intended to analyze 
trends, trend changes, and phenology events in gridded 
time series of vegetation indexes while interpolating 
missing data. The open source R package greenbrown 
is available for download here. Both of these indicators 
of vegetation cover and health condition are commonly 
employed in time series analysis to examine the 
changes in vegetation cover and health status [19]. 
However, because the surface water dynamics of some 
wetlands are very changeable, vegetation indices are 
less suitable for determining long-term trends in these 
ecosystems. NDVI decreases can occur as a result of a 
loss of vegetation or as a result of an increase in floods, 
among other reasons. LST will rise as a result of both 
losses in plant cover and increases in water content, on 
the other hand, and vice versa. Despite this, we uncover 
fewer examples of the use of LST to monitor long-
term changes than we would have expected. Whenever 
LST is used for monitoring, it is frequently combined 
with NDVI [9, 20] or is primarily concerned with 
climatology [16, 20]. Additionally, the link between 
NDVI and LST has been investigated earlier; when 
energy is the limiting factor, NDVI and LST have a 
positive association, but when water is the limiting 
factor, LST and NDVI have a negative correlation [21]. 
With all these advantages, LST can be fully utilized to 
evaluate temporal patterns in water-based ecosystems, 
to the best of our knowledge. The purpose of this project 
is to evaluate the potential of land surface temperature 
(LST) as an indication of land use change in the 
Tabunio watershed, which will serve as a study region. 
There has been significant land conversion to Plantation 
in the Tabunio watershed over the last two decades, and 
the consequences of these conversions are still not fully 
understood. The Tabunio watershed is a large complex 
of wetlands that has seen significant land conversion 
to plantation over the last two decades. With the use 
of the whole Landsat archive (2005-2020) of LST and 
NDVI products, as well as a set of Landsat-based 
LULC change maps, the spatio-temporal changes of 
LST and NDVI in Tabunio watershed were investigated 
and appraised in relation to these land conversions in 
Tabunio watershed.

Material and Methods
  

Study Area 

The environmental damage that occurs in the 
Tabunio watershed needs serious attention, the 
increasing area of   critical land, the high level of erosion, 
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and the decreasing water catchment area have resulted 
in floods and droughts from year to year. For this 
reason, research is needed to anticipate this and identify 
areas that are vulnerable to environmental damage in 
the Tabunio watershed.

Tabunio watershed, which is located in Tanah 
Laut Regency and has an area of 62,558.56 ha and is 
physically located at 3°37’2.72”-3°51’ 51.43” South 
Latitude and 114°36’ 12.02”-114°57’47.62” East 
Longitude, is where the research is being conducted. 
Administratively, the Tabunio watershed includes a 
total of 44 communities, as well as 4 sub-districts and 
10 sub-watersheds (ecologically). Fig. 1 is a map that 
displays the location of the research being conducted for 
the Tabunio watershed. 

The decision was made to use satellite images as the 
primary source of data for this investigation because of 
its high resolution, ability to account for atmospheric 
conditions, consistency, and rapid update rates. In order 
to generate LULC and LST maps, the United States 
Geological Survey (USGS) Earth Explorer in 2020, uses 
three cloud-free Landsat Level 2 images from 2005 
(Landsat 5 TM), 2010 (Landsat 5 TM), 2015 (Landsat 
8 OLI/TIRS), and 2020 (Landsat 8 OLI/TIRS).  
These images were acquired between 2005 and 2020. 
All of the Landsat images have a spatial resolution of 
30 meters and were captured within the same month so 
as to eliminate the influence of temperature. Surface 
reflectance is the unit of measurement used for the 
multispectral bands acquired by Landsat 5 TM and 
Landsat 8 OLI/TIRS. Radiance and a digital integer 
are transformed into reflectance values to determine 
surface reflectance.

NDVI is founded on the premise that healthy 
vegetation visibly reflects in the near-infrared section 
of the electromagnetic spectrum, with green leaves 
reflecting 20% or less in the 0.5 to 0.7 m range (green to 
red) and 60% in the 0.7 to 1.3 m range (near-infrared). 
Sobrino et al. (2004) based the vegetative index on the 
expression.

                          (1)

In order to classify the surface emissivity for the 
various land covers that were considered, emissivity 
correction was utilized. In order to calculate the final 
LST, the surface emissivity calculated based on NDVI 
classes was applied [7].

                (2)

where ε and Pv represent land surface emissivity and the 
proportion of vegetation acquired. However, Pv can be 
calculated using Sobrino et al. (2004):

              (3)

LST is obtained from data collected by LandsatTM. 
LST is derived from data collected by LandsatTM. 
The values of the LST are determined by following a 
method that consists of three steps. First, the picture 
pixels that make up the digital numbers are converted to 
surface radiance by utilizing sensor-specific calibration 
standard values. In the second step, the radiance values 
are converted to an equivalent temperature range 
for dark bodies. In the third phase, the emissivity-
corrected temperature and the type of land cover that 
is relevant to the calculation are both determined. The 
approach that was just described was carried out on 
both of the sensors. Using the TIR band 6 on Landsat-5 
TM, a calculation was made to determine the surface 
temperature of the region.

The transformation from digital numbers, to 
radiance LTM.

           (4)

The radiance to equivalent blackbody temperature 
TTMSurface at the satellite using 

Fig. 1. Research location Map of Tabunio Watershed.
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   (5)

For Landsat TM, K1 = 4.127 and K2 = 1274, 
respectively, the coefficients K1 and K2 are dependent 
on the range of blackbody temperatures.

To account for the non-uniform emissivity of the 
land surface, an extra correction for spectral emissivity 
(e) is required. Emissivity correction is carried 
out using surface emissivities for the specified LC  
(Table 1) derived from the methodology described in 
[22]. The emissivity corrected land surface temperature 
(Ts) was finally computed as follows [7]. 

                     (6)

where, λ is the wavelength of emitted radiance  
for which the peak response and the average of the 
limiting wavelengths (λ = 11.5 μm) were used, ρ = h × c/σ 
(1.438 × 10-2 mK), σ = Stefan Boltzmann’s constant 
(5.67 × 10-8 Wm-2 K-4 = 1.38 × 10-23 J/K), h = Planck’s 
constant (6.626 × 10-34 Jsec), c = velocity of light  
(2.998 × 108 m/sec), and ε is spectral emissivity (Table 1). 

LST from Landsat ETM+ 

The procedure follows same principle as done for 
Tm data. The TIR image Landsat ETM+ of (band 6) 
DN was first converted into spectral radiance LETM using 
Equation (5), and then converted to equivalent black 
body temperature,TETM Surface, under the assumption of 
uniform emissivity (ε ≈ 1) using Equation (6) [23]. 

               (7)

                (8)

Where, TETMSurface is effective at satellite temperature 
in Kelvin, LETM is spectral radiance in watts/(meters 
squared×ster×μm). For Landsat-7 ETM+, K2 = 1282.71 K 
and K1 = 666.09 mWcm-2 sr-1 μm-1 were used. The 
emissivity corrected land surface temperatures Ts were 
finally computed by Equation (6). During the process, 
the NDVI was computed by making use of the bands 
Red and NIR, and the NDVI output image was then 
utilized in order to compute the emissivity. When 
estimating LST, the normalized difference vegetation 
index (NDVI) is utilized since the amount of vegetation 
that is currently present is a crucial component, and 
the NDVI may be used to simulate general vegetation 
conditions (Weng et al. 2004).

Results and Discussion 

Land Use/Land Cover Change

Land use/cover factors are derived from Landsat 
image data that have been categorised using the ROI 
(Region of Interest) as a reference point. For each 
year of research, there are two types of ROI samples: 
training samples and testing samples. The training 
sample is used as a representative sample for land cover 
classification, whereas the testing sample is used as a 
representative sample for land cover classification with 
reference to Google Earth, which will subsequently be 
used to assess the classification’s accuracy. The number 
of ROI samples varies by more than 100 pixels for 
each land cover. Water bodies, marshes, ponds, mines, 
bushes, agriculture, forests, plantations, settlements, and 
barren terrain are all categorised as different types of 
land cover. The Support Vector Machine Classification 
approach was chosen due to its ability to produce the 
most representative findings. Additionally, the confusion 
matrix and Kappa coefficients are used to generate and 
verify overall accuracy (OA), user accuracy (UA), and 

Table 1. Land Use/Land Cover Data in Tabunio Watershed 2005-2020.

Land Use/Land Cover
Tahun

2005 (acres) 2010 (acres) 2015 (acres) 2020 (acres)

Water body 592,64 386,64 368,50 406,48 

Forest 16.223,67 14.004,85 14.699,89 13.166,88 

Bare land 3.712,99 4.945,80 13.247,55 7.906,35 

Residential 619,07 991,83 1.451,73 2.001,24 

Plantation 502,16 7.710,81 20.866,44 24.313,31 

Agriculture 21.021,27 10.313,42 8.366,95 12.917,27 

Swamp 6.759,52 3.818,56 161,37 181,88 

Shrubs 10.846,53 17.042,34 1.695,94 1.216,33 

Pond  45,88 126,24  47,96 36,14 

Mining 2.172,66 3.155,88 1.590,04 350,50 
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3,056.79 hectares (from 16.223,67 to 13,166.88 hectares 
in 2020), a 81.5 percent. Figs 4(a-d), Table 1 and Table 2 
illustrate the historical changes in land cover in the 
research area from 2005 to 2020 [24]. The continuous 
clearing of riverbank vegetation covers typically 
contributes to the instability of riverbanks and,  
as a result, an accompanying expansion in bank width. 
It’s possible that this is one of the primary contributors 
to the expansion of the total land area covered by water 
bodies. In light of the information presented above,  
it is abundantly clear that the rapid rate of urbanization 

producer accuracy (PA). All categorization findings 
demonstrate a high overall accuracy (OA) of between 
86 and 95 percent (Nurlina et al. 2021).

Significant changes include an increase in residential 
and plantations, as well as a significant reduction in 
forest and shrub cover. Residential coverage increased 
by 1,382.17 hectares (from 619,07 hectares in 2005 to 
2.001,24 hectares in 2020), a 323.26 percent increase, 
while plantations increased by 23,811.15 hectares (from 
502,16 hectares in 2005 to 24,313.31hectares in 2020), 
a 4,841.7 percent increase, while forests decreased by 

Table 2. Table of Land Cover Changes in the Tabunio Watershed 2005-2020.

Fig. 2. Land use/land cover Map of Tabunio Watershed a) 2005 b) 2010 c) 2015 and d) 2020.

Land Cover
Area of   Change

2005-2010 (acre) 2010-2015  (acre) 2015-2020 (acre) 2005-2020 (acre)
Water body -206,00 -18,14 37,98 -186,16

Forest -2.218,82 695,04 -1.533,01 -3.056,79
Bare land 1.232,82 8.301,75 -5.341,20 4.193,36

Residential 372,77 459,90 549,51 1.382,18
Plantation 7.208,65 13.155,63 3.446,87 23.811,15

Agriculture -10.707,86 -1.946,46 4.550,32 -8.104,00
Swamp -2.940,96 -3.657,19 20,50 -6.577,65
Shrubs 6.195,82 -15.346,40 -479,62 -9.630,20
Pond 80,37 -78,28 -11,82 -9,73

Mining 983,22 -1.565,85 -1.239,54 -1.822,17
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and the urban sprawl situation that is associated with  
it are clearly reflected in the land use/land cover changes 
that will occur over the watershed between the years 
2005 and 2020 as analyzed in this study (Fig. 2). As a 
result, this has a significant impact on the ecosystem 
and the microclimate of the watershed, which can be 
seen reflected in the pattern of the temperature of the 
land surface [25].

NDVI/Emissivity

The normalized difference vegetation index (NDVI) 
is a measure of vegetation intensity that allows for 
the differentiation of various plant types and non-
vegetated surfaces. In 2005, the vegetative cover in 
the watershed’s center was significantly reduced, 
resulting in a low NDVI value of roughly 0.3. (Fig. 3).  
This NDVI value often increases as one moves away 
from the city’s centre toward its periphery, indicating  
a response to diminishing land use intensity. Areas with 
a moderate to low build up density had an NDVI value 
of -0.5, whereas water bodies and forest had a higher 
NDVI value of about 0.77. By 2005, significant changes 
had occurred, as the spatial breadth of green areas 
had been substantially reduced as a result of growing 
urbanization throughout the city (Fig. 2). The spatial 
expanse of vegetative land cover in 2020 has decreased 
significantly from 2005. The NDVI was used to estimate 
the emissivity values for the various land use types, and 
the estimation threshold is shown in Table 3. For 2005, 
2010, 2015, and 2020, the emissivity value is between 

0.955 and 0.985 in the central business district and 
0.985 in the periphery business district: built-up regions 
have higher emissivity values, while water bodies  
and vegetation have lower emissivity values (Fig. 3 
and Fig. 4). Variations in the Normalized Difference 
Vegetation Index (NDVI) reflect the global land surface 
vegetation coverage, which is important for the analysis 
of the ecological environment [26].

Land Surface Temperature

The regional distribution of land surface temperature 
in 2005 revealed a range of values between 16 and  
31 degrees Celsius, with the bareland and shrubs having 
the greatest value (Fig. 5a). The lowest LST value  
of 16ºC was attributed to water bodies and forest.  
The mean temperature was 25.3 degrees Celsius. 
However, for 2010, the regional distribution of land 
surface temperature is between 14 and 29 degrees 
Celsius (Fig. 5b). In 2015, when the LST value spans 

Fig. 3. NDVI map of Tabunio Watershed 2005-2020 a) 2005 b) 2010 c) 2015 and d) 2020.

Table 3. Land surface temperature variation (ºC) in Tabunio 
Watershed from 2005 to 2020.

Year Min (ºC) Max (ºC)

2005 16 31

2010 14 29

2015 12 28

2020 17 28
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between 12 and 28 degrees Celsius, a dramatic increase 
was seen (Fig. 5c). For 2020, the regional distribution 
of land surface temperature is between 17 and 28 
degrees Celsius (Fig. 5d). The LST values varied 
significantly across the city’s various land use/land 
cover classifications. The temperature of the built-up 
area decresed by -1.61ºC, the bareland by -3.38ºC, and 
the vegetation by -1.48ºC, whereas the temperature 
of the water bodies decreased by -2.7ºC. It was 
importantly noted that the growth of plantation areas, 
reduced shrubs and bareland cover resulted decreased 
in the study area’s LST. Reduced forest area resulted an 
increased in temperature in the surrounding area. This 
implies that a causal relationship exists between land 
cover dynamics and patterns of LST occurrence across 
the study area. Additionally, a 300 percent change 
in plantation resulted in a 1.1 percent temperature 
decreased. Additionally, a 21 percent loss in vegetative 
cover from natural heavy canopies to almost grassland 
in 2005 led in a 15.2 percent increase in temperature. 
In 2020, exposed surfaces grew by 212 percent in the 
research area, implying a 5.8 percent temperature 
increase.

Disturbances such as deforestation induce a break 
in the time series, drastically boosting the LST. As 
vegetation begins to regenerate in the years following 
deforestation, it would be predicted that LST would 
exhibit a decreasing trend (Table 3). The decline in 
the value of LST was also due to the fact that 2005 
was the warmest year in over a century, according 
to NASA scientists studying temperature data from 

around the world (https://www.nasa.gov/vision/earth/
environment/2005_ warmest.html), while from the 
trend of the data, LST has increased again in 2020, 
this is in accordance with the statement from Scientists 
from Copernicus that also have 2020 as the warmest 
year on record, while the United Kingdom Met Office 
ranked 2020 as the second-warmest year on record 
(https://www.noaa.gov/news/2020-was-earth-s-2nd-
hottest-year-just-behind-2016). In our case, expansion 
of plantations was also associated with decreased in 
LST due to reduced land cover from shrubs and bare 
land to oil palm plantations. However, when natural 
vegetation (forest or wetland) is replaced by plantation, 
LST trends to continue increasing. The expansion of oil 
palm plantations and other cash crops results in changes 
in biophysical variables, which warms the land surface 
and so contributes to the increase in air temperature 
caused by climate change, as well as the warming of the 
land surface [27, 28]. 

The area’s rapid population growth, combined with 
a lack of property rights, has resulted in unregulated 
plantation development and deforestation [10, 29, 30]. 
The majority of the increases in LST and plantation 
expansion patterns occurred within the Tabunio 
watershed, which contain numerous natural resources 
(mainly water, wood, and fertile lands). Areas of 
permanent marshes and to the east of Tabunio watershed 
did not show significant increases in LST (nor decreases 
in NDVI). The periodically inundated grasslands 
at the heart of the Tabunio watershed site have 
remained largely uninhabited, owing to the fact that 

Fig. 4. Land surface temperature of Tabunio Watershed a) 2005 b) 2010 c) 2015 and d) 2020.
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plantation expansion is constrained by recurrent floods.  
They do, however, exhibit modest increases in LST 
(but not in NDVI), Implying that oil palm operations 
may be altering the water balance in these seasonally 
flooded areas. This is consistent with the findings  
of [1, 27], who determined that land cover changes 
reduce evapotranspiration and baseflow while boosting 
runoff. Climate change processes may also have an 
effect on the floodplain’s evapotransporation regimes, 
although 20 years is insufficient time to draw such 
conclusions.

Errors are unavoidable when converting continuous 
patterns on the land surface to discrete classes. The 
Forestation class was overstated in our situation (Table 4). 
As a result of this, and the considerable spatial resolution 
disparity between the LULC change map (30 m) and the 
LST data set, the overall changes in LST for the Forestation 
class were inconclusive. The LST, on the other hand, 
reduced significantly in locations where ground truth data 
indicated genuine forestation of grasslands (Fig. 5d). The 
results were more straightforward for the other types of 
land change: LST increased in regions of residential and 

Land use/land cover

Land Surface Temperature (ºC)

2005 2010 2015 2020

Min Max Min Max Min Max Min Max

Water body 20.99 28.83 21.27 26.65 14.11 25.49 20.14 26.13 

Forest 16.17 29.46 14.07 27.13 12.86 26.22 17.04 26.30 

Bare land 21.32 31.03 16.17 28.08 11.93 27.36 17.81 27.65 

Residential 23.98 29.15 15.65 28.55 13.27 27.99 18.39 27.54 

Plantation 18.95 29.46 17.72 26.17 12.74 26.03 17.47 26.86 

Agriculture 20.31 29.15 17.72 27.13 12.07 26.13 17.83 27.51 

Swamp 22.33 26.91           21.27            25.69            13.02               25.19               21.59           25.34           

Shrubs 17.22 31.03           18.24            26.65            13.22               25.50               17.37           26.21           

Pond 23.66 26.27           20.27            24.72            21.23               24.18               22.46           25.33           

Mining 22.33 30.09           18.75            28.55            13.30               27.28               17.69           26.87           

Fig. 5. Graphic of land surface temperature with landuse/landcover type Tabunio Watershed in 2005-2020.

Table 4. LST value in different land use/land cover.
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mining expansion, while areas without LULC alterations 
also reported large increases in LST. It is worth noting 
that the Climate Change Initiative’s newly issued yearly 
LULC reports continue to classify a major portion of the 
floodplain as flooded grasslands, despite the fact that it is 
widely utilized for agriculture and its ecological functions 
have been damaged [16, 20, 27]. The Ramsar Convention’s 
notions of “Ecological Character” and “Wise Use” of 
wetlands suggest that wetland ecosystem services may be 
used to a certain extent, as long as the wetland system’s 
integrity and health are not threatened [31]. Our findings, 
in conjunction with those of other researchers [27, 28, 
31], suggest that plantation expansion may be eroding 
the wetland’s ecological identity. Uncontrolled plantation 
usage of the wetland may even have an effect on places that 
remain largely natural, such as the centre of the floodplain  
(Fig. 5c). Land use/cover change has been confirmed 
to have a significant impact on climate through various 
aspects that modulate LST and precipitation [32, 33]. 
Forthcoming plans to modernize plantation in the area 
should take into account the water balance and the 
preservation of the ecosystem services provided by the 
wetland [34]. For example, updating farmers’ energy 
sources could halt or significantly reduce deforestation 
caused by the use of lumber for fuel. The Tabunio 
floodplain’s primary biological function was to act as  
a wildlife corridor of the Meratus Mountains National 
Park (Fig. 1). Restoring the Tabunio watershed would 
be a simple option in terms of connectivity. There are  
a few sites where LST has not increased, indicating that 
they are not yet substantially used by agriculture and 
may be subject to some form of protection. The evidence 
suggests that conservation regimes in the area have been 
somewhat successful in halting deforestation and farming 
development [35-38]. 

Conclusion

The land use/land cover analysis demonstrated 
changes in agricultural and forest lands and 
impermeable surfaces owing to urbanization. From 
2005 to 2020, urban cover increased together with 
land surface temperature. Highly urbanized towns 
in Pelaihari have the greatest LST values, while the 
suburbs have low LST values. The study shows the 
ability of remote sensing and GIS for identifying  
land use land cover dynamics and land surface 
temperature.

The environmental consequences of plantation 
development and deforestation on wetlands are 
numerous and complicated in nature. However, certain 
impacts may not have an impact on the classification 
of a land cover, but they may have an impact on the 
biophysical variables of a land cover (productivity, 
spectral indices or LST). By analyzing LST dense 
time series, it is possible to determine the regional  
and temporal distribution of such impacts in wetlands. 
The quantitative information provided by these analyses 

can be particularly beneficial in vast areas experiencing 
rapid expansion and with limited access to field data, as 
they provide quantitative information in a timely way. 
Overall increases in LST corresponded to patterns of 
agriculture expansion and deforestation, and LST and 
NDVI were shown to be adversely associated. LST 
levels were found to be decreasing in both inhabited and 
unoccupied regions, where plantation and the number of 
cattle herders have both expanded dramatically in the 
previous decade, showing that their impact reaches into 
the still-natural areas as well.

The time period under consideration is far too short 
to take into account the effects of climate change. 
We do, however, give information demonstrating 
how plantation growth on wetlands raises the surface 
temperature, which in turn affects the temperature of 
the surrounding air and atmosphere. The development 
of LST trend maps and time series charts on an 
operational basis can give wetland managers with a 
quick and dependable single indicator of the effect of 
land processes on water and energy flows, allowing 
them to better manage their wetlands.
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