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Abstract

Based on the natural discontinuity method, kernel density estimation, Dagum Gini coefficient, 
exploratory spatial data analysis and other methods, this paper explores the temporal-spatial 
characteristics of China’s urban carbon emissions from 2000 to 2017, and investigate the influencing 
factors of China’s urban carbon emissions by using the decomposition model of the spatial Dubin 
model. The main conclusions are as follows: (1) China’s urban carbon emissions are steadily rising, 
but the growth rate of carbon emissions is slowing down gradually; The two-level differentiation of 
carbon emission distribution in the eastern and central regions are obvious, while that in the western 
and northeastern regions are not obvious. (2) There is a significant spatial autocorrelation of China’s 
urban carbon emissions, and the local agglomeration features are obvious, which are mainly “high-high 
agglomeration” and “low-low agglomeration”. (3) In terms of carbon emission factors, technological 
innovation, foreign investment, and government intervention can reduce carbon emissions in the eastern 
region; Government intervention has a mitigation effect on carbon emissions in the central region; 
Infrastructure construction and technological innovation can reduce carbon emissions in the western 
region; The industrial structure has a mitigation effect on carbon emissions in the northeastern region. 
The main research values are as follows: It is helpful to comprehensively understand the dynamic 
distribution, regional differences and spatial agglomeration characteristics of China’s urban carbon 
emissions, and then investigate the driving factors of carbon emissions in different regions, so as to 
provide a scientific basis for each region to further implement the “double carbon” strategy, promote  
the coordinated emission reduction of cities, and jointly build a green development path.
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Introduction

During the 40 years of reform and opening up, 
China’s economy has achieved leapfrog development, 
while its carbon emissions have also maintained 
rapid growth. Since 2005, China’s carbon emissions 
have been ranked first in the world. According to 
the Statistical Review of World Energy released by 
BP, the total carbon emissions in 2020 account for 
30.7% of the global total. In the face of a series of 
environmental crises and international political and 
economic problems caused by global climate change, 
the United Nations has been urging countries around 
the world to take effective actions in recent years to 
reduce greenhouse gas emissions and strengthen their 
defenses against climate change. In order to actively 
assume international responsibility for climate change 
and promote the building of a community with a shared 
future for mankind, China formally proposed the goals 
of “carbon peaking” and “carbon neutrality” at the 
United Nations General Assembly in September 2020. 
In October 2021, policy documents such as “Opinions 
on Completely Accurately Implementing the New 
Development Concept and Doing a Good Job in Carbon 
Neutralization” were issued, making a systematic 
planning and overall deployment for carbon peaking 
in 2030 and carbon neutrality in 2060. The road to 
“double carbon” is imperative. In order to accelerate 
the promotion of green and low-carbon development, 
the outline of the 14th Five-Year Plan proposes to reduce 
the intensity of carbon emissions and support regions 
with conditions to take the lead in reaching the peak 
carbon emissions. At present, the economic foundation, 
industrial structure and resource endowment of 
different regions in China are different, and the carbon 
emissions are significantly different. Therefore, it is of 
great significance to carry out research on the spatio-
temporal evolution characteristics and influencing 
factors of carbon emissions at the city level, and 
then to clarify the regional differences, spatial 
agglomeration characteristics and influencing factors of 
carbon emissions, which can promote the coordinated 
governance of regional carbon emissions and accelerate 
the realization of the “double carbon” goal.

In this context, carbon emissions have become a 
hot research topic in academia, however, the research 
on the temporal and spatial evolution characteristics 
of carbon emissions mainly focuses on the national 
and provincial scales [1-2], and the existing municipal 
carbon emissions research is mostly concentrated in 
a specific region, urban agglomeration [3] or city [4]. 
Among them, there is no unified measurement method 
for carbon emissions. Scholars mainly adopt entropy 
weight method [5], stochastic frontier method SFA [6] 
and other methods to explore carbon emissions. Some 
scholars directly use the carbon dioxide emissions 
retrieved from night light data to carry out research 
[7]. In terms of spatial differences, scholars mainly 
use Dagum Gini coefficient and its decomposition [8], 

Moran’s I index [9], three-stage nested decomposition 
of Theil index [10] and other methods to reveal regional 
differences in carbon emissions. In terms of temporal 
and spatial dynamic evolution, the mainstream method is 
to use kernel density estimation method to describe the 
dynamic evolution characteristics of carbon emissions 
in different regions [11]. In addition, a large number 
of scholars have investigated the influencing factors 
of carbon emissions and found that foreign investment 
[12], environmental regulation [13], urbanization 
level [14], scientific and technological innovation [15], 
industrial structure [16] and other factors are important 
factors affecting carbon emissions in Chinese cities.

Although academia has carried out systematic 
research on carbon emissions, which provides important 
experience for this paper, there are still the following 
deficiencies: Firstly, the limitations of energy statistics 
lead to relatively insufficient research on China’s carbon 
emissions based on prefecture level cities. Secondly, 
many studies only reveal the linear relationship between 
various socio-economic factors and carbon emissions, 
but lack systematic research on the driving factors of 
the spatial differentiation model of carbon emissions. 
Compared with existing research, the innovations of 
this paper are as follows: Firstly, this paper selects 
the carbon emission data of 284 prefecture-level 
cities measured by particle swarm optimization-
back propagation (PSO-BP) algorithm, focusing on 
a comprehensive investigation of the spatio-temporal 
pattern and evolution trend of China’s urban carbon 
emissions from the municipal level. Secondly, this paper 
uses the Dagum Gini coefficient and its decomposition 
to analyze the characteristics of regional differences 
in China’s urban carbon emissions, and clarify the 
sources of regional differences in China’s urban carbon 
emissions; and then uses kernel density estimation, 
spatial autocorrelation analysis and other methods to 
analyze the evolution characteristics of China’s urban 
carbon emissions from two dimensions of space and 
time. Finally, this paper establishes a decomposition 
model of the spatial Dubin model to comprehensively 
analyzes the core influencing factors of urban carbon 
emissions in China and the four regions, providing 
scientific reference for all regions to scientifically 
promote the “double carbon” goal and accelerate the 
realization of green, low-carbon and high-quality 
development.

Material and Methods

Variable Selection

Explanatory variable: Carbon emissions (CO2). This 
paper refers to the county-level carbon emission data 
measured by Chen et al. (2020) [17], and summarizes 
the carbon emission data of prefecture-level cities.

Explanatory variable: Industrial structure (cy) is 
measured by the proportion of the output value of 
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the secondary industry in GDP. Foreign investment 
( fdi) is measured by the proportion of foreign direct 
investment in GDP. Financial development ( fin) is 
measured by the proportion of various loan balances 
of financial institutions in GDP. Population density 
(pop) is measured by dividing the population by the 
administrative area. Government intervention (gov) 
is measured by the proportion of fiscal expenditure in 
GDP. Infrastructure construction (instra) is measured 
by highway mileage. Technological innovation (zlf ) 
is measured by the number of patent invention 
applications. Economic growth (pgdp) is measured by 
per capita GDP.

Data Source

This paper excludes some cities with more missing 
data, such as Lhasa, and takes 284 cities at prefecture 
level and above in China from 2000 to 2017 as the 
research object. The relevant data are mainly from the 
China City Statistical Yearbook, EPS database, etc., and 
the interpolation method is used to supplement some 
cities with serious data missing. Meanwhile, in order 
to more comprehensively reveal the regional evolution 
trend of carbon emissions during the observation 
period, this paper divides the city level into four 
regions: eastern, central, western and northeastern.

Methods

Kernel Density Estimation Method

As a non-parametric estimation method, kernel 
density estimation usually fits sample data through a 
smooth peak function, and uses a continuous density 
curve to describe the distribution of random variables. 
In this paper, the kernel density estimation method is 
used to investigate the dynamic evolution process of 
China’s urban carbon emissions distribution, which can 
well observe the distribution location, trend, ductility 
and polarization trend of carbon emissions. This 
paper assumes that the density function of the random 
variable Y is f(y):

1( ) ( )N i
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Y yf y K
Nh h

−= ∑  
          (1)

In the formula, N represents the number of 
observations; Yi represents the independent and identically 
distributed observation value; y̅ represents the average 
value of carbon emissions; h refers to bandwidth; K(∙) is 
nuclear density. 

Dagum Gini Coefficient Decomposition Method

This paper uses the Gini coefficient decomposition 
proposed by Dagum (1997) [18] to dynamically interpret 
the regional and spatial differences and sources of 

carbon emissions in Chinese cities. This method 
can decompose them into intraregional differences, 
interregional differences and hypervariable density, 
effectively solving the problem of overlapping sample 
data and the source of regional differences. The value 
range of Gini coefficient is 0~1. This paper refers to the 
relevant provisions of the United Nations and takes 0.4 
as the “warning line” of the gap [19].
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In the formula, the whole is divided into four 
groups according to the eastern, northeastern, central 
and western regions, yih and yjr indicates the carbon 
emission of cities within the region i( j); n is the number 
of cities; y̅ is the average value of carbon emissions; 
k is the number of areas; ni and nj is the number of 
regions in group i( j). Dagum Gini coefficient can be 
decomposed into intra-regional difference contribution 
Gw, inter regional difference contribution Gnb and inter 
group hypervariable density Gt.

Spatial Autocorrelation Analysis Method

In order to study whether there is spatial dependence 
or spatial heterogeneity in China’s urban carbon 
emissions, this paper calculates the Global Moran’s I.  
If Global Moran’s I is closer to 1, the positive correlation 
degree is stronger; if it is closer to -1, the negative 
correlation degree is stronger. Meanwhile, in order 
to reflect the local regional spatial characteristics of 
China’s urban carbon emissions, this paper introduces 
the Local Moran’s I. The greater the absolute value 
of the Local Moran’s I, the higher the degree of 
concentration. 

Decomposition Model of Spatial Dubin Model

This paper adopts the spatial Dubin model processed 
by the spatial autoregressive partial differential method 
to explore the spillover effect of carbon emission 
agglomeration. Referring to the proposed theory of 
the spatial Dubin model proposed by LeSage and Pace 
(2009) [20], the model is transformed into:

1 1 ' ' 1( ) ( ) ( ) ( )Y I w I w X wX I wσ α σ β θ σ ε− − −= − + − + + −  (3)

Based on the above analysis, this paper constructs a 
static spatiotemporal bidirectional fixed SDM model for 
estimation. The specific formula is as follows:

2 2it i t it i t i t itLnCO W LnCO x W Xρ β δ µ γ ε= + + + + + (4)

LnCO2it represents the carbon emission of the 
explained variable, W is the spatial weight matrix, xit 
is the explanatory variable, Xt is the spatial lag term of 
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the explanatory variable, μi is the regional fixed effect, 
γt is the time fixed effect, εit is the random error term, 
ρ and δ are the coefficients of the explained variable 
and the spatial lag term of the explanatory variable 
respectively.

Results and Discussion

Temporal Evolution Characteristics

This paper plots the time series evolution trend 
of carbon emissions in the country as a whole and 
in the four major regions from 2000 to 2017, Fig. 1 
shows that China’s urban carbon emissions show the 
pattern of East>Northeast>Central>West. With the 
deepening of reform and opening up, the eastern region 
has achieved rapid economic development by virtue 
of its natural geographical advantages, with a high 
degree of industrialization, and carbon emissions have 
remained at a high level. However, the northeast region 
relies heavily on heavy industry, and has maintained  
an extensive development model for a long time.  
The industrial transformation and upgrading are 
slow, resulting in low carbon emission efficiency.  
The central region has actively undertaken the 
industrial transfer in the eastern region in recent years, 
but the overall industrial structure is relatively low-
end, and the carbon emissions are relatively high; In 
the western region, due to the constraints of backward 
economic development and weak development of the 
tertiary industry, carbon emissions have increased 
significantly. From the perspective of the specific 

evolution process, before 2011, the carbon emissions 
of the four major regions maintained a steady increase 
in general, and after 2011, the carbon emissions of the 
four major regions remained basically stable. Moreover, 
the evolution trends of carbon emissions growth rates 
in the four regions were relatively similar, showing 
an inverted “V”-shaped evolution trend. Specifically, 
the growth rate of carbon emissions began to show a 
fluctuating downward trend after reaching its peak in 
2005. Although it rose around 2008, it failed to change 
the overall evolution trend, and even experienced a 
negative growth in 2015.

Spatial Distribution Characteristics

In order to reflect the spatial dynamic distribution 
characteristics of China’s urban carbon emissions, 
this paper selects 2000, 2005, 2010 and 2017 as 
representative years to draw the spatial distribution map 
of carbon emissions. Based on the natural discontinuity 
method in Arcgis10.5 software, this paper divides the 
average carbon emissions into 8 intervals to more 
intuitively reveal the clustering characteristics and 
spatial distribution rules of the China’s urban carbon 
emissions. Fig. 2 shows that China’s urban carbon 
emissions show obvious spatial imbalances. With the 
rapid development of China’s industrial economy and 
the rapid increase of energy consumption, the imbalance 
of regional economy has become increasingly obvious, 
leading to an increasing absolute difference of carbon 
emissions between regions. Compared with 2000, the 
spatial imbalance of carbon emissions in 2010 and 
2017 increased significantly. Specifically, the eastern 

Fig. 1. Time distribution characteristics of carbon emissions.
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Overall Spatial Differences and Their 
Evolution Trends

Fig. 3 shows that, the overall Gini coefficient of 
China’s urban carbon emissions shows an inverted 
“V”-shaped evolution trend, and the overall regional 
differences in carbon emissions show a fluctuating 
downward trend. In terms of its specific evolution 
process, the Gini coefficient kept a fluctuating upward 
trend from 2000 to 2007, rising from 0.416 to 0.425, 
and the overall regional differences in carbon emissions 
had been increasing; It then showed a rapid downward 
trend in 2007-2017. Although there was a slight rebound 
in 2014, it was far lower than the previous level, and 
continued the original downward trend in 2017. On 
the whole, compared with 2000, the overall regional 
differences of carbon emissions in 2017 narrowed 
slightly, and the overall Gini coefficient decreased 
by 4.47%. In the past 10 years after 2007, the overall 
regional differences of carbon emissions in Chinese 

region has relatively large carbon emissions, especially 
in Jiangsu, Zhejiang, Shanghai and other provinces 
and cities. Followed by the northeast and central 
regions, where Changchun, Harbin, Shenyang and 
Beijing-Hebei-Shanxi and other cities have been high 
carbon emissions, meanwhile, cities such as Hulunbuir 
and Chifeng have seen significant growth in carbon 
emissions in recent years. The carbon emissions in 
the western region are relatively low, but the carbon 
emissions in cities such as Chongqing and Chengdu 
have been maintained at a high level.

Regional Differences Characteristics 

In order to further analyze the overall regional 
differences in China’s urban carbon emissions and  
their sources, this paper will use Dagum Gini  
coefficient and decomposition method to calculate and 
decompose them. The results are shown in Fig. 3 and 
Fig. 4.

Fig. 2. Spatial distribution characteristics of carbon emissions.
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cities tended to shrink rapidly, with a decrease of 6.56%, 
but the overall Gini coefficient was still relatively high, 
with an average of 0.4132 in the sample period. This 
shows that although the ecological and environmental 
protection strategies put forward before have achieved 
certain results and narrowed the carbon emission gap 
within the country to a certain extent, but the overall 
level of urban carbon emissions imbalance in China is 
still high.  

Intraregional Differences and Their 
Evolution Trends

Fig. 4 shows that, from the average value of the 
Gini coefficient in the four regions, the northeastern 
(0.4629) > western (0.3877) > central (0.3152) > eastern 
(0.3105), which shows that during the observation 
period, the difference in carbon emissions in the 
northeast region is the largest and higher than the 
national average level, followed by the western and 
central regions, and the difference in carbon emissions 
in the east region is the smallest. From the evolution 
trend of intra-regional differences, the Gini coefficient 
in the eastern and central regions shows a fluctuating 
downward trend, and the intra-regional differences in 
carbon emissions are gradually narrowing; The Gini 
coefficient in the western region shows an inverted 
“V”-shaped downward evolution trend, reaching a peak 
of 0.4738 in 2008. Specifically, it decreased slightly 
from 2000 to 2003, increased from 2003 to 2008, and 
then fluctuated to 0.4542 in 2017, and the intra-regional 
difference in carbon emissions narrowed slightly.  
In addition, different from the other three regions, the 
Gini coefficient in the northeastern region increased 

slightly during the investigation period, showing a 
“W”-shaped evolution trend, specifically, it fell to the 
first trough of 0.3071 in 2009, then rose to the peak of 
0.3255 in 2011, and then fell to the second trough of 
0.3005 in 2013, and then showed an upward trend.

Interregional Differences and Their 
Evolution Trends

 
Fig. 4 shows that, from 2000 to 2017, the position 

of the Gini coefficient curve between the eastern and 
western regions was the highest, and the position of 
the Gini coefficient curve between the central and 
northeastern regions was the lowest; From 2000 to 2010, 
the Gini coefficient curve between the East-Northeast 
region was below the East-Central, Central-Western and 
West-Northeast regions, After 2010, the Gini coefficient 
positions between East-Northeast, East-Central, Central-
Western and West-Northeast regions were basically the 
same. This shows that, during the whole survey period, 
the largest interregional difference in China’s urban 
carbon emissions is in the East-Western region, and the 
smallest difference is in the Central-Northeast region, 
while the interregional differences in carbon emissions 
in the East-Northeast, East-Central, Central-Western 
and West-Northeast regions gradually converged after 
2010.

From the perspective of the specific evolution 
process, the interregional differences in the East-Central 
and East-Western regions all showed an inverted “V”-
shaped downward trend, with the Gini coefficient 
peak of 0.4317 and 0.5162 respectively in 2007, and 
then decreased to 0.3914 and 0.4577 respectively 
in 2017. The interregional differences in the west-

Fig. 3. Dagum Gini coefficient and decomposition.
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northeast showed a downward trend of “steady decline-
relative slowdown”, and the Gini coefficient between 
regions decreased from 0.4321 in 2000 to 0.40 in 2017.  
The interregional differences in the East-Northeast 
showed a fluctuating upward trend, rising from 0.3775 
in 2000 to 0.4062 in 2017. The interregional differences 
in the Central-Western showed a fluctuating downward 
trend of “down-up-down-up-down”, from 0.4161 in 
2000 to 0.3944 in 2017. The interregional differences 
in the Central-Northeast showed an evolution process 
of “down-up-down-up”, and the interregional Gini 
coefficient decreased slightly from 0.3252 in 2000 to 
0.3164 in 2017. In general, the interregional differences 
of carbon emissions in the East-Northeast show an 
increasing trend, and the interregional differences of 
carbon emissions in the East-Central, East-Western, 
West-Northeast, Central-Western, and Central-Northeast 
have all narrowed to varying degrees.

Difference Sources and Their Contributions

This paper decomposes the overall spatial 
differences of carbon emissions into three parts: inter-
regional differences, intra-regional differences and 
hyper-variable density, and calculates their respective 
contribution rates. The data shows that during the 
observation period, the average annual contribution 
rates of intra-regional differences, inter-regional 
differences and hyper-variable density to the overall 
spatial differences in China’s urban carbon emissions 
were 25.75%, 35.81%, and 38.44%, which indicates that 
the sources of the overall spatial differences in China’s 
urban carbon emissions are hyper-variable density, 
inter-regional differences and intra-regional differences 

in order. In terms of the evolution trend of difference 
sources shown in Fig. 3, the intra-regional differences 
contribution rate showed a “V”-shaped upward trend, 
reaching a trough of 25.39% in 2007, and then rose to 
26.14% in a small fluctuation. The contribution rate 
of inter-regional differences showed an inverted “V”-
shaped downward trend, reaching a peak of 40.49% in 
2004, and then decreased to 29.44% in 2017, with an 
average annual decrease of 0.61%. The contribution rate 
of hyper-variable density showed a fluctuating upward 
trend, rising from 38.06% in 2015 to 44.42% in 2017. On 
the whole, the influence of hyper-variable density and 
intra-regional differences on the overall differences in 
China’s urban carbon emissions is gradually increasing, 
and the influence of inter-regional differences on the 
overall differences in China’s urban carbon emissions is 
gradually shrinking.

Dynamic Evolution Characteristics

In order to capture the dynamic information of 
absolute difference in carbon emissions in more detail, 
this paper uses the kernel density estimation method 
to analyze the distribution dynamic characteristics of 
carbon emissions in four regions, including location, 
situation, ductility and polarization trend (Fig. 5). 
Firstly, from the perspective of distribution position, 
the center of the carbon emissions distribution curves 
in the four major regions show a right-shifting trend  
as a whole, which indicates that the carbon emissions in 
the four major regions generally show an upward trend. 
Secondly, from the perspective of distribution form, 
the peak heights of the carbon emissions distribution 
curves in the four regions have all experienced  

Fig. 4. Dagum Gini coefficients within and between regions.
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a downward evolution process of “decline-rise”, and 
the peak widths have gradually increased, which means 
that the absolute differences in carbon emissions in 
the four major regions have generally tended to rise. 
Thirdly, from the perspective of distribution ductility, 
the distribution curves of carbon emissions in the four 
major regions have obvious right tailing phenomenon, 
and the distribution ductility shows a trend of widening 
to the right, which indicates that the carbon emissions 
of some cities have grown rapidly, and the regional 
differences of carbon emissions in the four major 
regions have increased. Finally, from the perspective of 
polarization, the distribution curves of carbon emissions 
in the eastern and central regions have gradually 
changed from the initial “single peak” to a “double-
peak” or even “multi-peak” state, which indicates that 
there is a multi-polar phenomenon of carbon emissions 
in the eastern and central regions; The western and 
northeastern regions show an obvious “single peak” 
state. Although a double peak form of “one main side” 
appeared in the evolution process, the side peak is far 
lower than the main peak, which indicates that although 
the carbon emissions in the western and northeastern 
regions have a certain gradient effect, the polarization 
is not obvious.

Spatial Correlation Characteristics

 Global Autocorrelation Analysis

With the help of Stata15.1 software, this paper 
measures the Global Moran’s I index of China’s  
urban carbon emissions from 2000 to 2017 (Table 1). 
The results show that the Moran’s I index of China’s 
urban carbon emissions are all positive, ranging from 
0.127 to 0.2. The Z value of the normal statistic are 
all greater than 4.908, which have passed the 1% 
significance level test each year. It shows that China’s 
urban carbon emissions have obvious positive global 
spatial autocorrelation, and urban carbon emissions may 
be affected by the development and carbon emissions of 
surrounding cities.

Local Autocorrelation Analysis

Here, 2000, 2005, 2010 and 2017 are selected as the 
representative years to study the local agglomeration 
characteristics of China’s urban carbon emissions. Fig. 6 
shows that the characteristics of the local spatial pattern 
of China’s urban carbon emissions can be divided into 
four categories:

Fig. 5. 3D Kernel Density Estimation Map.
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The first type of “high-low” agglomeration area,  
in the representative year, Chongqing, Chengdu and 
Wuhan have always been in the “high-low agglomeration 
area”. With the passage of time, Changsha has also 
entered the “high-low agglomeration area”. The main 
reason is that these cities have high economic scale,  
high energy consumption, and continuous inflow 

of labor capital and funds, which results in a large 
difference in carbon emissions levels with surrounding 
cities. 

The second type of “low-low” agglomeration 
area, in 2000, only Lincang, Pu’er, Zhangye, Hezhou, 
Cangzhou and Langfang were located in the “low-low 
concentration area”, and they were relatively scattered. 

Table 1. Global Moran Indeex.

Year Moran’s I Z P Year Moran’s I Z P

2000 0.127 4.908 0 2009 0.191 7.044 0

2001 0.143 5.443 0 2010 0.192 7.049 0

2002 0.144 5.491 0 2011 0.197 7.135 0

2003 0.154 5.827 0 2012 0.196 7.094 0

2004 0.161 6.074 0 2013 0.186 6.702 0

2005 0.178 6.616 0 2014 0.183 6.612 0

2006 0.181 6.738 0 2015 0.192 6.911 0

2007 0.193 7.121 0 2016 0.191 6.884 0

2008 0.2 7.334 0 2017 0.177 6.39 0

Fig. 6. Local Moran index LISA diagram.
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With the passage of time, Bazhong, Yibin and other 
cities have entered “low-low agglomeration areas”. 
In 2017, “low-low agglomeration area” were mainly 
distributed in Southwest China. These cities are 
restricted by resource endowment and other factors, and 
their carbon emissions have been at a low level.

The third type of “low-high” agglomeration area, 
Yongde has been in a “low-high agglomeration area” 
in the representative year. The carbon emissions of the 
city are low, but the carbon emissions of its surrounding 
cities are high.

The fourth type of “high-high” agglomeration areas 
are mainly concentrated in the eastern coastal and 
northeastern regions. These cities have a relatively high 
level of economic development, rapid industrialization, 
large energy consumption and high carbon emissions. 
In addition, the high level of coordinated urban 
development in the “high-high agglomeration area” 
has further promoted the increase of regional carbon 
emissions. In 2000, Beijing, Shanghai, Suzhou, 
Guangzhou and other cities were all located in 
“high-high agglomeration areas”, they were mainly 
concentrated in Beijing-Tianjin-Hebei, Yangtze River 
Delta, Pearl River Delta and other strategic economic 
circles. With the advancement of environmental 
protection, the carbon emissions of the Pearl River 
Delta urban agglomeration have gradually decreased, 
and then they have withdrawn from the “high-high 
agglomeration area”, while the carbon emissions of 
the Beijing-Hebei-Shanxi and Yangtze River Delta 
urban agglomerations have increased significantly, 
and more and more cities have entered the “High-high 
agglomeration area”.

In addition, from the perspective of the number of 
agglomeration types, the carbon emissions of Chinese 
cities in the representative year are dominated by 
high-high agglomeration and low-low agglomeration, 
supplemented by high-low agglomeration, and low-high 
agglomeration areas are the least. Meanwhile, due to 
the spatial spillover effect of urban carbon emissions, 
coupled with the coordinated development of regional 
industries and other reasons, it is difficult to change 
various agglomeration patterns, and finally form a 
spatial pattern of “the low is always low, and the high is 
always high”. 

Analysis of Influencing Factors

Based on the decomposition model of the spatial 
Dubin model, this paper explores the influencing  
factors of carbon emissions in China’s overall cities 
and four major regions. The specific results are shown  
in Table 2 and Table 3. 

The full sample regression results show:  
The estimated results of the direct effects of industrial 
structure, financial development, population density, 
infrastructure construction, and economic growth 
are significantly positive, which can promote carbon 
emissions. The reason is that the proportion of the 

secondary industry is increasing, which is accompanied 
by high energy consumption and high carbon emissions 
[21]. In addition, the current financial development 
system in China is still not perfect, in the initial stage, it 
mainly promotes economic growth and expands energy 
consumption by improving the level of industrialization 
and promoting the process of urbanization, thereby 
increasing carbon emissions [22]. In addition, cities 
with large population density have high demand for 
consumption, large energy consumption and high 
carbon emissions [23]. Meanwhile, the improvement 
of transportation infrastructure has also promoted 
the coordinated development among cities, thereby 
increasing the overall carbon emissions [24]. It is 
worth noting that although the long-term extensive 
mode of economic growth will lead to an increase in 
energy consumption and carbon emissions, there is an 
inverted “U” relationship between economic growth 
and carbon emissions, which shows that when the 
economy develops to a certain level, the environmental 
quality will be effectively improved [25]. The estimated 
results of the direct effects of foreign investment, 
technological innovation and government intervention 
are significantly negative, indicating that they can curb 
carbon emissions. This is mainly because improving 
technological innovation capability can improve energy 
efficiency [26]. Through the technology spillover effect 
of foreign investment, it can speed up the introduction 
of clean and environmental protection production 
technology, promote the green transformation of 
enterprises [27]. Meanwhile, in recent years, China 
has actively responded to global climate change 
and continuously increased financial investment in 
ecological environment protection and governance, 
which has also curbed carbon emissions to a certain 
extent [28-29].

The regional regression results show that: the 
main influencing factors of urban carbon emissions in 
the four regions are different, and the impact effects 
are also quite different. Among them, due to the 
high proportion of the secondary industry, imperfect 
financial development, large population density, perfect 
infrastructure and extensive economic growth in the 
eastern region, carbon emissions have been maintained 
at a high level. Meanwhile, the high level of foreign 
investment, large government financial investment 
in environmental protection and strong ability of 
technological innovation have played a positive role 
in energy conservation and emission reduction.  
In addition, the financial development, infrastructure 
construction, economic growth and other factors in the 
eastern region will aggravate the carbon emissions of 
neighboring cities, while the government intervention, 
technological innovation and other factors can alleviate 
the carbon emissions of neighboring cities. As far as the 
northeast region is concerned, the industrial structure 
has a certain inhibitory effect on carbon emissions, 
which may be due to the rapid industrial transformation 
and upgrading in this region, which promotes “carbon 
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emission reduction”. The improvement of transportation 
infrastructure has accelerated the coordinated 
development of industries in the region, and also 
promoted the carbon emissions of neighboring cities. 
Technological innovation capability also plays a weak 
role in promoting carbon emissions, which may be 
because technological progress causes a “rebound 
effect” while promoting local economic growth, leading 
to increased energy consumption, thereby promoting 
carbon emissions [30]. The development speed of 
the central region is not as fast as that of the west, 

and its strength is not as strong as that of the East.  
The large population density has attracted foreign 
businessmen to develop labor-intensive industries 
in central region, and finally formed an extensive 
economic growth mode of “high consumption, low 
efficiency, high emissions”. In addition, the industrial 
structure, population density, financial development, 
infrastructure construction and other factors have 
also exacerbated the carbon emissions of neighboring 
cities. However, the central region has increasingly 
attached importance to the strategic position of 

Table 2. Spatial decomposition models of full samples and eastern city samples.

Variables

Full sample Eastern Region

Direct effect Indirecteffect Direct effect Indirect effect

(1) (2) (3) (4)

lncy2

0.178*** -0.0220 0.187*** -0.0791

(0.0121) (0.0386) (0.0250) (0.0836)

lnfdi
-0.0136*** -0.0108 -0.0215*** -0.00759

(0.00338) (0.00994) (0.00587) (0.0178)

lnfin
0.0663*** 0.0808*** 0.118*** 0.0741*

(0.00602) (0.0215) (0.0119) (0.0442)

lnpop
0.110*** 0.246*** 0.0637*** -0.0295

(0.0162) (0.0533) (0.0170) (0.0561)

lngov
-0.0116*** -0.0689*** -0.0285*** -0.142***

(0.00417) (0.0150) (0.00881) (0.0331)

lninstra
0.0130** 0.0563*** 0.0668*** 0.113***

(0.00629) (0.0192) (0.0109) (0.0310)

lnzlf
-0.00616** 0.00236 -0.0166*** -0.0691***

(0.00258) (0.00761) (0.00476) (0.0176)

lpgdp
0.508*** 0.203 0.558*** 0.603*

(0.0579) (0.156) (0.103) (0.330)

lpgdp2
-0.0155*** -0.00172 -0.0177*** -0.00420

(0.00276) (0.00746) (0.00493) (0.0158)

rho
0.594*** 0.602***

(0.0121) (0.0211)

sigma2_e
0.00620*** 0.00421***

(0.000126) (0.000156)

Urban fixed YES YES

Fixed time YES YES

Obs 5,112 1,566

R-squared 0.326 0.249

Number of id 284 87

Note: In parentheses denote the standard error of the respective coefficients, ***/**/* indicates the significance at the 1%/5%/10% 
levels, respectively.
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ecological protection in high-quality development, 
actively promoted the implementation of environmental 
protection policies, and alleviated carbon emissions 
to a certain extent. The development of the western 
region has been lagging behind other regions, with the 
implementation of the western development strategy, 
the industrialization degree, financial development 
level, population density, per capita GDP are all 
improving, and the rapid economic development  
leads to increased energy consumption and carbon 

emissions. However, with the improvement of 
transportation infrastructure and technological 
innovation ability, the regional coordinated development 
of the western region has been strengthened, and carbon 
emissions have been restrained to a certain extent. 
Meanwhile, the industrial structure, foreign investment, 
financial development, technological innovation, 
economic growth and other factors have played a 
mitigating role in the carbon emissions of neighboring 
cities.

Table 3. Spatial decomposition model of urban samples in central, Western and northeastern.

Variables

Central Region Western Region Northeast Region

Direct effect Indirect effect Direct effect Indirect effect Direct effect Indirect effect

(5) (6) (7) (8) (9) (10)

lncy2

0.0814*** 0.265*** 0.184*** -0.124** -0.0389*** -0.0951**

(0.0188) (0.0581) (0.0238) (0.0544) (0.0133) (0.0479)

lnfdi
0.0225*** -0.0134 -0.00982 -0.0436* -0.00231 0.0248

(0.00515) (0.0163) (0.00882) (0.0229) (0.00435) (0.0152)

lnfin
0.0118 0.0721** 0.0580*** -0.0743** -0.00465 0.0441

(0.00805) (0.0341) (0.0131) (0.0318) (0.00963) (0.0386)

lnpop
0.209*** 0.445*** 0.120** 0.241 0.0482 0.301

(0.0410) (0.143) (0.0528) (0.149) (0.0981) (0.360)

lngov
-0.0135** 0.0114 0.00587 -0.0120 -0.00853 0.00545

(0.00628) (0.0238) (0.00832) (0.0217) (0.00569) (0.0194)

lninstra
0.00232 0.0947*** -0.0401*** -0.0205 0.0203*** 0.0861***

(0.00959) (0.0322) (0.0135) (0.0282) (0.00687) (0.0253)

lnzlf
0.00406 -0.00620 -0.0219*** -0.0269** 0.00760* 0.0245

(0.00346) (0.0114) (0.00580) (0.0130) (0.00454) (0.0179)

lpgdp
0.392*** 0.175 0.197* -1.157*** -0.106 -0.603

(0.104) (0.360) (0.112) (0.245) (0.111) (0.395)

lpgdp2
-0.0210*** -0.00657 -0.00803 0.0606*** -0.0107*** 0.0550***

(0.00496) (0.0164) (0.00535) (0.0116) (0.00398) (0.0143)

rho
0.552*** 0.462*** 0.565***

(0.0243) (0.0236) (0.0357)

sigma2_e
0.00272*** 0.00925*** 0.00123***

(0.000104) (0.000347) (7.22e-05)

Urban fixed YES YES YES

Fixed time YES YES YES

Obs 1,440 1,494 612

R-squared 0.138 0.011 0.086

Number of id 80 83 34

Note: In parentheses denote the standard error of the respective coefficients, ***/**/* indicates the significance at the 1%/5%/10% 
levels, respectively.
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Government Policy Suggestion

Promote Regional Coordinated Carbon 
Emission Reduction

The government should accelerate the vertical and 
horizontal linkage of various regions in the East, West, 
North and South, and give play to the collaborative 
governance role of urban energy conservation and 
emission reduction within and between regions, and 
coordinate the orderly realization of carbon peaking 
in all localities. For example, when coordinating the 
carbon emission control targets of various regions, 
the government should fully consider the regional 
objective facts, for western cities with small total 
carbon emissions and low intensity, the government can 
reduce the carbon emission intensity reduction targets, 
and promote the development of nuclear, wind, light 
and other new energy with the help of their ecological 
advantages. 

Accelerate the Transformation and Upgrading 
of Industries Structure

The government should accelerate the adjustment of 
the industrial structure, gradually reduce the proportion 
of industries with high pollution, high energy 
consumption, high carbon emissions and high carbon 
containing industries in the economy, and focus on the 
development of high-quality manufacturing, green and 
low-carbon manufacturing, modern service industries. 
Meanwhile, the government should rely on regional 
resource endowments and existing industrial structures 
to vigorously develop a green and low-carbon economy 
and accelerate the realization of green and low-carbon 
economic transformation.

Promote Green and Low-Carbon Transformation 
of Energy Structure

The government should promote the carbon emission 
reduction of the energy industry chain, and accelerate 
the development of wind power, solar power and nuclear 
power, and develop hydropower and other renewable 
energy according to local conditions, and enhance 
the supply capacity of clean energy. Meanwhile, the 
government should promote the substitution and 
transformation and upgrading of coal consumption, 
rationally regulate oil and gas consumption, and 
accelerate the construction of new power systems.

Conclusions

Based on panel data of 284 cities at prefecture 
level and above in China from 2000 to 2017, this paper 
studies the spatio-temporal evolution characteristics 
of urban carbon emissions in China, and discusses 

the influencing factors of urban carbon emissions in 
China. The main conclusions are as follows: (1) From 
the perspective of temporal-spatial distribution and 
evolution characteristics: The carbon emissions in the 
four regions showed a steady upward trend, and the 
growth rate of carbon emissions began to slow down 
after 2005. There was an obvious spatial imbalance in 
carbon emissions, of which the eastern region had the 
highest carbon emissions. Meanwhile, the distribution of 
carbon emissions in the eastern and central regions has 
obvious two-level differentiation. (2) From the sources 
of spatial-temporal differences and the characteristics of 
spatial agglomeration: The overall regional differences 
of China’s urban carbon emissions show a fluctuating 
downward trend. Meanwhile, the local agglomeration 
characteristics of China’s urban carbon emissions are 
obvious, mainly high-high agglomeration and low-
low agglomeration, of which high-high agglomeration 
is mainly distributed in the East and northeast, and 
low-low agglomeration is mainly distributed in the 
southwest. (3) From the perspective of the influencing 
factors of carbon emissions: The influencing factors 
in different regions are quite different. Among 
them, factors such as industrial structure, financial 
development, population density, infrastructure 
construction, and economic growth have an aggravating 
effect on carbon emissions in the eastern region, while 
technological innovation, foreign investment and 
government intervention can alleviate carbon emissions 
in the eastern region. Factors such as industrial 
structure, foreign investment, population density, and 
economic growth have aggravating effects on carbon 
emissions in the central region, while government 
intervention can alleviate carbon emissions in the 
central region. Factors such as industrial structure, 
financial development, population density, and 
economic growth have aggravating effects on carbon 
emissions in the western region, while infrastructure 
construction, technological innovation can alleviate 
carbon emissions in the western region. Factors such as 
infrastructure construction and technological innovation 
have an aggravating effect on carbon emissions in the 
Northeast, while the industrial structure can alleviate 
carbon emissions in the Northeast.
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