
Introduction

In recent years, due to the intensification of the 
greenhouse effect, natural disasters have been occurring 

frequently around the world. To combat this, countries 
worldwide are exploring energy conservation and 
emission reduction (ECER) solutions in line with their 
own sustainable economic development [1]. The CO2 
emissions of China, a major carbon emitter, reached 
18.18 billion tons in 2021, ranking first in the world [2]. 
Furthermore, China is also the major country leading 
global carbon emission reduction and plays a key role 
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in global climate and environment governance [3]. 
China committed to the goal of reducing greenhouse 
gas emissions in “The Paris Agreement” and promised 
that its CO2 emissions per unit of gross domestic 
product (GDP) would be reduced by 60-65% from 
2005 levels by 2030, and the share of non-fossil energy 
would be increased to around 20% of total energy 
[4]. At the United Nations General Assembly in 2020, 
China announced that it would strive to achieve peak 
CO2 emissions by 2030 and carbon neutrality by 2060, 
further enhancing China’s determination to reduce 
emissions [5]. China’s carbon neutrality commitment 
indicates that it will adopt stricter policies and 
measures to become more proactive in Global Climate 
Governance [6,7].

The industrial sector is the most significant 
contributor to China’s GDP and the largest CO2 
producer. High-energy-consuming industry (HECI) is 
a typical representative of the industrial sector [8, 9] 
and is responsible for a high proportion of the carbon 
emissions of the whole industrial system [10]. In 2006, 
the European Commission defined HECI as industries 
with an energy consumption per unit output value higher 
than the average level of all corresponding industries 
in the same period. In “The National Economic and 
Social Development Statistics Report in 2010”, China’s 
National Bureau of Statistics defined six industries as 
HECI: manufacture of chemical raw materials and 
chemical products, non-metallic mineral products, 
ferrous metal smelting and rolling, non-ferrous metal 
smelting and rolling processing industry, petroleum 
processing coking and nuclear fuel processing industry, 
and electric power and heat production and supply 
[11]. In recent years, China’s six HECI accounted for 
approximately 30% of the industrial output above 
the designated size. In contrast, energy consumption 
accounted for up to 75% of the industrial energy 
consumption above the designated size [12], and was 
accompanied by high carbon emissions, which requires 
high carbon emissions to produce unit value [13], 
which has seriously restricted energy conservation and 
emission reduction.

Due to its high energy consumption, high emission, 
and high pollution, HECI has concerned scholars.  
For the sake of rapid development, developing countries 
like China have invested heavily in HECI, which has led 
to sharp increases in carbon emissions [14]. Reduction 
of CO2 emissions in developed countries, such as the 
United States and Australia, has been largely due to 
transformation from HECI to service and information 
intensive industries [15]. In Malaysia, the rubber 
production industry is a HECI, and many energy-saving 
strategies have been applied in this industry to achieve 
ECER targets [16]. Thailand proposed an ECER scheme 
to promote sustainable design of the construction 
industry and improve the distribution process, aiming at 
the power industry with high energy consumption [17]. 
Some researchers have shown that more than 90% of 
manufacturing industry’s energy consumption in China 

and more than 50% of the CO2 emissions generated by 
energy consumption come from HECI, and the CO2 
emissions of HECI are increasing at an annual rate of 
7.8% [18]. Some studies discussed the characteristics 
of ECER in different sectors of HECI [19-21]. Among 
them, the energy consumption of the electricity and heat 
production industry was the highest, followed by those 
of the petrochemical and metal smelting industries [22].

China is currently experiencing rapid development 
of heavy industries as the primary characteristic of 
the late stage of industrialization and the industrial 
structure, which is dominated by heavy chemical 
industries with high consumption, low efficiency, and 
heavy pollution, cannot be changed in the short term 
[13]. Therefore, without changing the background 
of China’s industrial development, a technological 
innovation (TI)-oriented approach should be explored to 
change the traditional high-carbon development model 
of HECI. Achieving low-carbon development model 
with low energy consumption, emissions, and pollution 
would be a significant breakthrough. Therefore, 
important theoretical and practical implications should 
follow from taking TI as the driving force for the 
ECER of HECI, examining the process effect of energy 
conservation and emission reduction of HECI under 
the guidance of TI, and promoting a better low-carbon 
transformation of the industry.

At the same time, due to the rapid development 
of China, there are regional imbalances in TI [23], 
which are bound to cause regional differences in the 
process of ECER in HECI. Scientifically measuring the 
efficiency of ECER in HECI driven by TI and exploring 
the spatial and temporal differentiation of efficiency 
between regions and the influencing factors is important 
and will help the country to enhance the understanding 
of the ECER level of HECI in different regions to make 
targeted strategic arrangements.

Since the innovation-driven development strategy 
was proposed, it has attracted the attention of scholars 
within and outside of China. Scholars generally believe 
that TI is the key to industrial green production 
[24] and low-carbon, green, and energy technology 
innovation can effectively reduce carbon emissions  
[25-28]. Most scholars focus on promoting ECER in the 
manufacturing industry. The key to carbon emission 
reduction in the manufacturing industry is the low-
carbon development of HECI. Cheng et al. showed 
that from the perspective of sustainable development, 
HECIs need to transform their development mode 
through the improvement of TI capacity [29]. Cao 
et al. systematically compared the effects of ECER 
among six industries with high energy consumption and 
predicted that the use of standard oil could be reduced 
at least 1.231 million tons by 2025 under the application 
of ECER technology [30]. Yuan & Zhao proposed 
the technology coefficient elasticity to determine the 
transactions between economic sectors that have an 
impact on carbon emission reduction in HECI and 
the results showed that TI effectively promoted ECER  
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in HECI [31]. Using the method of system dynamics, Hu 
& Zhang explained that the improvement of the level 
of technology is the fundamental guarantee for low-
carbon transformation of HECI [32]. Li et al. further 
proposed that capacity and technological progress were 
two important driving factors for ECER in the iron and 
steel industry [33].

At present, frontier analysis method occupies the 
mainstream among methods of efficiency evaluation 
[34]. Frontier analysis is divided into stochastic frontier 
analysis (SFA) and data envelope analysis (DEA) [35]. 
The former ensures the accuracy of estimation by using 
an econometric method to measure efficiency. It has 
strict restrictions on the choice of functions, and the 
disadvantage that the output is single indicator [36, 
37]. Stochastic frontier analysis has been widely used 
in hospitals and the catering and cultural industries, 
as well as others [38, 39]. Data envelope analysis is a 
deterministic method of estimating efficiency based 
on linear programming [40]. It is not limited by choice 
of functions and can avoid the influence of subjective 
setting of the production function. Thus, it is suitable 
for complex systems with multiple inputs and outputs, 
which has advantages in dealing with efficiency 
measures of multiple outputs [41]. The network WSBM 
model is a data envelope analysis method that considers 
the weight of slack variables, which makes the efficiency 
value measurement more accurate. Few scholars have 
used the network WSBM model to empirically analyze 
the efficiency of ECER in HECI driven by TI and even 
fewer scholars divided the system of ECER in HECI 
driven by TI into two stages to solve the intermediate 
input problem.

Therefore, in this study, we divided the complex 
system of ECER in HECI driven by TI into two stages: 
TI and ECER, based on innovation theory and system 
dynamics. We built a concept model and index system 
of ECER in HECI driven by TI. Next, we established  
a two-stage efficiency network WSBM model 
considering the relaxation variable weight, effectively 
solving the problem of intermediate input. Finally, we 

measured the efficiency and space-time differences of 
ECER in HECI driven by TI between regions in the 
30 provinces and explored the influencing factors. The 
outcomes are intended to strengthen the innovation-
driven development strategies of all regions, implement 
the concept of green and low-carbon development, and 
play a leading role of ECER in HECI driven by TI.

Materials and Methods

Conceptual Model

Innovation promoting ECER is a complex dynamic 
system [42]. From the initial input of innovation 
elements to the final realization of ECER, the industry 
needs to go through a series of stages. The input of 
innovation elements is the basis of the whole system. 
After development and research, TI results are formed 
and the application of the innovation results to the 
process of industry production and creation is the 
key to ECER in the industry. However, the output 
of innovation results is not enough to drive the 
transformation of real productivity of HECI. Therefore, 
in addition to the output of the first stage serving as 
the input of the second stage, this output should also 
be combined with other production factors, namely, the 
intermediate input links [43], to transform and apply 
the innovation results, form new products and new 
technologies, and finally achieve the goal of ECER. 
According to this dynamic process, the complex system 
of TI driving ECER in HECI is composed of two 
stages (Fig. 1), i.e., (1) A TI subsystem, consisting of 
innovation element input, development and research, 
and innovation achievement output; (2) An ECER 
subsystem, consisting of innovation achievement output 
(as the input of ECER subsystem), intermediate input, 
transformation and application, and final output. The 
TI subsystem provides a power guarantee for the ECER 
subsystem and, in turn, the high benefits brought by the 
ECER of the industry provide material support for the 

Fig. 1. Conceptual model of ECER in the HECI driven by TI.
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TI subsystem. The two systems are closely related and 
together constitute a complete system.

Index Construction

Combined with the research of most scholars, the 
input in TI constructed indicators from three aspects: 
human, material, and financial resources. Considering 
the characteristics of high emissions and high pollution 
in HECI, this study added important green indicators. 
The full-time equivalent of research and development 
(R&D) personnel was taken as the human element [44], 
the proportion of new fixed assets in technical services 
and the scientific research industry as the material 
element, and the internal expenditure of R&D funds 
as the financial element [45, 46]. The innovation output 
of the first stage adopted three outcome indicators: the 
number of scientific and technological papers, indicating 
the status of regional scientific research activities; 
number of green invention patents granted, indicating 
the active state of low-carbon TI; and technology 
market turnover, indicating the transfer, diffusion, and 
application of TI achievements. 

The input index of the second stage added the level 
of green financial support and technology service on 
the basis of the innovation achievement output in the 
first stage [47]. Specifically, green financial support was 
measured using the interest expenditure of HECI as  
a percentage of total industrial interest expenditure; the 
technology services were measured by the number of 
science and technology business incubators.

The key to the efficient evaluation of ECER of 
HECI driven by TI lies in the measurement of ECER of 
the industry. Currently, several studies have interpreted 
ECER and proposed some ECER evaluation indicators. 
Qu & Liu considered more per capita carbon emissions 
and the urban green rate when evaluating urban ECER 
[48]. Ye et al. assessed the development of a regional 
low-carbon circular economy in Sichuan Province, 
China, and the selection of indicators included three 
aspects: Development of the economy, progress of 
society, and energy consumption [49]. Liang et al. 
proposed the construction of ECER indicators for the 
logistics industry considering environmental variables, 
density of logistics, level of urbanization, and logistics 
specialization level [50]. Wang et al. constructed 
comprehensive indicators for the green development 
of the coal industry from three aspects: Energy 
consumption, environment, and resource utilization 
[51]. Dong et al. chose industrial added value as the 
expected output and CO2 emissions as the non-desired 
output to construct indicators for green development in 
the industrial sector [52].

To summarize, the academic community has carried 
out ECER evaluations of different research objects. 
However, the selection of specific indicators has been 
diverse. In this study, considering existing literature and 
the applicability of ECER indicators of various HECI, 
we added industrial value generated per unit of carbon 

emissions, ratio of carbon emission intensity between 
industry and country [53], and ratio of industrial 
output to energy consumption as the three indicators  
for the final output of industrial ECER of the second 
stage. The industrial added value generated per unit 
of carbon generation reflects the industrial production 
capacity. The ratio of the industrial carbon emission 
intensity to the national carbon emission intensity 
demonstrates the competitiveness of the low carbon 
development of the industry. The energy efficiency of an 
enterprise is reflected by the ratio of industrial output to 
energy consumption. The specific efficiency evaluation 
indicators used in this study are shown in Table 1.

Entropy Value Method

Utilizing the DEA efficiency evaluation method, 
the weight of the index is as objective as possible. The 
entropy value method is a weighting method that only 
depends on the discreteness of data itself to determine 
the index weight objectively [54]. It was first introduced 
into information theory by the American mathematician 
C.E. Hannon [55] and has been widely used. Therefore, 
this study adopted the entropy value method to assign 
objective weights to each index. The procedures of the 
entropy method are as follows:

(1) Normalize the data. To solve the problem 
of different measurement units of each index, it is 
necessary to normalize them.

For positive indicators:
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been presented [59]. That is, all the output of the first 
stage is used as the input of the second stage, and there 
can be other additional inputs. This study also divided 
the ECER of HECI driven by TI into two sets. It built 
a network WSBM to measure the two stages and the 
overall efficiency of ECER of HECI driven by TI.  
The model settings are as follows:

It is assumed that DMUk(k = 1, ..., n) consists of 
two stages: xik(i = 1, 2, ..., m) is the ith input of the kth 
DMU in the first stage and zgk(g = 1, 2, ..., G) is the 
gth production of the kth DMU in the first stage and 
an input factor in the second stage. yrk(r = 1, 2, ..., s1) is 
the rth expected output of the kth DMU in the second 
stage and ubk(b = 1, 2, ..., s2) is the bth unexpected 
output of the kth DMU in the second stage. The specific 
expression formula of the two-stage input-output is as 
follows:

First stage:
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(5) The weight of each index is calculated as follows: 
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Network WSBM 

Data envelope analysis is a mathematical method 
used to evaluate the relative effectiveness of decision-
making units (DMU) based on input and output [56]. 
The traditional DEA model regards each DMU as 
a camera obscura without considering its internal 
structure [57]. It cannot view the relaxation of input 
and output, which measures the efficiency value 
inaccurate. The network DEA model disintegrates the 
black box, divides the DMU into a sub-decision-making 
unit (sub-DMU) according to the actual production 
process, and calculates both its DMU and its sub-DMU 
efficiency value. To measure the efficiency value more 
accurately, Tone constructed the SBM model, which 
is a DEA analysis method that considers relaxation 
variables and measures them in a non-radial and non-
angular manner [58]. The advantage of this method is 
the efficiency value decreases strictly monotonically 
with the alternation of input and output slack degree.  
The SBM model has more substantial resolving 
power than the traditional DEA model. To reflect the 
importance of slack variables, we should consider 
giving them different weights, i.e., as in the WSBM. 
The extended two-stage network DEA model has since 

Stage First-level 
indicator Secondary indicators Indicator 

direction

Technological 
Innovation

Innovation input

Full-time equivalent of R&D personnel +
Internal expenditure of R&D funds +

Proportion of new fixed assets in the technical services and 
scientific research industry +

Innovation output
No. of scientific papers among 10,000 people +

No. of green invention patents among 10,000 people +
Technology market turnover among 10,000 people +

Energy 
conservation and 

emission reduction

Second 
input

Innovation 
output

No. of scientific papers among 10,000 people +
No. of green invention patents among 10,000 people +

Intermediate 
input

Technology market turnover among 10,000 people +
Green finance support +

Science and technology service +

Final output

Industrial added value per unit of carbon emissions +
Ratio of industry carbon emission intensity to national carbon 

emission intensity –

Ratio of industrial output to energy consumption +

Table 1. Efficiency evaluation index system of ECER of HECI driven by TI.

≥ ≥ ≥
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In the above formula (8), si
– and sg

+ represent 
relaxation variables of input and output of the model, 
respectively, and wio, wgo are weights of input and output 
of the first stage, respectively.

Second stage:
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Since Equations (8) do not distinguish the relative 
importance between desired and undesired outputs, 

1 2

 W W 1
s s

ro bo
r b

+ =∑ ∑  is set. ρ1
* and ρ2

* represent the 
efficiency of the region’s TI and ECER k(k = 1, 2, ..., n), 
respectively. For the measurement of the final efficiency 
of the two-stage approach, the efficiency ρ* of the whole 
system is represented by the geometric mean of two 
stages. When ρ* = 1, it suggests that the evaluation unit 
is effective as a whole, and when ρ*<1, it indicates that 
the evaluation unit is invalid.

Data Sources

Consider the science and availability of the data, this 
study took HECI (including data on six high-energy-
consuming industries) in 30 provinces (including 
autonomous regions and municipalities directly under 
the Central Government) in China from 2015 to 2020 
as the research subjects. The HECI are subject to 
the six major energy-intensive industries proposed 
by the National Bureau of Statistics. The data were 
obtained from the 2013-2020 “China Venture Capital 
Development Report”, “China Science and Technology 
Statistical Yearbook”, “China Energy Statistical 
Yearbook”, and the “Statistical Yearbook” of 30 
provinces. The ECER of HECI driven by TI is a phased 
value transformation process and there is a specific time 
lag between factor input and output. Therefore, it was 
assumed that the time interval between factor input 
and output at each stage was 1 year. The descriptive 
statistical analysis of the specific index data is shown 
in Table 2.

Results

Based on the network WSBM in this paper, 
with variable returns to scale and unexpected 
outputs, MaxDEA software was used to measure the 
performance of ECER in HECI driven by TI. The 30 
provinces were grouped into four regions: East, Central, 
Northeast, and West (see reference [60] for classification 
criteria). The empirical results of total efficiency 
and two-stage efficiency in each province are shown 
in Table 3. The spatial and temporal differentiation 
characteristics of total efficiency, two-stage efficiency 
evolution characteristics, and two-stage efficiency 
matrix were analyzed. The efficiency level of ECER 

Table 2. Descriptive statistical analyses.

≥ ≥ ≥ ≥

Variable Maximum Minimum Mean Standard deviation

Full-time equivalent of R&D personnel 872238 4007.7 144882.4 165715.9

Internal expenditure of R&D funds 34798833 115842.7 6313709.1 7048915.3

The proportion of new fixed assets in the technical services and 
scientific research industry 0.256 0.111 0.181 0.03

Number of scientific papers per 10,000 people 59.87 3.92 11.27 10.78

Number of green invention patents per 10,000 people 10.18 0.19 1.39 1.61

Technology market turnover per 10,000 people 4.31 0.01 0.29 0.59

Green finance support 0.91 0.001 0.51 0.16

Science and technology service 1079 4 142.73 186.07

Industrial added value per unit of carbon emissions 1524516 2684.48 198578 261897.6

Ratio of industry carbon emission intensity to national carbon 
emission intensity 11.64 0.02 1.40 1.84

Ratio of industrial output to energy consumption 22886518 295445 3286251 3462799
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driven by TI was not balanced in the 30 provinces 
studied and the gap was large. This is consistent with 
the conclusion on energy efficiency in China from the 
research by Zhu et al. [61].

Space-Time Evolution Features of Total Efficiency 

Time Series Analysis

The characteristics of evolution of regional total 
efficiency from 2015 to 2020 are shown in Fig. 2.  
The efficiency of ECER in HECI driven by TI fluctuated 
little across the 30 provinces; however, there was a brief 
low point in 2018. This result corroborates the fact that 
global carbon emissions increased significantly in 2018 
as published in the 2019 BP World Energy Statistics 
Yearbook. In terms of regions, the East, Central, and 
West show a similar trend to the national overall, 

with the total efficiency of the East slightly higher 
than that of the West, while the total efficiency of the 
Central region is lower. The northeast region showed  
a breakthrough growth trend from low to high.

This observed efficiency pattern has both historical 
causes and practical effects. As an old industrial  
base of China, Northeast China is rich in energy 
resources and has a wide distribution of HECI. 
However, HECI in Northeast China still use production 
equipment from the past and the energy consumption 
is dominated by coal, which leads to high carbon 
emissions in the early years. In addition, the regional 
economy is not developed, resulting in brain drain.  
As a result, the efficiency of ECER in Northeast China 
was low in the early years. However, with the promotion 
of initiatives to revitalize the old industrial bases in 
Northeast China, the HECI in the three Northeastern 
provinces have gradually improved their efficiency 

Table 3. The efficiency of ECER of HECI driven by TI.

Area Province

2015 2016 2017

Subphase
TE

Subphase
TE

Subphase
TE

TI ECER TI ECER TI ECER

East

Beijing
Tianjin
Hebei

Shanghai
Jiangsu

Zhejiang

1
0.140
0.148

1
0.236
0.636

1
0.275

1
1

0.963
1

1
0.311
0.344

1
0.402
0.812

1
0.155
0.118
0.275
0.149

1

1
0.342

1
0.537
0.821

1

1
0.378
0.295
0.503
0.361

1

1
0.287
0.146
0.189
0.104

1

1
0.576

1
0.354
0.555

1

1
0.644
0.298
0.390
0.326

1
Fujian

Shandong
Guangdong

Hainan

0.132
0.157
0.221

1

0.682
1
1
1

0.337
0.367
0.392

1

0.112
0.132
0.163

1

0.798
1
1
1

0.326
0.378
0.373

1

0.139
0.124
0.130

1

1
1

0.926
1

0.350
0.374
0.350

1

Central

Shanxi 1 1 1 0.371 1 0.685 0.378 1 0.689

Anhui
Jiangxi

0.585
0.185

1
1

0.757
0.411

0.585
0.151

1
1

0.792
0.453

0.614
0.166

1
1

0.807
0.476

Henan 0.130 1 0.339 0.118 1 0.332 0.138 1 0.350

Hubei
Hunan

0.166
0.174

0.464
0.904

0.363
0.432

0.117
0.148

0.542
1

0.360
0.425

0.142
0.179

0.530
1

0.323
0.432

Northeast
Liaoning 0.251 0.513 0.374 0.213 0.620 0.369 0.314 0.705 0.458

Jilin
Heilongjiang

0.261
0.309

0.975
0.652

0.453
0.431

0.264
0.295

0.854
0.737

0.408
0.399

0.355
0.642

0.783
0.746

0.469
0.567

West

Chongqing 0.263 0.616 0.466 0.205 0.567 0.448 0.252 0.943 0.546

Sichuan 0.158 0.649 0.324 0.143 0.757 0.302 0.187 0.810 0.313

Guizhou
Yunnan
Shaanxi
Gansu

Qinghai
Inner Mongolia

Guangxi
Ningxia
Xinjiang

0.287
0.124
0.158
0.131

1
0.286
0.210
0.693
0.356

1
1

0.449
0.821

1
0.932

1
0.977
0.888

0.403
0.393
0.390
0.351

1
0.447
0.373
0.733
0.540

0.249
0.131
0.129
0.252

1
0.369
0.188
0.661
0.315

1
1

0.478
0.839

1
1
1

0.999
1

0.420
0.394
0.348
0.342

1
0.488
0.414
0.719
0.524

0.300
0.233
0.166
0.325

1
0.669
0.224
0.661
0.522

1
1

0.512
0.981

1
1
1

0.876
1

0.465
0.405
0.358
0.401

1
0.681
0.412
0.735
0.592

All Mean 0.380 0.859 0.531 0.334 0.862 0.508 0.386 0.877 0.540
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in ECER driven by TI. Compared with Northeast 
China, the development and construction of HECI in 
the Eastern and Central regions started later, so the 
production and manufacturing level was relatively high. 
Driven by TI, the ECER effect of these industries was 
relatively good. Although the economy of the Western 
region is relatively undeveloped, the TI level of HECI 
in the region is still at the forefront of the country 
because of the national support for construction and 
preferential talent attraction policies provided by the 
regional government. Therefore, the ECER efficiency of 
HECI driven by TI in the Western region can reach the 
national average.

Spatial Evolution Analysis

To further analyze the spatial differences of 
total efficiency, 2015, 2017 and 2020 were selected 

as representatives and ArcGIS was used to analyze  
the spatial evolution of total efficiency in 30 provinces 
(Fig. 3). The average value of the annual total efficiency 
was taken as the node value. According to the node 
value, the provinces were divided into three states: high 
effectiveness (red area), moderate effectiveness (blue 
area), and low effectiveness (yellow area). In 2015, 
five of the 30 provinces (Beijing, Shanxi, Qinghai, 
Shanghai, and Hainan) were highly effective, and four 
provinces were moderately effective (Anhui, Zhejiang, 
Ningxia, and Xinjiang). The remaining 21 provinces 
fell in the low effectiveness state. The levels differ 
substantially and there is a large gap in the efficiency 
values of ECER in HECI driven by TI among regions, 
showing an obvious spatial pattern. Since 2016, because 
of the introduction of several national opinions on the 
comprehensive revitalization of the old industrial bases 
in Northeast China, the total efficiency of the Northeast 

Area Province
2018 2019 2020

Subphase
TE

Subphase
TE

Subphase
TE

TI ECER TI ECER TI ECER

East

Beijing
Tianjin
Hebei

Shanghai
Jiangsu

Zhejiang

1
0.199
0.184
0.182
0.084
0.093

1
0.313

1
0.183
0.248
0.417

1
0.345
0.167
0.213
0.122
0.208

1
0.169
0.118
0.609
0.132
0.344

1
0.405

1
0.892
0.761

1

1
0.473
0.302
0.648
0.382
0.582

1
0.153
0.139
0.599
0.168
0.507

1
0.405

1
0.894
0.761

1

1
0.466
0.312
0.678
0.400
0.574

Fujian
Shandong

Guangdong
Hainan

0.134
0.100
0.070

1

0.830
0.495
0.351

1

0.214
0.131
0.123

1

0.090
0.068
0.105

1

0.771
0.612
0.968

1

0.384
0.277
0.351

1

0.103
0.080
0.153

1

0.786
0.614

1
1

0.392
0.283
0.359

1

Central

Shanxi 0.364 1 0.682 0.438 1 0.719 0.411 1 0.705
Anhui
Jiangxi

0.138
0.208

0.841
0.850

0.207
0.392

0.145
0.158

1
1

0.457
0.576

0.242
0.661

1
1

0.471
0.830

Henan 0.148 1 0.184 0.096 1 0.346 0.115 1 0.355
Hubei
Hunan

0.160
0.180

0.394
1

0.186
0.302

0.118
0.117

0.556
0.859

0.381
0.453

0.134
0.148

0.518
0.875

0.389
0.471

Northeast
Liaoning 0.360 0.536 0.403 0.297 0.618 0.463 0.317 0.617 0.474

Jilin
Heilongjiang

0.515
0.874

0.559
0.588

0.399
0.593

0.363
1

0.681
1

0.577
1

0.371
1

0.680
1

0.581
1

West

Chongqing 0.239 0.595 0.365 0.158 0.876 0.504 0.184 0.899 0.517
Sichuan 0.200 0.465 0.213 0.125 0.621 0.335 0.157 0.621 0.351
Guizhou
Yunnan
Shaanxi
Gansu

Qinghai
Inner Mongolia

Guangxi
Ningxia
Xinjiang

0.273
0.287
0.195
0.458

1
1

0.337
0.625
0.525

0.925
0.810
0.455
0.560

1
0.807

1
0.702

1

0.379
0.358
0.331
0.419

1
0.759
0.339
0.696
0.528

0.241
0.226
0.132
0.347

1
0.501
0.222
0.512
0.421

1
1

0.471
0.828

1
1
1

0.981
1

0.400
0.368
0.376
0.414

1
0.597
0.403
0.713
0.565

0.231
0.207
0.149
0.363

1
1

0.226
0.518
0.355

1
1

0.471
0.828

1
0.862

1
0.991

1

0.397
0.360
0.385
0.423

1
0.828
0.406
0.717
0.534

All Mean 0.371 0.698 0.409 0.342 0.863 0.536 0.390 0.861 0.555
Note: “ECER” stands for energy saving and emission reduction; “TI” stands for technological innovation; “TE” stands for total 
efficiency.

Table 3. Continued.
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region has changed significantly. The total efficiency 
of all three northeastern provinces was in the low 
effective state in 2015, and in 2017, Heilongjiang and 
Jilin crossed to a moderate effective state. Heilongjiang 
is even in 2020 to reach the effective frontier surface, 
its ECER of HECI driven by TI jumped to the 
forefront of the country, the growth momentum is 
remarkable. In this research area, the total efficiency 
values of Beijing, Qinghai and Hainan were always 
in the effective frontier state. Benefiting from its 
advantages as a capital city, Beijing has high-quality 

educational resources, rich TI resources, and gradual 
relocation of HECI. The remaining HECI is bound to 
be a model of ECER development. Qinghai and Hainan 
are geographically remote, have a good ecological 
foundation, are not dense in HECI, and their TI can be 
quickly popularized. In the eastern region, the provinces 
located in the Yangtze River Delta region show a state 
of agglomeration leadership, but the Jiangsu province 
has always been in a low degree of effective state, and 
the future of HECI to save energy and reduce emissions 
is still a serious problem in this area. Influenced by the 

Fig. 2. Regional total efficiency evolution characteristics (2015-2020).

Fig. 3. Spatial evolution characteristics of total efficiency in 30 provinces.



Sun L., et al.3778

technology spillover effect of the Yangtze River Delta 
region, the neighboring provinces of Anhui and Jiangxi 
have seen varying degrees of improvement in efficiency. 
Compared to the western region, the central region 
has a concentrated population, a secondary industry 
representing an important pillar of local economic 
development, a dense HECI, high environmental costs, 
and poor TI to drive the efficiency of ECER in HECI.  
It will take more time for TI to drive the ECER of HECI 
in these regions.

Two-Stage Efficiency Evolution Characteristics 

Technology Innovation Stage

The average value of the 30 provinces in 2015-2020 
shows a shallow “W” shape with no significant 
fluctuations. The six-years average is 0.36703, which 
is similar to the results measured by Qiao & Wang 
using the three-stage DEA [62], indicating that the 
efficiency of the TI stage was not high. Efficiencies in 
11 provinces were above the average, accounting for 
36.7%. Only Beijing, Hainan, and Qinghai reached the 
effective frontier, and their efficiency of technological 
innovation is in the first echelon of the country. There 
are 10 provinces with TI efficiency higher than the 
national average for the year 2020, which is two 
additional provinces compared to 2015. The efficiency 
of technological innovation in Jiangxi Province has 
increased significantly, from 0.1851 in 2015 to 0.6606 in 
2020. While Shanxi Province’s TI efficiency remained 
1 in 2015, at the effective frontier, it has dropped to 
0.4105 by 2020. This may be because the more efficient 

Beijing, Hainan, and Qinghai, among other places, have 
increased their innovation input and output over the 
years, while Shanxi Province maintained the status quo, 
failing to keep the pace, and was therefore left behind. 
By region, the efficiency of TI in the eastern, central, 
northeastern, and western regions in 2020 is higher than 
the national average by 40%, 33.3%, 33.3%, and 36.4% 
respectively, demonstrating that the eastern and western 
regions are better than the central and northeastern 
regions. Future efforts to narrow the differences in local 
TI levels and enhance the flow of innovation factors 
between regions are crucial. 

Energy Conservation and Emission 
Reduction Stage

Over the past six years, the average efficiency of 
the 30 provinces has been high with a six-year average 
of 0.8607, indicating that the efficiency of ECER in 
HECI is generally high. Twenty of the 30 provinces 
have higher-than-average efficiency for ECER in HECI, 
accounting for 66.7%. Table 3 shows that provinces 
below the national average are less effective in driving 
TI. Thus, more innovation support is needed in the 
future, and the main task should be to strengthen the 
transformation of innovation results in the ECER of 
HECI.

Two-Stage Efficiency Matrix Analysis

The average efficiency of the two stages in 30 
provinces (according to the results for 2020 shown in 
Table 3) was taken as the dividing line to make a scatter 

Fig. 4. Two-phase efficiency matrix plot in Fig in 2020.
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plot (Fig. 4). The 30 provinces were distributed in the 
first, second, and third quadrants. The first quadrant 
includes 10 provinces: Beijing, Heilongjiang, Hainan, 
Qinghai, Inner Mongolia, Zhejiang, Ningxia, Jiangxi, 
Shanxi, and Shanghai. The two-stage efficiency values 
of these 10 provinces are higher than the national 
average, and the efficiency of ECER in HECI driven 
by TI is at the forefront of the country. Among them, 
Beijing, Heilongjiang, Hainan, and Qinghai all reached 
the two-stage DEA validity. Their technology innovation 
resource allocation mechanism and innovation driving 
mechanism perform well and TI drives the ECER of the 
HECI intensively and effectively.

The 10 provinces located in the second quadrant 
are Henan, Hebei, Guangdong, Hunan, Chongqing, 
Guizhou, Anhui, Xinjiang, Guangxi, and Yunnan. 
The common feature of these provinces is an HECI 
with high efficiency in ECER, but low efficiency in 
TI. Except Chongqing and Hunan, the other eight 
provinces have reached the effective frontier of ECER 
efficiency. The outstanding performance of these 
provinces for ECER in HECI is closely related to the 
role of the functional supervision departments of the 
government. For example, in 2017, Henan Province 
issued the “Thirteenth Five-Year Plan for Energy 
Conservation and Low Carbon Development in Henan 
Province,” which clearly sets out the goal of effectively 
controlling the province’s total energy consumption 
and significantly improving the energy efficiency of the 
industry. Hunan Province formulated a five-year action 
plan in 2016 to implement low-carbon development 
and improve the groundwork for establishing carbon 
emissions trading. Some provinces in the central and 
western regions, where TI is less efficient and the 
region’s innovation capacity is weaker, have achieved 
effectiveness in the ECER development phase. Possible 
reasons for this are related to the fact that these regions 
are actively exploring effective modes for transforming 
TI results, and the ECER phase in HECI is more 
extensively utilized for innovation outputs. For example, 
Anhui Province, Hefei City, University of Science and 
Technology of China and Chinese Academy of Sciences 
jointly built a collaborative innovation platform; Hebei 
Province promoted the establishment of a Beijing-
Tianjin-Hebei science and technology information data 
sharing platform; and Yunnan Province pioneered 
the “science and innovation loan + risk pool” model 
to minimize the financing difficulties of science and 
innovation enterprises, among other problems. This 
series of initiatives has driven the region’s innovative 
output to translate into ECER targets more quickly for 
HECI.

In the third quadrant, there are ten provinces: 
Gansu, Fujian, Jiangsu, Jilin, Sichuan, Shandong, 
Liaoning, Hubei, Shaanxi, and Tianjin. The efficiency 
of the two stages in this quadrant is lower than the 
average levels. Statistics show that the investment in TI 
in these provinces is significantly insufficient compared 
to the first quadrant provinces. Except for Gansu, Jilin 

and Liaoning, the limited innovation resources invested 
by the other seven provinces in the R&D process are 
not fully utilized, resulting in low efficiency of TI. The 
main reason for the low efficiency of ECER for HECI 
in this quadrant is also due to the apparent lack of TI 
drivers.

Influencing Factors of TI Driving ECER 
in HECI

Main Influencing Factors

ECER in HECI driven by TI is a complex system 
influenced by a variety of factors. To further improve 
the efficiency of ECER, it is necessary to deeply 
analyze the influencing factors. The quality of labor 
(LAB), industrial structure rationalization index 
(ISR), marketization level (MAR), green finance index 
(GF), energy consumption structure (ECS), education 
investment (EI), venture capital (VC), R&D investment 
(RD) and green invention patents (GIP) were selected 
for the impact effect analysis. Labor quality was 
measured by the proportion of employees with college 
degree or above, industrial structure was represented by 
the industrial structure rationalization index constructed 
by Shao et al. [63], marketization level was measured by 
the results of Wang Xiaolu and Fan Gang’s calculation 
of the marketization process in various regions of China, 
a green finance index adopted the measurement method 
of Wang et al. [64], energy consumption structure 
was represented by the proportion of coal in energy 
consumption, and education input was represented by 
the proportion of education expenditure in financial 
expenditure.

Tobit Model

Considering that the DEA method is used to 
measure efficiency, the efficiency value is limited to 
values between 0 and 1. For the explained variables 
with limited value, using the Tobit model based on the 
maximum likelihood method for regression analysis 
can more scientifically examine the principal factors 
that cause the variations in the explained variables 
[65]. Given this, the panel Tobit model was selected to 
analyze the influencing factors. The Tobit model takes 
the following form:

Table 4. Tobit likelihood ratio test results.

(10) (11) (12)

Chi-square 155.585 91.094 138.373

AIC value 47.499 134.555 18.406

BIC value 82.622 169.678 16.716

P value 0.000 0.000 0.000
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where β is the regression parameter vector, xi is the 
explanatory variable vector, yi

* is the explained variable 
vector, and yi is the explained variable value vector. The 
typical form of the Tobit model is to set c1 to 0 and c2 
to positive infinity. εi is the error term that is assumed 
to be normally distributed with mean zero and constant 
variance [66].

LAB, ISR, MAR, GF, ECS, EI, VC, RD, and GIP 
were taken as explanatory variables, and the efficiency 
value of technological innovation stage, efficiency 
value of energy conservation and emission reduction 
stage and total efficiency value (TE) were taken as 
explanatory variables to analyze the impact effect.

The Tobit regression model is constructed as follows:

1 2 3 4

5 6 7 8 9          
it it it it it

it it it it it it

TIE c LAB ISR MAR GF
ECS EI VC RD GIP

β β β β
β β β β β ε

= + + + + +
+ + + + + ,  

(10)

1 2 3 4

5 6 7 8 9           
it it it it it

it it it it it it

ECERE c LAB ISR MAR GF
ECS EI VC RD GIP

β β β β
β β β β β ε

= + + + + +
+ + + + + ,   

(11)

1 2 3 4

5 6 7 8 9        
it it it it it

it it it it it it

TE c LAB ISR MAR GF
ECS EI VC RD GIP

β β β β
β β β β β ε
= + + + + +

+ + + + + . 

(12)      

In the formula (Equations (10), (11) and (12)), i 
represents the 30 provinces studied, and t (2015, ..., 
2020) is the period. 

Tobit Regression Likelihood Ratio Test

To ensure the reliability of the model used, the Tobit 
regression model was tested for likelihood ratio, and 
the test results are shown in Table 4. According to the 
results, the p-values of the likelihood ratio tests for the 
constructed models (10), (11), and (12) are all 0.000 less 
than 0.01; thus, the explanatory variables in the model 
are helpful for the model, i.e., the model is meaningful.

Analysis of Empirical Results

The regression analysis results of all factors are 
shown in Table 5.

Table 5 shows that in the TI stage, the industrial 
structure rationalization index, marketization level, 
green finance index, energy consumption structure, 
investment in education, and R&D investment 
significantly influenced the efficiency of TI. However, 
labor quality, number of green invention patents, and 

venture capital had no significant impact. Among 
them, investment in education had the most substantial 
impacts in promoting the efficiency of TI and had 
influence coefficients greater than 1; Education is the 
foundation of a strong country and regional investment 
in education will ultimately be reflected in the output 
of talents, which will greatly promote the efficiency 
of regional innovation. The marketization level and 
energy consumption structure had a conspicuous 
negative impact on the efficiency of TI, which reflects 
the unreasonable problems existing in the marketization 
construction in China.

In the ECER stage, in addition to the quality 
of labor, R&D investment, and a number of green 
invention patents, other influencing factors had a 
conspicuous influence on efficiency. The rationalization 
of the industrial structure, progress of green finance, 
and increase in the education investment conspicuously 
promoted the efficiency of ECER, and the coefficients 
were all >1. The increase in venture capital also slightly 
improved the efficiency of ECER. As for the stage, 
the grade of marketization and energy consumption 
structure also negatively influenced the ECER efficiency 
of the industry. Unlike the first stage, venture capital 
had a conspicuous positive influence on the efficiency 
of ECER of HECI. Venture capital usually invests in 
enterprises with high and new technologies, which have 
unknown but high risk, so it has a lower coefficient and 
a lower degree of impact on ECER.

Among the possible influencing factors of the total 
efficiency, there is a significant relationship between 
the total efficiency and all the other factors except 
for the quality of workers, venture capital, R&D 
investment, and the number of green invention patents. 
The industrial structure rationalization index, green 
finance index, and education investment had significant 
positive relationships with the total and two-stage 
efficiency. These are the three key factors for TI to 
drive the ECER of HECI. The level of marketization 
also had a conspicuous negative correlation with the 
total efficiency, which appeared to indicate that China’s 
marketization construction gives considerable attention 
to high-speed economic growth while ignoring the need 
for ECER of the industry and that the market-oriented 
development does not correspond with the green 
development needs. The relationship between R&D 
funding input and total efficiency is not significant, 
probably because there is investment redundancy in 
research funding. Excessive investment in R&D funding 
may lead to inefficiency in research, and the mismatch 
between input and output leads to an insignificant 
impact relationship.

Robustness Test

To enhance the robustness of Tobit regression 
results, we performed robustness tests by replacing 
proxy variables. In addition to the common use of the 
proportion of workers with college degrees and above to 

≥

≥ ≥

≥
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measure the quality of the labor force, the average years 
of education of employed workers can also be a good 
measure of the quality of the labor force. Therefore, in 
this section, we use the average years of education of 
employed persons as a proxy variable for the quality of 
the workforce in the context of robustness testing. The 
regression results are shown in Table 6. We focus on 
the coefficients’ values of the explanatory variables and 
their significance. It can be seen that the coefficients 
sign’s direction of the explanatory variables remains the 
same and the level of significance does not change in the 
regression of the efficiency values. This suggests that 
the findings in the influencing factors section remain 
the same even when the proxies for the explanatory 
variables are replaced.

Discussion 

Spatial and Temporal Differentiation Analysis

Regional differences were observed in China’s 
HECI, as also reported by previous studies [67]. 
Previous studies have shown that from 2005 to 2015, 
the efficiency of ECER gradually decreased from east 
to west [68]. However, under different spatial and 
temporal conditions and limited research objects, the 
ECER of regional HECI will vary [69]. In this study, 
the ECER efficiency of HECI in China, driven by TI 
from 2015–2020, shows a significant difference, with 
higher improvement in the northeast and no significant 
improvement in other regions. The lower starting value 

Explanatory variable Technological 
innovation stage

Energy conservation and 
emission reduction stage Total efficiency

Constant term 2.224*** 2.097*** 1.704***

Labor quality (LAB) -0.005 -0.054 0.010

Industrial structure rationalization 
index (RIS) 0.952*** 1.709*** 0.831***

Marketability level (MAR) -0.131*** -0.211*** -0.102**

Green finance index (GF) 0.851* 1.266* 0.940**

Energy consumption structure (ECS) -0.644*** -0.692** -0.375**

Educational investment (EI) 2.746*** 5.781*** 1.792**

Venture capital (VC) 0.001 0.001** 0.001

R&D investment (RD) 0.001* 0.002 0.001

Green invention patents (GIP) 0.001 0.001 0.001

Note: *, **, and *** represent significance at the significance levels of 10%, 5%, and 1% respectively.

Table 5. Regression results of influencing factors. Values are coefficients.

Table 6. Robustness test results. Values are coefficients.

Explanatory variable Technological 
innovation stage

Energy conservation and 
emission reduction stage Total efficiency

Constant term 2.166*** 1.692*** 1.702***

Labor quality (LAB) 0.001 -0.005 0.004

Industrial structure rationalization 
index (RIS) 0.940*** 1.691*** 0.807***

Marketability level (MAR) -0.131*** -0.219*** -0.099**

Green finance index (GF) 0.794* 1.297* 0.725**

Energy consumption structure (ECS) -0.648*** -0.694** -0.388**

Educational investment (EI) 2.670*** 5.902*** 1.559**

Venture capital (VC) 0.001 0.001** 0.001

R&D investment (RD) 0.001* 0.002 0.001

Green invention patents (GIP) 0.001 0.001 0.001

Note: *, **, and *** represent significance at the significance levels of 10%, 5%, and 1% respectively.
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of energy efficiency in energy-intensive industries 
driven by technological innovation demonstrated in 
the Northeast is consistent with the lower economic 
efficiency of urbanization in the Northeast in 2015 
measured by Cao et al [70]. To some extent, the quality 
of economic benefits affects the drive of TI to ECER in 
regional HECI. In recent years, the industrial structure 
in the Northeast region has been upgraded continuously 
[71], which has greatly promoted the ECER efficiency 
of HECI in the Northeast Region and promoted the 
sustainable development of the region. 

Influencing Factors Analysis

In order to further improve the efficiency of ECER 
in HECI and achieve sustainable development, it is 
necessary to study the influence of various factors on 
the efficiency of ECER. Since China’s accession to 
the WTO, the manufacturing industry (including six 
HECI) has gradually expanded, and China has quickly 
become a manufacturing power [72]. Since then, HECI 
have grown rapidly, making China gradually become 
a major carbon emitter while developing its economy 
[73]. At present, the key to achieving the goal of ECER 
is the upgrading of industrial structure [74]. Qinghai’s 
industrial structure rationalization index is in the 
forefront, which is the main key to Qinghai’s leading 
position in ECER efficiency of HECI. Green finance 
provides financial support for industrial ECER. In 
particular, green credit is an effective tool for ECER 
in the industrial field [75]. Among the influencing 
factors of this study, the strong promoting effect 
of green finance on ECER efficiency in HECI was 
once again confirmed. Policies aiming to foster the 
development of science and technology should pay 
attention to the cultivation of talents. This paper has 
confirmed the positive impact of education investment 
on the realization of sustainable development goals of 
HECI. In previous studies, most scholars found that 
the level of marketization had a significant positive 
impact on the improvement of energy efficiency [76]. In 
particular, R&D investment has a greater impact on the 
reduction of energy intensity in HECI [77]. However, 
the level of marketization and R&D investment had 
significant negative impacts on the economic benefits 
of HECI in the current study. In recent years, China’s 
marketization level and R&D development investment 
entered a key turning point. In the past, simply carrying 
out market-oriented development and increasing R&D 
investment no longer met the sustainable development 
and construction of HECI. Sustainable development 
and construction of HECI requires a more reasonable 
combination to achieve optimal ECER in HECI.

Conclusions and Police Implications

To monitor progress towards the Sustainable 
Development Goals, this study used system theory 

decomposed the complex process of ECER of 
HECI driven by TI into two stages: TI and ECER.  
We constructed a conceptual model and index system 
for ECER of HECI driven by TI. The model established 
a two-stage network WSBM considering relaxation 
variable weight based on DEA. Then, we calculated  
the efficiency levels of ECER of HECI driven by TI 
in 30 provinces in China. The spatial and temporal 
evolution of the total efficiency and the characteristics 
of the two-stage efficiency were analyzed. An efficiency 
matrix was constructed based on the two-stage 
efficiency in 2020 and the 30 provincial-level regions 
were divided into three quadrants. The panel Tobit 
model was used to analyze the factors that influenced 
total efficiency and two-stage efficiency.

The research found that: (1) from 2015-2020, the 
overall performance level of ECER of HECI driven by 
TI in 30 provinces first decreased and then rose. 2018 
was a turning point and efficiency peaked at 0.555 in 
2020. The efficiency of the 30 provinces is uneven 
with large disparities between them. (2) By region, 
the Northeast region shows a breakthrough growth 
trend from low to high. The East, Central and West 
show similar trends to the national overall, with the 
total efficiency slightly higher in the East than in the 
West and lower in the Central region, which has a clear 
pattern of spatial and temporal differences. The main 
reasons for those differences are the high environmental 
cost of resource-based industries, weak TI ability, 
low degree of technology marketization, insufficient 
investment in TI, low proportion of TI personnel, 
inadequate utilization of scientific and technological 
resources, and policy deviation in various provinces. 
(3) Considering two-stage efficiency revealed that the 
efficiency of ECER stage of HECI was above that of 
the TI stage. (4) Panel Tobit regression analysis revealed 
that the industrial structure rationalization index, green 
finance index, and education investment significantly 
affected the total efficiency and two-stage efficiency, 
showing a positive relationship. The marketization had 
an apparent negative correlation with total and two-
stage efficiencies.

The above conclusions indicate that differentiated 
development policies should be adopted according 
to regional advantages and national development 
strategies: (1) The Northeast should focus on continuing 
to strengthen the industrial advancement of HECI and 
the construction of TI systems. In the face of a brain 
drain in Northeast China, relevant departments should 
actively introduce preferential policies for talent.  
(2) The Eastern region will continue to play a 
pioneering role in innovation-driven development. 
For example, Beijing should make full use of the 
advantages of regional TI levels, actively carry out 
research and development of relevant major scientific 
research projects, promote the combination of 
technology research and development with the low-
carbon demand of HECI, and strengthen the connection 
between innovation and industrial chains. (3) Central 
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regions such as Anhui, Hubei, and Henan have lower 
efficiency of technological innovation and lower level of 
industrial structure rationalization. In future, education 
investment, green financial support, and other relevant 
measures should be strengthened to enhance clean and 
sustainable production of HECI in the region. (4) The 
efficiency of ECER in HECI has undergone subversive 
changes, benefiting from the support of relevant national 
strategies such as “Western Development,” and the 
clean production level of HECI is at the forefront. The 
concept of “cooperation and shared development” has 
already brought great results. In the future, Xinjiang, 
for example, needs to enhance its own development 
potential and improve the level of education, funding, 
and other relevant factors. (5) Regional governments 
should actively promote the flow and integration of 
relevant factors, strengthen regional cooperation, and 
achieve complementary advantages in accordance with 
the development goals of ECER in HECI. In addition, 
the government should also provide green innovation 
and financial support for sustainable production in 
HECI.

Contributions

This study makes the following key contributions: 
(1) The network WSBM model incorporates the slack 
variables, considering their weights, into the objective 
function, and has stronger discrimination ability than 
the traditional DEA model; few scholars used the 
Network WSBM model to carry out this research; 
(2) The complex system of TI-driven ECER in HECI 
is divided into two stages for empirical research, 
effectively solving the problem of intermediate 
input; (3) The spatial and temporal differentiation 
characteristics of 30 provinces and cities are analyzed 
from the perspective of overall efficiency and two-stage 
efficiency; (4) A panel Tobit model is established to 
test the influencing factors of ECER efficiency in TI-
driven HECI. Important improvements needed in ECER 
of HECI were highlighted. This is very important for 
reducing carbon emissions and achieving greenhouse 
gas emission reduction targets and has important 
theoretical significance and reference value.
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