
Introduction

The primary conflict between the social economy’s 
rapid development and industrial technology’s prompt 
advancement is the scarcity of water resources, the 
pollution of the water environment and the damage to 

water ecology make this contradiction more prominent, 
therefore, in addition to ensuring ecological security, 
encouraging the resource usage of wastewater can 
also help to resolve the imbalance between the supply 
and demand of water resources. In addition, the 
supervision and implementation of increasingly strict 
ecological and environmental management standards 
and policies make it difficult for the effluent quality 
of many wastewater treatment plants to meet the 
discharge standards, of which the total nitrogen (TN) in 
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To address the issues that environmental elements have a significant impact on total nitrogen (TN) 
in effluent throughout the wastewater treatment process, and existing analysis methods and instruments 
are difficult to measure in real-time, a soft sensor model based on the fractional-order difference 
algorithm (FDA) and the stochastic configuration network (SCN) is proposed for the soft measurement 
of effluent TN in wastewater treatment plants. First of all, the significance of the pertinent parameters 
impacting effluent TN is assessed by using the grey correlation analysis approach, and the predictors 
with high evaluation are screened out as input variables of the soft sensor model. Secondly, a method 
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sub-model in parallel, and fuse the output results of multiple sub-models according to combination 
rules as the output of the model. The proposed approach can increase the model’s generalizability and 
maintain data information while guaranteeing data stability. Finally, the soft sensor model is verified 
by the actual data of a wastewater treatment process and the data collected from the Ganges River, 
India. Compared with prediction models including SCN, ELM, FDA-ELM, CNN-LSTM, Elman, BP, 
LSTM, etc, the results indicate that after sampling the data by FDA, smaller model prediction errors and 
higher prediction accuracy can be obtained, which can achieve high accuracy prediction of effluent TN  
in wastewater treatment plants.
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wastewater effluent is one of the main pollutants. A large 
amount of excess nitrogen in wastewater discharged  
into natural water bodies will cause secondary pollution 
of them, leading to black odor as well as eutrophication, 
while increasing the difficulty and cost of wastewater 
treatment and even causing harmful effects on natural 
species. Hence, the TN concentration should be reduced 
to the standard level before discharging wastewater into 
the environment. There are certain limitations while 
applying the hardware sensors to measure water quality 
parameters, as time goes on, the accumulated sludge and 
sediment on the sensors will reduce their accuracy, and 
will affect theirs service life, increasing maintenance 
costs, etc. To address the reliance on hardware sensors, 
soft sensor models provide an effective solution for 
this purpose. Soft sensor refers to the analysis of data 
through mathematical theories and thus the construction 
of models for real-time prediction through indirect 
measurement methods.

However, the wastewater treatment process is 
characterized by strong non-stationarity, hysteresis, 
the complexity of the characteristic variables, and 
difficulty in modeling [1-4] and traditional prediction 
model has certain shortcomings on this issue. The 
conventional gray system prediction model [5] is only 
appropriate for short- and medium-term prediction of 
small-scale sample data, which is one of the drawbacks 
of the general prediction model, and is only suitable 
for prediction according to exponential growth. In 
other words, the prediction effect of the gray prediction 
model is poor when facing the data samples with large 
variability. Another example is that the regression 
equation calculation of the regression prediction 
model [6] is cumbersome, and has high requirements  
for the distribution of sample data. In recent years,  
the processing ability of deep neural network  
prediction models had better performance when facing 
complex nonlinear functions. However, multilayer 
neural network prediction models will have gradient 
disappearance and explosion, which will easily lead to 
incomplete training.

To address the above problems, an integrated 
stochastic configuration network (SCN) learning 
model based on a fractional-order difference algorithm  
(FDA) to predict effluent TN in wastewater is proposed 
in this work. To make the input sample data set of the 
prediction model more stable and adaptable, the FDA 
is introduced to generate several different training 
subsets for data sampling, and each small-scale SCN 
model is generated based on the training of different 
training subsets, and then each small-scale SCN model 
is integrated. This sampling method can eliminate the 
linear convergence of the data and the time dependence 
of the data, and obtain a smooth series to ensure that 
the SCN model has better learning ability and can better 
cope with strong nonlinear data, solve the problem of 
regression prediction of complex variables, and help 
improve the prediction accuracy.

Material and Methods  

Related Works

Currently, the most widely used water quality 
parameter prediction model for the wastewater treatment 
process is neural network modeling. Researchers 
have conducted extensive studies by using neural 
network modeling technique for the wastewater quality 
prediction models [7-10]. 

Zhang et al. [11] established a BP neural network 
model for the Mohe River's COD concentration of water 
quality forecast, which overcomes the limitations and 
extends the application of the model. Wodecka et al. [12] 
used a classification model to foresee how the wastewater 
quality would vary as it entered the wastewater treatment 
facility, and established a statistical model based on 
support vector machine and incremental tree methods, 
which can accurately determine the values of the chosen 
indicators of wastewater quality. Chopade et al. [13] built 
a sensor based deep learning method for the wastewater 
quality prediction model. Four performance metrics are 
used during the experiment, including precision, recall, 
accuracy, and F1 score, and the system achieves an 
accuracy of more than 90%, despite 20% noisy labels. 
Zhao et al. [14] introduced an extreme learning machine 
(ELM) based on the lion swarm optimizer to build a 
soft sensor model and predict the wastewater BOD5 and 
COD concentrations, and the outcomes demonstrated 
that the model performs superbly in the prediction of 
BOD5 and COD. Cong et al. [15] proposed a VSRBFNN 
model with the variable structure to predict wastewater 
effluent COD. The VSRBFNN model reduces the 
complexity of the activated sludge process (ASP) 
mechanism model, and the proposed soft sensor, while 
functioning under different conditions, shows good 
prediction accuracy. Feng et al. [16] used predictive 
models such as predictive component correlation vector 
machine, RVM, PCA-RVM, and ICA-RVM to monitor 
the benchmark simulation model no. 1 (BSM1) platform 
of wastewater treatment provided by the International 
Water Association (IWA), and the fault detection 
accuracy of predictive component correlation vector 
machine was higher than other models. Du et al. [17] 
used PSO algorithm to optimize BP neural network to 
get the model of chromium adsorption in wastewater, 
and results show that the proposed model’s optimization 
procedure rapidly conclude with highly accurate 
predictions for chromium in wastewater.

Although traditional machine learning methods 
have high accuracy prediction effect, prediction models 
are easy to implement and understand, and can fit 
arbitrary continuous nonlinear mapping relations in 
high-dimensional space, these models usually have only 
three layers and below of computational units, ignore 
the correlation between features, and have insufficient 
generalization ability in the face of more and more 
complex industrial process data, thus showing certain 
limitations. Wan et al. [18] utilized the spatial properties 
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of fused convolutional neural networks (CNN), the 
temporal properties of shared weight long short-term 
memory (SWLSTM), and the probabilistic dependability 
of Gaussian process regression (GPR) to the high 
accuracy interval prediction of paper wastewater 
treatment systems. The proposed CSWLSTM-GPR 
model’s predicted values were frequently maintained 
within the water quality range with improved integrated 
prediction. Cheng et al. [19] used a deep learning model 
based on LSTM and the gated recurrent unit (GRU) as 
a soft sensor to predict the key features of wastewater 
treatment plants. The proposed model has higher 
prediction accuracy with faster convergence. Wan et al. 
[20] proposed to combine the grey correlation algorithm 
(GRA) and the GRU network into a prediction model 
to predict wastewater operations, and the GRA-GRU 
model predicted influent wastewater conditions with 
better accuracy than GRU, LSTM, CNN, and MLR 
models. Li et al. [21] and Liang et al. [22] proposed  
a combined CNN-LSTM deep learning approach based 
on flow prediction that helps to estimate water availability 
and flood warnings for watershed management, while 
in the presence of complex circumstances, the model’s 
forecast accuracy will decline. Heo et al. [23] proposed  
a hybrid model based on multimodal and integrated deep 
learning (ME-DeepL) for predicting wastewater influent 
water quality, and the experimental results showed 
that the ME-DeepL model can achieve high accuracy 
in predicting influent water quality by capturing the 
information characteristics and temporal trends in 
influent loads that change. Quang et al. [24] compared 
six different machine learning algorithms, for predicting 
total phosphorus (TP) in wastewater effluent, a variety 
of learning architectures from shallow to deep have 
been used, including seasonal autoregressive integrated 
moving average, random forest, support vector machine, 
gradient tree boosting, adaptive neuro-fuzzy inference 
system, and LSTM, the experimental results showed that 
the SARIMAX prediction model is structurally stable 
and can handle non-smooth large data sets, providing a 
reliable and accurate method for predicting wastewater 
effluent quality. Newhart et al. [25] presented a novel 
hybrid statistical machine learning ammonia prediction 
model and a statistical stability metric, the proposed 
methodology can enhance municipal wastewater 
treatment’s accuracy and precision. Wang et al. [26] 
employed a novel technique to optimize and forecast 
TP pollutant removal and turbidity, combining response 
surface methodology and artificial neural network 
(RSM-ANN). The methodology can enhance municipal 
wastewater treatment’s accuracy and precision. They 
constructed an ANN model with BP algorithm based on 
RSM data as well as uncontrollable variables, raw TP 
concentration and raw water turbidity, and the proposed 
model was able to predict TP in wastewater effluent 
better.

In deep learning neural networks, due to the 
complexity of the model structure, the training process 
of the network usually needs large-scale data for 

support, and the network convergence speed is slow. 
Only two adjacent layers are connected since each level 
uses the output of the previous level as the input for the 
subsequent level, this kind of structure not only fails to 
solve the time-series sample set, but even ignores the 
correlation between the whole and the parts, leading to 
the inability to make an unbiased estimation of the laws 
of the data.

Stochastic configuration network (SCN) [27] is 
a special kind of neural network that uses a random 
number function for the random assignment of weights 
compared to gradient-like neural networks. The SCN 
network achieves asymptotic approximation well while 
overcoming the problem of network function values 
falling into local minima and reducing the process 
of iterative adjustment of network parameters. The 
structure not only improves the prediction effect of 
the network, significantly quickens the gradient-based 
class algorithm’s convergence, and even substantially 
improves the adaptability of the network model and 
other problems. However, as the number of nodes in the 
hidden layer increases, the SCN soft sensor model can 
be overfitted due to the input data maladjustment and 
pathological conditions. The fractional-order difference 
algorithm (FDA) can transform a non-smooth series into 
a smooth series, and the process of data sampling using 
the FDA not only ensures the smoothness of the data but 
also preserves the original information of the data. In 
view of the above, a soft sensor model for the effluent 
TN in wastewater based on the FDA-SCN integrated 
learning network is proposed.

SCN Neural Network

A typical feed-forward neural network topology 
for an SCN consists of three layers: input layers, 
output layers, and hidden layers. Its typical network 
structure is shown in Fig. 1. Assign input weights ω and 
biases b according to an inequality-constrained least  
squares algorithm with supervised learning rules, the 
Sigmoid function is selected as the activation function 
of the hidden layer of the SCN network, and denotes  

Fig. 1.  Typical structure of SCN network. 
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the number of nodes in the hidden layer by L, the weights 
and biases of the k-th hidden layer nodes are denoted  
as ωk and bk, and the hidden layer output is represented 
as gk:

                (1)

where, σ(z) is a random basis function, and the calculation 
of σ(z) is represented as σ(z) = 1/(1 + exp (–z)), 

here in which ; X = [x1, x2, x3, ..., xL]
T  

is the input feature matrix; “•” indicates dot product. 
The hidden layer output matrix hL(X) is:

                  

(2)

If the hidden layer’s output nodes count in the SCN 
network are set to M, the output weight of the nodes in 
the hidden layers is set to β = [β1, β2, ..., βM]L×M, then, 
for samples, the hidden layer output can be expressed as  
H = [g1, g2, ..., gL]N×L, and the output Y of the whole SCN 
network can be expressed as

•Y H β=                             (3)

Fig. 2 displays the SCN algorithm’s basic flowchart.

Fractional-Order Difference Algorithm (FDA)

The difference means that the difference between 
two adjacent terms in a sequence is a constant, it may 
be favorable or unfavorable, negative value signifies  
that the first term in the series is greater than the last 
term in the sequence, while a positive value indicates 
the opposite. The difference algorithm is mainly 
based on the difference between the current item and 
its predecessor in the sample, because of this, one-
dimensional arrays are the primary data types on 
which the difference technique is used. Integer-order 
difference may cause the data to lose the information 
contained in the original sequence and thus remove the 
memory of the signal, the interpolation of the fractional-
order difference algorithm (FDA) uses this property  
of the Gamma function 0<x<1, FDA is a better solution 
to the trade-off between data smoothness and preserving 
data information. The FDA algorithm first loops through 
the difference values of the input data and stores them in 
a vector, and then uses the calculated difference values 

to find the approximate value of the definition domain.  
It is defined as follows:

Given a time series {X}t = 1, 2, ..., T and order d∈(0,1), 
then the d order difference equation at time t is:

                    (4)

where, ω0 = 1, ωk = – ωk–1 (d – k + 1)/k. It can be 
seen that the information of each data point X̃  varies 
under the influence of the weight ωt, there is a choice to 
enlarge the data set with a defined information window 
for this data set.

Soft Sensor Model Based on
FDA-SCN Network

The integrated learning method is used to obtain a 
more comprehensive strongly supervised learning model 
by combining multiple weakly supervised learning 
models, mainly by training multiple sub-models in 
parallel to accomplish the task. Firstly, the training 
samples are sampled using adaptive sampling to obtain 
N subsets. Secondly, independently train N subsets of 
samples to obtain N sub-models. Finally, an appropriate 
combination strategy is chosen to integrate the obtained 
N sub-models. For the integrated network prediction 
model, the stability of the sub-models is a crucial aspect 
in determining the prediction model’s accuracy.

Fig. 2. SCN algorithm flow chart. 
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total of 1344 sets of data were collected, the auxiliary 
variables included in BSM1 are shown in Table 1.

Data set II is based on the official website testing  
of the Ganges River water in India, and one set of 
data was recorded at one-hour intervals, 10 sets per 
day, for water quality parameters from July 15, 2022 
to September 15, 2022, yielding a total of 600 sets  
of data with the auxiliary variables included in the water 
quality of the Ganges River are shown in Table 2.

Data Pre-Processing

To increase the data stability and prediction 
precision, the original data series are normalized using 
the extreme values of the variables (maximum and 
minimum values) to eliminate the influence of units and 
orders of magnitude on the model. The equation is as 
follows:

' ( min) / (max min)X x= − −              (5)

where, X' stands for the value of a particular piece of 
data, min is the column’s minimum value, and max is 
the column’s maximum value, and each of these terms 
refers to the value of the data in question.

Feature Extraction

The gray correlation method is based on the 
linear interpolation method to transform the discrete 
observations of the characteristic variables into 

The SCN model determines the input weights and 
bias of hidden nodes by adaptively selecting the range 
of random parameters, and introduces inequality 
constraints based on the least squares algorithm to 
calculate and analyze the output weights selectively. 
With the increase of the model configuration nodes as 
well as the number of layers, the SCN can substantially 
approximate the original function during the training 
process and maximize the guarantee that the error 
converges to 0, to have an outgoing TN prediction model 
with strong generalization ability and a random training 
method. In this paper, we first use FDA to sample the 
input samples into multiple sample subsets. The model’s 
variability is then raised during the training process to 
improve the SCN network model’s ability to generalize 
and be stable. The subsets of samples sampled by the 
FDA are trained independently to generate multiple sub-
models, and the sub-models are combined according 
to a certain combination law. The specific combination 
strategy is as follows:
Input: training data set D, number of sub-learners N, 

typical SCN algorithm
Output: Integrated learner R(X)
Methods:
1)	 For =1 to N
2)	 Generate a training subset D of the same size as D 

by sampling from the training set D using the FDA 
sampling method Dn

3)	 N sub-learners are generated by training a typical 
SCN model based on different training subsets rn(X)

4) 	End for
5)	 Integrate N small-scale SCN models, output 

integrated learner  ( ) ( )
1

1 N

n
n

R X r x
N =

= ∑

The flowchart of the proposed soft sensor model 
of wastewater effluent TN based on the FDA-SCN 
integrated learning network is shown in Fig. 3.

The FDA is used to sample the input sample set to 
generate N training subsets, and the different training 
subsets are used to train in parallel to generate mutually 
independent SCN models. Meanwhile, to evaluate each 
SCN model’s ability to forecast TN, the dataset not 
collected by the FDA is used as a test set to verify the 
performance of the evaluation sub-models and the final 
model, and finally, the sub-models are fused into an 
integrated model.

Results and Discussion

Data Acquisition

Data set I is selected based on the BSM1 simulation 
platform provided by IWA for data taking in the 
wastewater treatment process, the simulation platform 
is made to run under stormy weather conditions for 
14 days with 15-minute intervals to collect data, and a 

Fig. 3.  Flow chart of the basic algorithm of fractional difference 
SCN. 
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continuous lines between the intervals, and observe 
the similarity between the curves of the intervals, 
to determine the degree of correlation between the 
characteristic variables, which applies to data sets of 
any regularity and size. The gray correlation method 

calculates the fit between the comparison series and 
the reference series through the quantitative analysis 
of the dynamic process of the features, and ranks 
the importance of the sample series according to 
the magnitude of the correlation between the series, 
depending on the ranking, chooses the feature variables 
with the highest correlation and relevance as the model’s 
input features.

The gray correlation model is run multiple times 
to do an importance analysis of the data, and the 
correlation values of the results of multiple runs are 
used as the basis for importance ranking. 

Fig. 4 displays the distribution of the sample 
features’ relevance based on the BSM1 simulation data’s 
gray correlation model. Seven parameters such as Qin, 
BOD, COD, MLSS, SNH3, SND, and XND are selected as 
the input features of the model. 

Fig. 5 shows the important distribution of the sample 
characteristics of the Ganges River water quality 
parameters output under the gray correlation model. Five 
characteristics, such as influent flow TSS, Temperature, 

Table 1. BMS1 characteristic variables.

Table 2. Ganges water quality characteristics variables.

Definition Symbol Measurement 
unit

Inlet water flow Qin m3.d-1

Total suspended solids 
concentration MLSS g SS.m-3

Biochemical Oxygen Demand BOD g BOD.m-3

Ammonia nitrogen SNH3 g N.m-3

Soluble biodegradable organic 
nitrogen SND g N.m-3

Insoluble granular biodegradable 
organic nitrogen XND g N.m-3

Nitrate Nitrogen SNO g N.m-3

Active self-oxidizing bacteria XB,A g COD.m-3

Active Heteroxylic Bacteria XB,H g COD.m-3

Inert material in biosolids decay XP g COD.m-3

Dissolved Oxygen SO g (-COD).m-3

Alkalinity SALK mole.m-3

Insoluble slow biodegradable 
organic matter XS g COD.m-3

Soluble and rapidly biodegradable 
organic matter SS g COD.m-3

Soluble non-biodegradable 
organic matter SI g COD.m-3

Definition Symbol Measurement 
unit

Temperature Temperature ºC

Total Ammonia Ammonia g N.m-3

Total suspended solids 
concentration TSS m3.d-1

Chemical Oxygen Demand COD g COD.m-3

Biochemical Oxygen Demand BOD g BOD.m-3

Concentration of acidity and 
alkalinity PH

NITRATE NITRATE g N.m-3

Total Organic Carbon TOC g COD.m-3

Turbidity Turbidity g SS.m-3

Dissolved Oxygen DO mg.L-1

Water level Water level m

Fig. 4.  Correlation between BSM1 characteristic variable and 
TN. 

Fig. 5.  Correlation between Ganges water quality variables and 
TN. 
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BOD, Nitrate, and COD, which are highly correlated 
with the effluent TN, are selected as the inputs to the 
model. Where, (1) TSS is the total amount of non-
dissolved suspended solids floating in water. Some 
nitrogen compounds may bind to suspended floating 
particles, thus affecting their migration and availability. 
(2) Temperature affects the biochemical processes and 
nitrogen transformation processes in the water column. 
Higher temperatures may lead to an increase in the rate of 
biotransformation of nitrogen compounds, thus affecting 
the total nitrogen concentration. (3) BOD is the amount 
of oxygen required for organic pollutants to be degraded 
by microorganisms in water. Organic pollutants may 
contain nitrogen compounds, and their biodegradation 
processes may release nitrogen compounds, which in 
turn affect the total nitrogen concentration. (4) Nitrate is 
an important nitrogen compound that is the end product 
of ammonia oxidation and nitrification processes. 
Increases in nitrate concentrations may correlate with 
changes in total nitrogen concentrations, especially in 
water bodies contaminated with nitrate or eutrophic. 
(5) COD is the total amount of oxidizable substances 
consumed in water, which includes both organic and 
inorganic substances. an increase in COD may imply an 
enrichment of organic substances, which may interact 
with nitrogen compounds and thus affect the total 
nitrogen concentration.

Considering that many different factors may  
affect the total nitrogen concentration in the effluent,  
for example, the process of nitrogen transformation 
may be affected by aerobic/aerobic conditions,  
and the presence of different microbial communities 
and changes in environmental factors (such as 
oxygen concentration, pH, etc.) may also affect the 
transformation of nitrogen compounds and total  
nitrogen concentration. Therefore, the gray correlation 
algorithm is employed in this paper to make importance 
analysis of the characteristic variables affecting TN 
concentration, and selects five specials, including TSS, 
Temperature, BOD, Nitrate and COD, with correlation 
degree greater than 0.75 as the input of the model to 
simplify the complexity of the input characteristic 
variables [28].

Model Training

The relationship between the number of hidden layer 
nodes and the training error for each sub-model SCN is 
shown in Fig. 6.

Depending on the size of the input data set and 
the FDA-SCN model’s guiding principles, the training 
termination condition is set as: maximum number  
of nodes in the hidden layer Lmax = 200, allowable error  
ε = 0.01. The weight parameter is set to FDA-SCN  
model the maximum number of search iterations  
Tmax = 150, the range of random weights is set to {0.5, 
1, 10, ..., 150, 200, 250}, inequality constraint factor is  
r = {0.9. 0.99, 0.999, 0.9999, 0.99999, 0.999999}.

Analysis of Results

In this study, the FDA-SCN model’s effluent TN 
prediction effect is evaluated using the correlation 
coefficient (R2), mean absolute percent error (MAPE), 
and root mean square error (RMSE), which are described 
by Equations (6), (7), and (8). The model’s number of 
samples is set to n, yl is the simulated predicted value of 
FDA-SCN prediction model, and yi is the actual value of 
effluent TN.

0

| | 1 100%
| |

n
l i

i i

y yMAPE
y n=

−
= × ×∑

        (6)

2

1

| |n
l i

i

y yRMSE
n=

 −  =   
  

∑
            (7)

2

1 1 1 1

1 1n n n n

l i i i
i i i i

R y y y y
n n= = = =

   
= − −   

   
∑ ∑ ∑ ∑

(8)

Soft Sensor of TN Concentration Based on BMS1 
Simulation Platform Data

Table 3 shows the RMSEs of FDA-SCN model and 
SCN model at different hidden layer nodes with the same 
hyperparameters set, and the prediction error values of 
FDA-SCN model at different nodes are much lower than 
those of SCN model, and Fig. 7 depicts the relationship 
between the actual effluent TN concentration and the 
projected values from the FDA-SCN and SCN models. 
It can be seen that the predicted value of FDA-SCN 
model has a higher fit with the actual value of effluent 
TN, which in turn indicates that the FDA-SCN model 
has a more accurate prediction effect, and the FDA-SCN 
prediction model designed in this paper is better than 
the single SCN model.

Table 4 demonstrates the superiority of the FDA-
SCN model for MAPE, RMSE, and R2 performance 

Fig. 6.  Training error descent curve. 
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compared to deep learning neural networks CNN-
LSTM, LSTM, and shallow neural networks BP, 
Elman, ELM, FDA-ELM, and other prediction models. 
The RMSE, MAPE and R2 are 0.01866, 0.016381 and 
0.96387, respectively, demonstrating how the FDA-
SCN model developed in this paper might enhance the 
predictability of wastewater effluent TN.

Fig. 8 respectively demonstrates that when  
compared to shallow and deep neural networks, the 
relationship curve between the projected value and the 
actual value is simulated by each model. The results 
indicate that, in comparison to other neural network 
prediction models, the TN prediction value of the  
FDA-SCN model has a better agreement with the 
actual value, additionally, the error fluctuation range is 
consistently smaller than that of other models, which 
verifies the accuracy of the prediction model proposed 
in this paper.

Soft Sensor of TN Concentration Based on 
Water Quality Data of Ganges River

To further verify the validity and robustness of 
the designed model, the FDA-SCN prediction model 
is applied to the real-time collected water quality data 
of the Ganges River in India as the input eigenvalue 
variable, for the purpose of real-time prediction of the 
effluent TN concentration. The training set and the test 
set were randomly assigned. Fig. 9 displays the results of 
the FDA-SCN model’s comparison of the expected and 
actual values of TN concentration. It is clear from the 
figure that the fit between the predicted and real values 
of wastewater effluent TN is significant, indicating that 
the FDA-SCN model has a stable structure and good 
prediction effect. In order to confirm that the FDA-
SCN prediction model is superior, Elman and LSTM 
models were selected as the comparison network to 
predict the effluent TN under the condition of the 
same input samples. The relationship curves between 
each model are shown in Fig. 10, which shows that the 
error fluctuation range between the FDA-SCN model’s 
predicted value and the actual value of effluent TN is 
always smaller than that of other prediction models, and 
the proposed model’s prediction accuracy is consistently 
higher than that of other models.

The comparative results of FDA-SCN model in 
terms of MAPE, RMSE and R2 performance are 
shown in Table 5. The FDA-SCN model has the highest 
prediction accuracy for the effluent TN concentration 
under the influence of multiple parameters, according 
to the comparison of the indicators. This finding 
suggests that the method developed in this paper has  
a more stable network structure, stronger generalization 

Table 3. RMSEs at different nodes.

Models
The test performance corresponding to different nodes (RMSE)

50 100 150 200

SCN 0.094885 0.061482 0.045729 0.038147

FDA-SCN 0.048312 0.031345 0.023251 0.018666

Fig. 7.  The predicted TN of BSM1 effluent for Lmax = 200. 

Table 4. Comparison of different model predictors.

Models RMSE MAPE R2

BP 1.1964 0.05853 0.63372

Elman 1.8732 0.075137 0.06605

LSTM 1.7624 0.074875 0.20743

CNN-LSTM 0.13217 0.08034 0.34300

ELM 1.4461 0.68166 0.79154

FDA-ELM 0.87614 0.040522 0.79154

FDA-SCN 0.01866 0.016381 0.96387
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ability, and more accurate prediction effect, and can 
be successfully applied to the soft sensor of key water 
quality parameters for the real world using.

Although the soft sensors based on FDA-SCN 
network is proposed for monitoring the water quality 
in wastewater treatment process, it can also be used 
to monitor the water quality of natural water bodies 
in real time. The data collected by the physical sensor 
from the water body (e.g., temperature, nutrient 
concentrations such as nitrogen and phosphorus) would 
be feed into the model for real time analysis to predict 
target concentration. FDA-SCN model can predict water 
quality changes, identify the impact of plant activity on 
water quality and predict future water quality trends. 
For water quality monitoring in natural water bodies, 
soft sensors can provide real-time data and warnings 
that can help identify water quality changes early.

Fig. 8.  TN prediction results of different prediction models. 

Fig. 9.  Ganges effluent TN prediction results. 
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Conclusions

To solve the problems of complex auxiliary variables 
of effluent TN concentration in wastewater treatment 
process, poor prediction accuracy, unstable prediction 
model structure, difficult online real-time measurement 
and long prediction time, an integrated FDA-SCN soft 
sensor model is proposed in this work. The conclusions 
are as follows:

(1) The study of FDA sampling method can solve the 
problems that when the input sample data size is large, 
the deep neural network soft sensor model is easy to 
cause the loss of critical interest and long training time, 
and the shallow network soft sensor model structure is 
unstable and the training error fluctuates widely. The 
FDA sampling method can ensure the smoothness of the 
data while preserving the memorability of the original 
data, which speeds up the convergence of the algorithm.

(2) The FDA-SCN integrated learning model 
proposed in this study overcomes the randomness of 
the gradient-like neural network in the process of model 
convergence that makes the model parameters and 
structure occur, prevents the network’s propensity to 
enter local minima, avoids the network’s propensity to 
enter local minima, and significantly increases the soft 
measurement model’s generalization and accuracy.
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