
Introduction

Since the reform and opening up of China, significant 
achievements have been made under the practical 
guidance of the government, and the total agricultural 
output value of China has grown at an average annual 
rate of 11.62% [1]. The agricultural sector’s contribution 
has gradually become an essential pillar of China’s 

economic and social development. However, with 
accelerated urbanization, rural labor migration, and 
the widespread use of agricultural machinery, this 
rough agricultural development has resulted in various 
environmental problems, such as ecological degradation 
and environmental pollution, the most prominent of 
which is greenhouse gas emissions. The increased 
greenhouse effect has, in turn, led to environmental and 
ecological problems such as earthquakes, heavy rains, 
floods, and desert storms. The World Resources Institute 
(WRI) has released data on global CO2 emissions over 
the past 30 years. From 1990 to 2018, the five largest 
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economies in terms of CO2 emissions were China, the 
United States, the European Union, India and Brazil. 
China surpassed the United States as the world’s largest 
carbon emitter around 2004. China topped the list by 
emitting 778 million tons of carbon dioxide over the past 
30 years [2]. Specifically, agricultural carbon emissions 
account for 17% of total emissions in China, but only 
7% in the U.S. and 11% globally [3]. Compared to other 
sectors, agriculture is one of the most vulnerable to 
external adverse climate change and one of the most 
significant sources of carbon emissions [4]. Therefore, 
carbon emission reduction in agriculture is becoming 
increasingly necessary [5]. The Chinese government is 
committed to implementing carbon emission reductions 
to fulfill its obligation to reduce emissions effectively.  
It pledged to the world at the 75th UN General Assembly 
in September 2020 that carbon emissions will peak by 
2030 and be carbon neutral by 2060[6].

Digital transformation of agriculture is based on 
a large amount of data from modern agriculture [7].  
It is realized through advanced digital technologies 
such as cloud computing and the Internet of Things [8], 
effectively improving agricultural production efficiency 
by monitoring, controlling, and optimizing activities 
[9]. Digital transformation of agriculture is based on 
advanced digital technology and uses water-saving 
irrigation technology and straw return technology 
to effectively decrease environmental pollution 
effectively. By replacing chemical fertilizers with 
organic fertilizers [10], farmers effectively decrease the 
use of chemical fertilizers and lower carbon emissions 
of agriculture. Agricultural robots have increased 
yields and productivity, replacing heavy machinery 
to effectively decrease problems associated with 
topsoil compaction in agriculture [11] and preventing 
soil degradation. Remote sensing technology detects 
and maps many crop diseases [12], and blockchain 
provides an effective solution to effectively improve 
the security and transparency of food traceability [13]. 
Digital transformation of agriculture transforms market 
supply, business processes, and models, providing 
new solutions for connecting “small farmers” to “big 
markets” [8], alleviating information asymmetries, and 
reducing agricultural waste. According to FAO, digital 
agriculture is the “fourth agricultural revolution”.It can 
address harsh climate change concerns by enhancing the 
efficiency, equality, and environmental sustainability of 
agricultural value chains [14]. The digital transformation 
of agriculture will greatly support sustainable 
green change and play a key role in supporting the 
development of green agriculture and promoting carbon 
reduction in agriculture. Therefore, it is necessary to 
include the digital transformation of agriculture in the 
study of agricultural carbon reduction.

This paper contributes to the existing literature in 
several ways. First, although the digital transformation 
of agriculture and agricultural carbon emission reduction 
has received extensive attention from researchers and 
policymakers, there are only a few academic studies 

on agricultural carbon emission reduction from the 
perspective of the digital transformation of agriculture. 
This paper attempts to fill this research gap by focusing 
on the research question of the impact of digital 
transformation of agriculture on agricultural carbon 
emissions and how it affects them. Few studies have 
directly discussed these two concepts in an explanatory 
framework. And spatial econometric techniques are 
used to verify the spatial spillover effect of digital 
transformation’s carbon emission reduction effect in 
agriculture and the innovative use of instrumental 
variables to address the endogeneity issue. Secondly, 
most studies explain the digital changes in agriculture 
as digital agriculture indicators in rural infrastructure, 
digital governance, agricultural digital expenditures, 
etc. However, the digital transformation of agriculture 
also needs to be supported by the digital industry. This 
paper includes rural e-commerce represented by Taobao 
villages in the study to measure digital agriculture more 
comprehensively. Thirdly, three impact mechanisms 
of digital agricultural transformation on agricultural 
carbon emissions are theoretically explained, including 
green technology progress, agricultural scale operation, 
and agricultural planting structure adjustment. 
Unlike previous studies examining the relationship 
from one specific aspect, we put all relevant factors 
in a comprehensive explanatory framework. Finally, 
this paper considers the specificity of Chinese grain 
production considering heterogeneity analysis in 
conjunction with China’s functional agricultural 
production zones, which is more in line with the actual 
situation of Chinese agricultural production.

The rest of the paper is organized as follows: the 
second section presents the literature review of the 
paper; the third section presents the theoretical analysis 
and formulates the research hypothesis; the fourth 
section presents the material and methods; the fifth 
section is results and discussion; and the last section 
gives the conclusion and policy recommendations.

Literature Review

This study is based on two main branches of 
literature. One is discussing methods for measuring 
agriculture carbon emissions and measures to 
reduce them. The other is the area of research on the 
environmental effects of the digital transformation of 
agriculture, especially regarding agricultural carbon 
emission reduction.

The discussion of agricultural carbon emissions 
has been going on for a long time.Regarding the 
measurement and exploration of carbon emissions of 
agriculture, Khanali et al. (2021) [15] used a life cycle 
approach to assess agricultural carbon emissions to 
explore their environmental impact on agricultural 
products.Yun et al. (2014) [4] calculated carbon emissions 
of agriculture for the first time in 31 Chinese provinces 
and cities from 1995-2010 based on 23 huge sources of 
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carbon emissions, such as agricultural inputs, rice fields, 
soils, and livestock farming. Most studies used the IPCC 
method to measure  carbon emissions of agriculture 
[5, 16], which was obtained based on the cumulative 
multiplication of carbon sources from relevant 
agricultural activities. By measuring agricultural carbon 
emissions through the IPCC method, the contribution of 
various carbon sources can be examined more precisely 
and carbon reduction can be implemented in a targeted 
manner. After constructing the agricultural carbon 
emission index system and measurement, scholars 
focus on the specific measures to effectively decrease 
carbon emissions of agriculture. Agricultural scale 
operation can promote the rational use of water and 
soil resources [17]. Farmers can realize the substitution 
effect of chemical fertilizers in agricultural activities 
through no-till planting and straw return to the field to 
effectively decrease the intensity of  carbon emissions 
of agriculture [5]. Abnormal responses such as extreme 
weather and pests caused by harsh climate change can 
effectively decrease agricultural production efficiency. 
Therefore, developing low-carbon agriculture to adapt 
to regional harsh climate changes [18] and allocating 
carbon revenue to crops and broader non-energy areas 
for R&D inputs can control agricultural resource inputs 
while balancing agricultural and economic development 
to achieve win-win goals [19]. Although the above 
literature does not directly discuss the impact of the 
digital transformation of agriculture on agricultural 
carbon emission reduction, it provides essential 
implications for the digital transformation of agriculture 
to achieve emission reduction measures because the 
environmental effect of the digital transformation of 
agriculture is to consider the reduction of pollution 
emissions.

With the growing environmental and ecological 
problems brought about by severe climate change, some 
scholars have begun to focus on the environmental 
benefits of digital transformation of agriculture, 
especially on the issue of the impact on carbon 
emissions. Digital transformation of agriculture enables 
green sustainable agricultural development through  
a range of advanced digital technologies that effectively 
decrease chemical use [20], use of agricultural robots can 
help reduce agricultural carbon emissions by effectively 
reducing pesticide use and water waste through manual 
substitution, increased use of clean energy, additional 
end-of-pipe treatment facilities, and increased sewage 
treatment capacity [11]. Yet the use of robots also raises 
social and security issues. The use of agricultural 
robots will reduce some employment opportunities, 
and farms and production facilities that rely heavily on 
automation and robots will become correspondingly 
more vulnerable to hacking and attacks. Digital 
transformation of agriculture effectively decreases the 
consumption of chemical fertilizers by replacing them 
with organic matter in organic fertilizers. Reducing 
fertilizer use can effectively decrease carbon emissions 
of agriculture as a huge source of carbon emissions 

of agriculture [10]. Remote sensing can obtain the 
spatial distribution and change characteristics of global 
agricultural carbon sources rapidly and continuously. 
It can broadly apply to carbon sink estimation and 
management and global carbon emission monitoring.
Aerial and satellite imagery has been successfully used 
to detect and map many crop diseases, and mapping 
crop diseases can hugely effectively decrease the area 
affected by crops, ensure food security, and effectively 
decrease carbon emissions, such as citrus greening 
disease, flowering hedgehog disease, and alfalfa root rot 
[12]. With advances in imaging sensor technology and 
image-processing techniques, it is necessary to evaluate 
advanced imaging sensors and analytical methodologies 
for differentiating diseases from other confounding 
factors.IoT technologies apply new technologies such 
as artificial intelligence, robotics, and sensors to farm 
production systems [21], which can be implemented 
to monitor crop growth. Blockchain is used to track 
the safety and transparency of food by building an 
early warning system for carbon emission monitoring. 
This information makes it visible to the public, which 
is crucial for producers and policymakers on how to 
produce green food sustainably. Through the distributed 
storage of valid information recorded at each stage of 
the supply chain, carbon emissions are thus guaranteed 
to decline at each stage of production of agricultural 
products, ultimately achieving carbon reduction targets 
[13]. However, SMEs have difficulties in adopting the 
technology.Moreover, drones and satellite technology 
in daily farming operations can provide more accurate 
weather data [22] giving farmers forecasts and sound 
advice for intervening in crop planting. This technology 
dramatically effectively improves the efficiency of green 
production and effectively decreases greenhouse gas 
emissions from crops.

The above studies show that digital transformation of 
agriculture has contributed hugely to green agricultural 
production and effectively decreased carbon emissions. 
Although their studies support the digital transformation 
of agriculture to achieve carbon emission reduction, 
most of them are case studies, and the findings need to 
be measured according to each country’s economic and 
technological development of each country. Some of 
the literature has explored the spatial spillover effects 
of digital agricultural transformation on agricultural 
carbon emissions [4, 16, 23]. However, they have not 
considered the degree of industrialization of digital 
transformation of agriculture, and the literature has 
shown that rural e-commerce, represented by Taobao 
villages, exhibits vital spatial agglomeration phenomena 
and environmental values [24], which are essential 
for achieving agricultural carbon emission reduction. 
This is a significant contribution to achieving carbon 
emission reduction in agriculture.

In summary, this paper provides a more 
comprehensive view of the relationship between the 
digital transformation of agriculture and agricultural 
carbon emissions in the face of insufficient research 
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in related fields. The findings of this paper draw on 
some preliminary research results, existing databases, 
and improved econometric methods to provide new 
perspectives for academics and policymakers.

Theoretical Analysis and Research Hypothesis

Digital transformation of agriculture is crucial to 
effectively decrease farmers’ information asymmetry 
and market transaction costs. Li et al. (2022) [25] state 
that the platform economy has an essential regulatory 
function in reducing carbon emissions. It was found 
that rural e-commerce can promote green supply chains 
and accelerate green recovery [26]. Rural e-commerce 
brings green technological advances and diversified 
market demand, facilitating grassroots entrepreneurship 
in rural areas [27]. Rural e-commerce sells products 
directly to consumers, bypassing intermediary 
platforms and effectively reducing the cost of sales. 
Since agricultural products are perishable and have 
high storage costs, e-commerce can effectively decrease 
the risk of sales and lower agricultural costs. At the 
same time, rural e-commerce redefines standardized 
production in terms of agricultural variety, quality, 
and brand unification [24], which is conducive to 
regulating chemical fertilizer reduction and converting 
it into green inputs such as organic fertilizers and soil-
measured fertilizers [1]. Knowledge spillover from rural 
e-commerce agglomeration can facilitate the diffusion 
and creation of green technologies, effectively improve 
the efficiency of green production in agriculture, and 
facilitate farmers to effectively decrease production 
costs by sharing rural digital Infrastructure in the region 
[27, 28], and other industries with industry-specific skills 
will exhibit higher geographic concentration to achieve 
labor sharing and realize labor benign development of 
market supply and demand.

Digital transformation of agriculture optimizes the 
allocation of resource factors. Due to the replicability, 
updatability, non-consumability, and shareability of 
data, digital production factors can be replicated almost 
infinitely without cost. By sharing production materials 
and accelerating the circulation of information elements, 
digital transformation of agriculture overcomes the 
scarcity and exclusivity of traditional agricultural 
resources, effectively decreases energy consumption, 
and achieves optimal resource allocation [9]. Advanced 
digital technologies such as 5G, artificial intelligence, 
blockchain, and remote sensing are used to effectively 
improve agricultural production efficiency, effectively 
decrease labor costs, and effectively decrease input 
factor waste, which can form economies of scale and 
long-tail effects in a favorable economic environment 
and suppress carbon emissions of agriculture.

Accordingly, this article proposes.
Hypothesis 1: Digital transformation of agriculture 

has a huge inhibitory effect on  carbon emissions of 
agriculture.

Digital transformation of agriculture is open and 
inter-temporal [6]. It has a spatial spillover effect on 
carbon emissions of agriculture, mainly reflected in the 
following three aspects. The first is the agglomeration 
effect. Agro-industrial agglomeration plays a crucial 
role in agricultural carbon emission reduction.  
Along with industrial agglomeration, agricultural 
production gradually tends to be standardized,  
which facilitates the optimization of the allocation 
of various resources and facilitates the promotion 
of agricultural technology, thus reducing energy 
consumption and improving the efficiency of 
agricultural materials, and achieving the purpose 
of agricultural carbon emission reduction. More 
importantly, the economies of scale brought by the 
agglomeration of agricultural industries can effectively 
optimize the agricultural and industrial structure and 
form an excellent driving effect on the development of 
agriculture in the surrounding areas, thus generating the 
overflow of agricultural technology and management 
experience. The positive influence on agricultural 
machinery factor agglomeration on agricultural 
carbon emission reduction is also relatively noticeable.  
Agri-machinery factor agglomeration effectively 
decreases the cost of cross-regional operation of 
agricultural machinery in the region through input 
sharing, labor pooling, and knowledge spillover." 
The second is the diffusion effect. According to the 
"center-periphery" theory, the demonstration effect of 
green low-carbon agricultural development formed 
by digital transformation of agriculture can lead to 
imitation and learning in the "peripheral areas," further 
forming a diffusion effect [24]. The experience of 
green, low-carbon agricultural development driven by 
digital transformation of agriculture diffuses spatially 
through competitive imitation and learning among 
regions, agricultural sectors, and farmer groups. 
Administrative boundaries do not limit this diffusion 
effect. Thus regions that are the first to achieve green, 
low-carbon agricultural development are more likely 
to become targets of imitation and learning. Third, the 
upstream and downstream pull effects. When market 
demand is robust and rural e-commerce will drive  
the development of upstream and downstream industries 
in the surrounding areas [16], and online businesses  
will not only cooperate with local farmers and 
enterprises on green production technologies but 
also further promote the production of low-carbon 
agricultural products in the surrounding areas.

Accordingly, this article proposes.
Hypothesis 2: Digital transformation of agriculture 

has a negative spatial spillover effect on  carbon 
emissions of agriculture.

The continuous integration and development of 
digital transformation of agriculture with the green 
technology advancement of higher education institutions 
and research institutes can stimulate the effective 
improvement of the green technology degree of 
enterprises. Digital transformation of agriculture relies 
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of ecological agricultural technologies [32, 33], and 
curbing  carbon emissions of agriculture.

Frequent trade frictions and international disputes 
in recent years have led to huge fluctuations in 
international food prices and highlighted food crises in 
many countries worldwide. With the advancement of 
supply-side structural reforms in Chinese agriculture, 
national policies have guided the production of high-
quality, high-yielding food crops to ensure food security 
[34]. Digital transformation of agriculture has brought 
about increased mechanization and higher marginal 
labor input and management costs, leading to a decrease 
in the proportion of cash crops cultivated [35] and a 
huge increase in the proportion of food crops cultivated 
with lower labor requirements, resulting in continuous 
optimization and adjustment of the agricultural 
cultivation structure. Food crops generally have lower 
demand for chemical agrochemicals than non-food crops. 
The development of food crop production will effectively 
improve the efficiency of water and fertilizer use. Total 
chemical and agricultural inputs might be minimized, 
contributing to green and low-carbon agricultural 
development and better agricultural green total factor 
productivity [29]. Food crops sequester the most huge 
proportion of total carbon, followed by cash crops. Food 
crops are critical for addressing human food needs and 
play an essential role in carbon sequestration [18].

Accordingly, this article proposes.
Hypothesis 3: Digital transformation of agriculture 

hugely inhibits carbon emissions of agriculture through 
green technology advancement, agricultural scale 
operation, and agricultural cropping restructuring.

The mechanism of action of digital transformation of 
agriculture in this article is shown in Fig. 1.

Material and Methods

Econometric Model Construction

As mentioned above, many studies on the 
determinants of environmental benefits have introduced 
a discussion of variables [5, 16]. Instead of using cross-
sectional data samples, our analysis is based on panel 
data. For panel data, OLS (ordinary least squares), 
fixed effects, and random effects models are the most 
used econometric methods. Due to the need to monitor 
changes in each province during the course of the 
time series, the OLS model is not applicable to this 
investigation. Then, the Hausman test is developed to 
choose between using a fixed effects model and a random 
effects model [36]. The p-value for the Hausman test is 
0.001. Therefore, the claim that the explanatory factors 
are unrelated to personal effects is rejected. This study 
uses a two-way fixed-effects model to empirically assess 
the influence onthe expansion of digital transformation 
of agriculture on  carbon emissions of agriculture.  
The starting configuration of the model is as follows:

on advanced digital technologies such as blockchain, 
remote sensing, and 5G to drive many new industries. 
This attracts the influx of high-quality human capital 
and optimizes the capital structure, providing a 
good foundation for enterprises’ green technology 
advancement. At the same time, digital platforms 
provide farmers with a good communication platform. 
Through knowledge spillover, agricultural producers 
gain more data, thus breaking down “information 
silos” [9], which effectively improves production 
skills and promotes green agricultural production. 
Thus, digital transformation of agriculture effectively 
effectively improves green agricultural technology 
and helps farmers produce green, which is an effective 
way to effectively improve agricultural green total 
factor productivity [28]. Green agricultural technology 
advances enhance the efficiency of conventional 
energy consumption and change the structure of 
traditional factor inputs to effectively improve total 
resource utilisation [29], lowering carbon emissions of 
agriculture. Drip and sprinkler irrigation, as well as 
other similar irrigation systems, can help to effectively 
decrease water and fertiliser usage. Straw return can 
replace soil organic matter, prevent soil fertility loss, 
and have a substitution impact on chemical fertilisers, 
reducing the amount of chemical fertiliser applied 
[5]. Regions with more advanced green agriculture 
technologies will disseminate local, high-quality 
agricultural resources, technologies, and experiences to 
other regions, resulting in knowledge spillover effects 
[23], increased agricultural green production efficiency, 
and carbon emission reduction effects.

In agricultural scale production, mechanized 
operations brought by digital transformation of 
agriculture promote rural land transfer [29], which in turn 
promotes the increase of agricultural production scale. 
Agricultural scale operation realizes the intensive use of 
agricultural input factors, which can effectively improve 
fertilizer utilization efficiency, effectively decrease 
carbon emissions [30], and promote green agricultural 
production. In turn, agricultural-scale operation 
effectively improves agricultural mechanization and 
effectively decreases the excessive use of energy and 
environmental pollution of agricultural machinery.  
This enhances the standardization of agricultural 
production processes and achieves economies of 
scale. Production services of agricultural cooperatives 
effectively decrease the use of chemical fertilizers and 
pesticides [31]. Studies have also found that family 
farms with more extensive operations benefit more 
from adopting advanced digital technologies than 
smaller farms [32]. Thus achieving agricultural scale 
can effectively improve technological progress and 
economic efficiency. In recent years, under the guidance 
of the Chinese government, farmers have spontaneously 
formed new agricultural business entities, mainly 
family farms, agricultural cooperatives, and leading 
enterprises, to respond to the national requirements of 
developing green agriculture, promoting the promotion 
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(1)

The following sub-tables i and t indicate provinces 
and years, ACEit is the dependent variable indicating 
the degree of green growth in agriculture in province 
i in year t; Digi_agriit is the independent variable 
indicating the degree of digital agricultural development 
in province i in year t. Xit indicates a series of control 
variables that vary over time and affect  carbon 
emissions of agriculture. μi denotes individual fixed 
effects, λt denotes time-fixed effects. Jiang et al. (2022)
[9] divided digital agriculture at the structural level 
into digital agricultural infrastructure (Dig_infr), 
digital agricultural industrialization level (Dig_indu), 
and digital agricultural subject quality (Dig_enti) 
and drawing on this literature; this paper constructs  
a benchmark regression model at the structural level.

  (2)

Previous studies have shown that digital agriculture 
and carbon emissions of agriculture are spatially 
dependent [1, 4, 16]. Therefore, we constructed the 
following spatial econometric model to analyze the 
influence on digital transformation of agriculture on 
carbon emissions of agriculture

  (3)                                              

ρ is the spatial correlation coefficient and W is the 
spatial weight matrix. Xit denotes a series of control 
variables that vary over time and affect carbon 
emissions of agriculture. θ1, θ2, β and δ are coefficients 
to be estimated.

Many scholars perform spatial econometric 
regression using adjacency matrix and geographic 
distance matrix [3, 16, 23]. The fundamental spatial 
weighting adjacency matrix is chosen in this article, 
and the geographic distance matrix is compared as 
a robustness test. Equation (4) in the province i and 
province j if adjacent to say 1, not adjacent to say 0. 
Equation (5) of d indicates the geographical distance 
between the two provinces.

Adjacent space matrix:

   (4)

Geographical distance matrix:

                      (5)

A mediating effect model including green 
technology advancement, agricultural scale operation, 
and agricultural cropping structure modification as 
mediating variables is created to further examine the 
transmission mechanism of the influence of digital 
transformation of agriculture on carbon emissions of 
agriculture. Referring to the study by Ma et al. (2022)
[16], we have:

Fig. 1. Mechanisms of digital transformation of agriculture and agricultural carbon emissions.
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(6)

(7)

Equation (6) reflects the effect of digital 
transformation of agriculture on mediating variables; 
Equation (7) reflects the effect of digital transformation 
of agriculture on carbon emissions of agriculture 
simultaneously with mediating variables.

Construction of Variables

Dependent Variable

Carbon emissions of agriculture (ACE) is the 
dependent variable. This article uses the IPCC carbon 
emission factor approach to calculate  carbon emissions 
of agriculture, based on the method developed  
by Zhao et al. (2018) [17]. The carbon emissions caused 
by the six carbon sources involved in the planting 
industry’s production process, such as fertiliser, 
pesticide, agricultural film, diesel, irrigation, and 
tillage [1], are primarily investigated, and  carbon 
emissions of agriculture are measured using the relevant  
carbon emission coefficients with the following 
equations:                          

            (8)

In Equation (8), E denotes carbon emissions of 
agriculture, Ti denotes the input of the ith carbon 
source, and δi denotes the carbon emission coefficient. 
The main carbon emission sources and carbon emission 
coefficients of agriculture are shown in Table 1.

To reflect the changes in carbon emissions of 
agriculture from both dynamic and spatial perspectives, 
we use arcgis 10.2 to obtain Fig. 2 we take the years 2013 
and 2020 as examples. Comparing the two, we found 
that, one, agricultural carbon emissions are generally on 
a decreasing trend [16]. This may be related to the fact 
that China has vigorously promoted green technology 
inputs and large-scale agricultural operations in recent 
years to improve resource utilization efficiency and 

decrease agricultural carbon emissions [5]. Second, there 
are obvious regional differences in carbon emissions 
of agriculture, with relatively high agricultural carbon 
emissions in the central grain-producing regions 
represented by Henan Province. The possible reason is 
that the traditional agricultural provinces, especially  
the main grain-producing areas, are the primary sources 
of agricultural carbon emissions in China and still 
mainly adopt the traditional development model, i.e., 
adhering to the principle of „high input, high yield,” 
with a relatively homogeneous industrial structure [4], 
which leads to a large number of agricultural carbon 
emissions.

Key Explanatory Variable

The key explanatory variable in this article is 
digital transformation of agriculture (dig_agri). This 
study describes the degree of development of digital 
transformation of agriculture [9] in terms of digital 
agricultural infrastructure (dig_infr), digital agricultural 
industrialization degree (dig_indu), and digital quality 
of agricultural subjects (dig_enti).

In this article, digital transformation of agriculture 
infrastructure is represented by the rural Internet 
penetration rate, precisely measured by the ratio of 
rural Internet broadband access users to the rural 
population in the region. The degree of industrialization 
of digital transformation of agriculture is reflected in 
the number of “Taobao villages,” which, according to 
the Ali Research Institute, are administrative villages 
where farmers engaged in e-commerce account for more 
than 10% of local households and where e-commerce 
transactions exceed 10 million yuan [24]. To some 
extent, Taobao villages reflect the concentration of 
e-commerce in rural China. In addition, the ratio  
of per capita transportation and communication 
consumption expenditure of rural residents to per capita 
consumption expenditure of rural residents is used to 
assess the digital quality of farmers. The larger the ratio, 
the better the farmers’ mastery and processing of digital 
information and the smaller the “digital divide” they 
face [9]. 

In this article, the measurement of the overall degree 
of digital transformation of agriculture using the entropy 
method is divided into four steps.

Table 1. Carbon emission factors for each carbon source.

Carbon Source Carbon emission factor Reference Sources

Fertilizer 0.8956 kg C·kg-1 Oak Ridge National Laboratory, USA

Pesticides 4.9341 kg C·kg-1 Oak Ridge National Laboratory, USA

Agricultural film 5.1800 kg C·kg-1 Nanjing Agricultural University

Diesel 0.5927 kg C·kg-1 IPCC

Plowing 312.60 kg C·hm-2 College of Biology and Technology, China Agricultural University

Irrigation 266.48 kg C·hm-2 Dubey and Lal [37]
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The first step is to standardize the data in Equation 
(9)

                        (9)

In the second step, the share of j in year i is calculated 
as shown in Equation (10)

                      (10)

The third step calculates the information entropy (ej) 
and information entropy redundancy (dj). The specific 

calculation formula is shown in Equations (11) and 
(12), where yij = 0 is defined, then ej = 0. k is a constant, 
k = 1/lnm, m denotes the year.

       (11)

                  (12)

In the fourth step, the indicator weights are  
calculated using Equation (13), where n is the number of 
indicators.

Fig. 2. Spatial distribution of carbon emissions of agriculture in 2013 and 2020.

Table 2. Digital transformation of agriculture sub-dimension index weights.

Province Dig_infr Dig_indu Dig_enti Province Dig_infr Dig_indu Dig_enti

Beijing 0.2307 0.6411 0.1282 Hubei 0.3798 0.4953 0.1249

Tianjin 0.3501 0.3497 0.3002 Hunan 0.4200 0.4243 0.1557

Hebei 0.4695 0.4029 0.1276 Guangdong 0.4734 0.2686 0.2580

Shanxi 0.3159 0.4891 0.1950 Guangxi 0.2870 0.6039 0.1090

Neimenggu 0.0832 0.8532 0.0636 Hainan 0.1286 0.7450 0.1264

Liaoning 0.2366 0.5382 0.2251 Chongqing 0.2574 0.6130 0.1296

Jilin 0.3014 0.4698 0.2288 Sichuan 0.3271 0.5010 0.1718

Heilongjiang 0.2379 0.6655 0.0966 Guizhou 0.2484 0.5895 0.1621

Shanghai 0.1000 0.7689 0.1311 Yunnan 0.4804 0.4094 0.1103

Jiangsu 0.3591 0.4269 0.2140 Xizang 0.1984 0.6888 0.1128

Zhejiang 0.3369 0.3658 0.2973 Shaanxi 0.2012 0.6601 0.1387

Anhui 0.3190 0.5729 0.1082 Gansu 0.1773 0.7655 0.0572

Fujian 0.4440 0.3882 0.1677 Qinghai 0.1979 0.7479 0.0542

Jiangxi 0.3488 0.4911 0.1601 Ningxia 0.3895 0.3986 0.2118

Shandong 0.3361 0.4530 0.2109 Xinjiang 0.2959 0.5829 0.1212

Henan 0.3208 0.5360 0.1432
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                     (13)

Finally, based on the weights calculated, the weights 
of the assigned structural indicators can be deduced 
from the overall degree of digital transformation  
of agriculture development. As illustrated in Equation 
(14).

(14)

Table 2 displays the calculated weights of digital 
transformation of agriculture structural indicators 
for each province in China using the entropy value 
method. It can be seen that within the sample interval, 
the industrialization degree of digital transformation 
of agriculture in each province has a more huge 
weight, with an average value of 0.5454. Furthermore, 
agricultural entities’ digital quality ranks third with 
an average of 0.1562, while digital transformation of 
agriculture infrastructure ranks second with an average 
of 0.2958. From this, we can observe that the digital 
transformation of agriculture industrialization degree 
represented by Taobao villages is hugely higher than 
other measures. The possible reasons are that Taobao 
villages show a strong agglomeration effect in China, 
leading to the diffusion of agricultural technology 
through the knowledge spillover effect, improving 
agricultural development, and sharing agricultural 
infrastructure such as logistics and transportation 
support services to promote the reduction of rural 
operation costs and  green sustainable agricultural 
development [28].

In order to reflect the changes in digital agriculture 
from both dynamic and spatial perspectives, we use 
arcgis 10.2 to obtain Fig. 3. We take 2013 and 2020 as 
examples. Comparing the two, the degree of digital 
transformation of agriculture is generally rising. 

Second, there are obvious regional differences in 
digital transformation of agriculture. The development 
degree in the eastern coastal region was relatively high 
in 2013, while the development degree in the central 
and western regions was relatively low. This is closely 
related to the measures taken by the eastern regions 
(e.g., Zhejiang, Shanghai, and Guangdong) in recent 
years to pay more attention to the development of the 
digital economy, strengthen rural digital Infrastructure 
construction, and promote digital industrialization and 
digitization of industries [36]. Notably, Alibaba, the 
largest e-commerce company in China, is located in 
Hangzhou, the provincial capital of Zhejiang Province, 
which has become a model of the intelligent digital 
city in China, promoting the diffusion of advanced 
production technologies and driving the development 
of digital agriculture in neighboring cities. In addition, 
the rapid development of digital agriculture in China’s 
central and western regions in 2020 must be connected 
to the government’s policy inclination and financial 
investment.

Control Variables

Referring to Fang et al. (2021) [38] and Guo & Zhang 
(2023) [5], and Xu et al. (2022) [39], this article considers 
the control variables affecting carbon emissions of 
agriculture by including the degree of urbanization (urb), 
the degree of agricultural mechanization (machine), 
natural disasters (disas), and resource consumption 
(elect) measured by the proportion of urban population to 
total population, total power of agricultural machinery, 
crop affected area, and rural electricity consumption, 
respectively. 

Mechanism Variables

Green technology advancement (GTA). Referring 
to the method of Wang et al. (2021) [28], this article 
is expressed by green total factor productivity  

Fig. 3. Spatial distribution of digital transformation of agriculture in China in 2013 and 2020.
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in agriculture. In this paper, we use cumulative  
values.

Agricultural operation scale (AOS). This research 
refers to the Zhao et al. (2018) [17] study using the 
number of professional agricultural cooperatives per 
10,000 persons in rural areas.

Agricultural cultivation structure (ACS). This article 
uses the ratio of grain sown area to total crops sown to 
refer to the method of Liu et al. (2021) [40]. 

Data Description

This article uses panel data from 2013 to 2020 
for 31 Chinese provinces, with data on urbanization 
degree, agricultural mechanization degree, degree 
of agricultural disa and resource consumption from 

previous years’ China Statistical Yearbooks; Taobao 
village data sourced from the Ali Research Institute’s 
2020 China Taobao Village Research Report; and data 
on farmers’ professional cooperatives sourced from 
regional governments.

The variable definitions and descriptive statistics of 
this paper are shown in Table 3 and Table 4.

Results and Discussion

Baseline Model

Column (1) of Table 5 shows that digital 
transformation of agriculture hugely suppresses  carbon 
emissions of agriculture. Column (5) shows no huge 

Table 3. Variable Definition.

Table 4. Descriptive Statistics.

Variable Name Symbol Variable definition

Dependent variable Agricultural carbon emissions ACE Provincial Agricultural Carbon Emissions

Independent variable Digital Agriculture dig_agri Provincial digital agriculture development level

Control variables Urbanization lnurb Provincial urban population as a share of total population

Agricultural mechanization lnmach Provincial total power of agricultural machinery

Natural disasters disa Provincial crop damage areas

Resource consumption lnelect Provincial rural electricity consumption

Mechanism Variables Green technology advancement gta Provincial Green Total Factor Productivity in Agriculture

Agricultural operation scale aos Provincial number of rural professional cooperatives 

Agricultural cultivation structure acs Provincial share of food crops in crop production

Variable Mean SD Min Max

ACE 331.6 234.9 14.35 995.8

dig_agri 0.338 0.310 0 1

dig_infr 0.148 0.124 0 0.763

dig_indu 70.07 218.7 0 1757

dig_enti 0.131 0.0244 0.0751 0.187

lnurb 4.061 0.217 3.175 4.495

lnmach 7.642 1.135 4.543 9.499

disa 737.1 777.9 2 4224

lnelect 4.777 1.519 0.0770 7.606

acs 0.650 0.142 0.355 0.971

aos 59314 42238 2813 208173

gta 1.0929 0.1554 0.8045 1.5859

post_inter 295.0 370.8 0.005 1874

dis_inter 142.7 126.1 0 893.7
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change in the impact effect of digital transformation 
of agriculture by increasing the control variables. 
Therefore, digital transformation of agriculture has  
a suppressive effect on carbon emissions of agriculture, 
and hypothesis 1 is verified. A possible explanation 
is that digital transformation of agriculture relies on 
green agricultural technologies to effectively decrease 
agricultural chemical inputs effectively, adopt low-
carbon agricultural production methods [16], and 
effectively improve green total factor productivity in 
agriculture, thus effectively reducing carbon emissions 
of agriculture [40].

From the regression results of the control variables. 
The effects of most of the control variables are in line 
with theoretical expectations. Notably, the degree of 
agricultural mechanization hugely contributes to carbon 
emissions of agriculture, and it is statistically huge 
at 1%. The possible reason is that China is still in the 
period of transformation from traditional to modern 
agriculture and from rough to intensive development 
methods, and with the widespread use of agricultural 
machinery [16], the consumption of agricultural energy, 
such as diesel, is also increasing, which contributes to 

a certain extent to the increase of  carbon emissions of 
agriculture [4].

Table 5 (2) (3) (4) columns report the regression 
findings of digital transformation of agriculture sub-
dimensional indicators and carbon emissions of 
agriculture. With a statistical significance of 1%, the 
amount of digital farm infrastructure (dig_infr) has 
a considerable inhibitory effect on carbon emissions 
of agriculture [25]. The Chinese government may 
have increased rural infrastructure construction in 
recent years, effectively improved the rural logistics 
system at the county-town-village degree, conducted 
extensive e-commerce demonstrations in rural areas, 
and the „broadband countryside” pilot policy has been 
successful [9]. Farmers have the ability to Farmers can 
effectively decrease carbon emissions of agriculture by 
sharing rural digital Infrastructure in the region and 
cutting agricultural production costs and output [24]. 
The degree of digital transformation of agriculture 
industrialization (dig_indu) has a huge inhibitory 
effect on carbon emissions of agriculture and is 
statistically huge at 1%. Possible explanations are that 
rural e-commerce, as represented by Taobao villages, 

Table 5. Baseline regression results.

(1) (2) (3) (4) (5)

VARIABLES ACE ACE ACE ACE ACE

dig_agri -32.782*** -28.859 ***

(8.510) (8.135)

dig_infr -10.760**

(5.075)

dig_indu -18.075***

(6.715)

dig_enti 0.862

(5.379)

lnurb -74.069 **

(37.862)

lnmach 24.483 ***

(9.473)

disa 0.005*

(0.0024)

lnelect 23.877 ***

(7.189)

Regional FE YES YES YES YES YES 

Time FE YES YES YES YES YES 

R2 0.996 0.996 0.996 0.996 0.997

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1
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effectively decreases transaction costs, avoids blind 
production [24], promotes green production technologies 
through knowledge spillover [9], promotes brand 
building and standardized operation of agricultural 
products [27], and effectively effectively improves 
agricultural resource utilization efficiency, which in 
turn suppresses carbon emissions of agriculture. The 
quality of digital farming subjects has a minor catalytic 
influence on carbon emissions of agriculture. Farmers 
in remote mountainous areas of China may face a huge 
digital divide due to information and transportation 
barriers, as well as low degrees of transportation and 
communication consumption expenditures, making it 
difficult to access markets and effectively obtain income 
[41], thereby promoting carbon emissions of agriculture.

Analysis of Spatial Spillover Effects

Moran’s index test demonstrates that carbon 
emissions of agriculture are geographically 
autocorrelated. Table 6 dispays the test results.

(15)

In this study, tests that were pertinent were 
conducted using the spatial adjacency weight matrix. 
The results of the LM, Wald, and LR significance tests 
were all positive, suggesting that the spatial econometric 
model should be applied and that the SDM model does 
not degenerate into a SAR or SEM model [16]. Finally, 
results from the Hausman test demonstrate that the 
fixed-effects model beats the random-effects model. The 
geographical Durbin model with two-way fixed effects 
is therefore used in this study’s empirical research.

The estimation results in this study are further 
decomposed into direct and indirect impacts [25], 
as shown in Table 7. The direct effect of digital 
transformation of agriculture on  carbon emissions of 
agriculture is expressed as the region’s influence on  
carbon emissions of agriculture. The spatial spillover 
effect of digital transformation of agriculture on  carbon 
emissions of agriculture in neighbouring regions is the 
indirect effect.

As shown in columns (1) (2) (3) of Table 7, the direct, 
indirect, and total effects of digital transformation of 
agriculture on carbon emissions of agriculture are all 
negative under the spatial adjacency matrix. They all 

pass the 1% test, suggesting that digital transformation 
of agriculture has a considerable regional spillover 
effect on reducing carbon emissions of agriculture. This 
suggests that digital transformation of agriculture aids 
in the reduction of  carbon emissions of agriculture 
in the region and „neighboring regions” [16]; also, 
the calculated coefficient of spatial autoregression is 
positive and passes the 5% significance test. As a result, 
hypothesis 2 is confirmed. It is worth noting that the 
indirect effects of digital transformation of agriculture 
on  carbon emissions of agriculture are more huge than 
the direct effects, indicating that the spatial spillover 
effects of digital transformation of agriculture on carbon 
emissions of agriculture suppression are becoming more 
intense, necessitating the development of a regional 
synergistic emission reduction policy.

Endogeneity and Robustness Tests

Endogeneity is a huge issue that must be addressed in 
economic research. This research tackles the endogeneity 
problem caused by mutual causality or omitted variables 
by using the number of fixed post offices per million 
people in 1984 (post_inter) and the spherical distance 
from the province capital city to Hangzhou (dis_inter) 
as instrumental variables [36]. On the one hand, post 
offices were primarily utilized for information transfer 
and communication in early cultures. As a result, the 
number of post offices may be used to identify the 
degree of local communication development and is 
strongly linked to digital transformation of agriculture, 
which meets the requirements. Furthermore, historical 
data from 1984 cannot influence contemporary carbon 
emissions of agriculture, satisfying the exclusivity 
criteria. As the home of the digital economy symbolized 
by e-commerce, Hangzhou, on the other hand, leads 
the growth of digital transformation of agriculture. In 
theory, the closer you are to Hangzhou, the faster digital 
transformation of agriculture will develop. Furthermore, 
as a typical natural geographical feature, geographical 
distance is unrelated to  carbon emissions of agriculture 
and fits the relevance and exclusivity requirements. 
Regarding interaction, the number of post offices per 
million inhabitants in each province in 1984 is multiplied 
by the rural Internet penetration rate, as is the spherical 
distance from the provincial capital city to Hangzhou. 
They serve as instrumental variables for determining 
the state of digital agricultural development.

Table 6. Results of global autocorrelation test for carbon emissions of agriculture.

Year Moran I Z P Year Moran I Z P

2013  0.241 *** 2.568 0.005 2017 0.190** 2.087 0.018

2014  0.216*** 2.326 0.010 2018 0.188** 2.069 0.019

2015 0.204** 2.219 0.013 2019 0.181** 2.002 0.023

2016 0.195** 2.132 0.017 2020  0.184 ** 2.026   0.021
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First, column (1) (2) of Table 8 reports the estimation 
results using the number of fixed post offices per million 
people in 1984 (post_inter) and the spherical distance 

between the provincial capital city and Hangzhou  
(dis_inter) as instrumental variables, and finds that the 
first stage coefficient is hugely positive. The F-statistic 
score is 30.04 (higher than 10), indicating that the model 
is free of weak instrumental variable issues. The Sargan 
result of 22.65 is statistically huge at 1%, showing 
that there is no difficulty with the over-identification 
test. After removing the endogeneity problem caused 
by omitted variables, the results in column (2) reveal 
that digital transformation of agriculture has a huge 
inhibitory effect on  carbon emissions of agriculture at 
1% statistical significance.

Exclusion of the sample. Considering the special 
administrative status of municipalities in China,  
this article excludes the sample of municipalities [42], 
and the regression results are shown in column (3) 
of Table 8. Compared with the baseline regression, 
the regression coefficient values, sign direction, 
and significance degree of digital transformation of 
agriculture did not change hugely. The robustness of the 
empirical results is confirmed.

Replacing the weight matrix. The spatial adjacency 
matrix is substituted with the geographic distance 
matrix in this study, and the regression results are 
reported in Table 7 columns (4) (5) (6). The values 
of digital transformation of agriculture's regression 
coefficients, sign direction, and significance degree did 
not vary considerably. The empirical results' robustness 
is validated.

Table 7. Spatial effect analysis.

Table 8. Endogeneity and robustness tests.

(1) (2) (3) (4) (5) (6)

VARIABLES Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

dig_agri -23.627*** -49.386*** -73.013*** -28.471*** -70.88*** -99.352***

(6.891) (11.187) (10.152) (7.872) (21.075) (20.777)

lnurb -165.78*** 231.48*** 65.692 -153.35*** 361.02** 207.67

(32.85) (54.752) (51.862) (33.51) (150.36) (149.64)

lnmach 35.31*** - 32.61* 2.703 32.704*** 7.021 39.725

(10.78) (19.21) (17.133) (10.995) (42.66) (39.085)

disa 0.0042* -0.0005 0.0036 0.0054*** 0.0139 0.0194

(0.0024) (0.0045) (0.0052) (0.0026) (0.0153) (0.0159)

lnelect 27.407*** 22.42 49.828*** 27.597*** 80.995* 108.59**

(7.536) (17.67) (18.983) (7.876) (49.841) (50.61)

ρ 0.217** 0.325*

(0.085) (0.147)

sigma2_e 211.14*** 229.61***

(20.58) (22.45)

Regional FE YES YES YES YES YES YES

Time FE YES YES YES YES YES YES

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3)

VARIABLES Dig_agri ACE ACE

Post_inter 0.0002***

(0.0000)

Dis_inter 0.00033**

(0.00014)

Dig_agri -67.657*** -27.461***

(24.11) (8.882)

Control 
variables YES YES YES

Regional FE YES YES YES

Time FE YES YES YES

R2 0.836 0.996 0.995

Sargan 22.65***

First stage F 
value 30.04

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1
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Mechanism Test

As shown in Table 9, in mechanism I, digital 
transformation of agriculture hugely positively affects 
green technological progress, which meets the 1% 
significance test. Meanwhile, both digital transformation 
of agriculture and green technological progress have  
a considerable negative impact on carbon emissions 
of agriculture, which passed the 1% significance test.  
The percentage of intermediate impact to the total 
impact is 19.76%. This is consistent with theoretical 
predictions. The possible reason is that the development 
of digital transformation of agriculture may have 
knowledge spillover effects on agricultural operators 
to effectively improve the production quality of green 
agricultural products [16] and effectively decrease 
carbon emissions of agriculture through the diffusion of 
green production technologies [28]. Green technology 
advancement achieves economic growth from 
technological innovation and alleviates environmental 
pressure, effectively decreases costs, effectively 
decreases environmental pollution, and increases the 
proportion of clean energy, thus reducing  carbon 
emissions of agriculture [5].

In Mechanism II, digital transformation of 
agriculture hugely positively affects agricultural scale 
operation, which passed the 5% significance test. 
Meanwhile, digital transformation of agriculture and n 
agricultural scale operation have a huge adverse effect on  
carbon emissions of agriculture, passing the significance 
tests of 5% and 1%, respectively. The proportion of the 
total effect of the intermediary effect is 20.34%, which  
is consistent with the theoretical hypothesis.  
The possible reason is that digital transformation 
of agriculture drives the large-scale operation of 
agriculture, which overcomes the drawbacks of fine-
grained and decentralized land management and 

facilitates the formation of economies of scale. On the 
other hand, rational resource allocation effectively 
improves fertilizer utilization, effectively decreases 
the consumption of agricultural inputs, and effectively 
decreases pollution to the environment [17, 30], reducing 
carbon emissions of agriculture.

In Mechanism III, Dig_agri hugely affected 
agricultural cropping structure, which passed the 5% 
significance test. Meanwhile, digital transformation of 
agriculture and agricultural cropping structures hugely 
adversely affect carbon emissions of agriculture, both 
of which pass the 1% significance test. The proportion 
of the intermediate effect to the total effect is 24.02%, 
consistent with the theoretical prediction. The possible 
reason is that the Chinese government may have 
optimized the agricultural cropping structure in recent 
years to ensure food security [36], directing high-
quality food production and increasing the proportion 
of food crops grown to effectively improve the carbon 
sequestration effect and effectively decrease carbon 
emissions of agriculture [34].

Heterogeneity Test

Heterogeneity of Production Structure

This study examines how different agricultural 
production patterns have different environmental 
effects and impact carbon emissions of agriculture. 
This article conducts separate regression analyses on 
the samples according to the prominent and non-main 
grain-producing areas classified by Chinese agriculture 
in 2003. Columns (1) and (2) of Table 10 reveal the 
results. The regression results for food-producing 
regions are presented in column (1), while those for 
non-food-producing regions are presented in column 
(2). According to the study results, the development of 

Table 9. Mechanism Test.

 Mechanism I  Mechanism I I Mechanism I I I

→GTA → ACE → AOS → ACE → ACS → ACE

Dig_agri 0.1678*** -23.155*** 14054.45  ** -17.81** 0.026** -21.93***

(0.0387) ( 8.409) (5869.11) ( 7.17) (0.012) (7.59)

GTA -33.997***

(14.531)

AOS -0.000***

(0.0000)

ACS -268.48***

(44.48)

RegionalFE YES YES YES YES YES YES

Time FE YES YES YES YES YES YES

Mediated effect 19.76% 20.34% 24.02%
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digital transformation of agriculture has a more huge 
suppressive effect on carbon emissions of agriculture 
in major food-producing regions than in non-food-
producing countries. Possible explanations for this result 
include, on the one hand, the emergence of an apparent 
“grain-oriented” phenomenon in grain-producing 
regions of China, where the cultivation of grain crops 
increases the efficiency of water and fertilizer use  
and also hugely increases carbon sequestration [18, 
29]. On the other hand, adopting green production 
technologies tends to be higher in food-producing 
regions than in non-food-producing regions, which 
has a more pronounced impact on reducing carbon 
emissions of agriculture. The increasing influence on 
green production technologies on replacing chemical 
fertilizers and reducing fertilizer use effectively 
decreases carbon emissions of agriculture generated 
by chemical fertilizers [16], thus reducing the intensity 
of  carbon emissions of agriculture. In addition, 
implementing water-saving irrigation in major grain-
producing areas has a more pronounced impact on 
supplementing chemical fertilizers and improving the 
overall efficiency of water and fertilizer use [5].

Geographic Heterogeneity

Further, this article considers that different 
geographical regions affect carbon emissions of 
agriculture differently. We divide the sample into coastal 
and inland areas to analysis. The results are shown in 
columns (3) to (4) of Table 10. Columns (3) and (4) show 
the regression results for the coastal and inland regions, 
respectively. The data show that digital transformation 
of agriculture has a more substantial inhibitory effect 
on carbon emissions of agriculture in inland areas 
than in coastal areas. The possible reason is that due 
to the slower economic development, weak agricultural 
infrastructure, and lower management degree in inland 
regions, they have a huge “latecomer advantage” over 
coastal regions in accelerating the introduction and 
diffusion of advanced green agricultural technologies, 
thus hugely increasing agricultural green total factor 
productivity and reducing carbon emissions of 
agriculture [40].

Conclusions and Policy Recommendations

Digital transformation of agriculture contributes to 
the green sustainability of Chinese agriculture. In the 
face of today’s global warming environment and the 
need for carbon emission reduction, can the current 
development of digital transformation of agriculture 
contribute to agricultural carbon emission reduction? On 
this basis, this article examines the influence of the digital 
transformation of agriculture on the carbon emissions of 
agriculture and its spatial spillover utility. In addition, 
this article investigates how the digital transformation 
of agriculture ultimately affects carbon emissions 
through these three mechanisms from the perspectives 
of agricultural green technology advancement, 
agricultural scale operation, and agricultural planting 
structure adjustment. The main conclusions are as 
follows: (1) Digital transformation of agriculture 
significantly inhibits agricultural carbon emissions and 
has a significant negative spatial spillover effect. Digital 
agricultural infrastructure and industrialization have 
a substantial inhibitory effect on agricultural carbon 
emissions at the structural level. However, the carbon 
emission reduction effect of the leading quality of digital 
agriculture needs to be insignificant. (2) Heterogeneity 
analysis shows that the digital transformation of 
agriculture has a substantial suppressive effect on 
agricultural carbon emissions in inland areas and food-
dominant regions. (3) The mediating effect shows that 
digital agricultural transformation helps agricultural 
carbon emission reduction through green technology 
progress, agricultural scale operation, and agricultural 
planting structure adjustment.

This paper highlights specific recommendations 
that further improve the action mechanism of digital 
agriculture and promote carbon emission reduction.

First of all, promote the application of digital 
technology in the agricultural field and promote 
agricultural carbon emission reduction. Develop 
precision agriculture and smart agriculture, and 
promote the popularization of 5G, artificial intelligence, 
blockchain, remote sensing and other technologies 
in the field of agriculture. Specifically, agricultural 
carbon emissions can be reduced through water-saving 

Table 10. Heterogeneity test.

(1) (2) (3) (4)

dig_agri -35.667*** -7.464 -19.607 -17.701*

(12.764) (8.102) (13.212) (10.413)

Control variables YES YES YES YES

Regional FE YES YES YES YES

Time FE YES YES YES YES

R2 0.996 0.996 0.996 0.998

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1
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irrigation and straw-returning technology, and organic 
fertilizers can be adopted to reduce agricultural surface-
source pollution. Topsoil compaction problems can 
be effectively reduced by replacing heavy machinery 
with agricultural robots to prevent soil desertification. 
Remote sensing and spectral technologies are used to 
monitor crop growth and reduce pests and diseases. 
Blockchain technology improves the transparency 
of food traceability and records valid information at 
all stages of the supply chain to ensure good hygiene 
conditions and guarantee green food safety. In addition 
drone and satellite technologies provide more accurate 
weather data to provide sound advice for farmers to 
intervene in crop cultivation, which in turn promotes 
agricultural carbon reduction.

Second, the government should implement inter-
regional synergistic emission reduction. Since the 
development of digital agriculture has an obvious negative 
spatial spillover effect on agricultural carbon emissions, 
we suggest that provinces with well-developed digital 
agriculture infrastructure actively drive neighboring 
provinces to develop digital agriculture while curbing 
agricultural carbon emissions in neighboring provinces.

Thirdly, the government should promote green 
technology and invest more in the core technology 
of digital agriculture. In addition, the government 
should reasonably guide the land transfer, strengthen 
agricultural scale operations, cultivate new agricultural 
business entities such as family farms, agricultural 
cooperatives, and leading agricultural enterprises, and 
realize the economic benefits of agricultural scale. 
Finally, it should optimize the agricultural planting 
structure, steadily increase the sown area and output of 
food crops, and promote the high-quality development 
of the food industry. Promote the transformation of 
crop planting structure and the structural reform of the 
agricultural supply side to reduce agricultural carbon 
emissions effectively.

In this study, the research in this paper has 
made some progress, but some things could still be 
improved. On the one hand, this is due to the limitation 
of data acquisition. The model in this study only 
includes provincial data for China from 2013 to 2020.  
A broader sample panel dataset is needed to conduct  
a complete empirical study on the impact of the digital 
transformation of agriculture on agricultural carbon 
emissions. In the future, we plan to expand the panel 
data. Second, due to the complexity of the internal 
composition of digital agriculture and the lack of 
relevant data, this study only measures the degree of 
digital agriculture development from three perspectives: 
digital transformation of agricultural infrastructure, 
digital transformation of agricultural industrialization, 
and digital transformation of agricultural subject quality, 
and the measurement results may differ from the current 
status of agricultural digital transformation development 
in China. In the future, we must refer to more literature 
studies to provide a more reliable research method for 
measuring digital agriculture in China.
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