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Abstract

PM2.5 is the main source of air pollution in China. The problem of air pollution has become  
the focus of public opinion and academic research in recent years. This article departs from the 
traditional single-scale approach and adopts a spatial multiscale perspective. Leveraging annual 
average PM2.5 concentration data and urban socioeconomic data spanning the period from 2009 to 2018,  
in conjunction with atmospheric PM2.5 remote sensing inversion datasets, a comprehensive analysis 
is conducted. This analysis encompasses the utilization of GIS spatial-temporal analysis techniques 
and geographic detectors. The primary objective of this research is to investigate the spatiotemporal 
evolution characteristics of PM2.5 in the Yangtze River Basin during the years 2009 to 2018, as well as 
to elucidate the influencing factors therein. This study is crucial to the joint prevention and control of air 
pollution. The Results showed that (1) The overall trend in the number of cities with annual average PM2.5 
concentrations below 35 μg/m³ (the annual limit value in China) exhibits fluctuating upward dynamics. 
(2) From 2009 to 2018, the low-value area distribution of the annual average PM2.5 concentration  
in the Yangtze River Basin was stable, whereas the high-value area showed a trend of “first decreasing, 
then increasing, and then decreasing.” (3) The spatial and temporal agglomeration effect was evident, 
showing an “east-hot, west-cold” agglomeration pattern. From 2009 to 2018, the high-value aggregation 
area expanded to the middle part of the Yangtze River Basin and then continued to the north.  
The low-value concentration area was concentrated in the western part of the Yangtze River Basin, 
and the range change trend was not large. (4) While each variable concurrently engages in interactions, 
they also exhibit varying degrees of influence on the spatiotemporal distribution of PM2.5. Among 
them, population density and the proportion of urban built-up areas in the index layer of population and 
urbanization are strongly correlated factors.
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Introduction

From 1978 to 2018, with the rapid development 
of industrialization and the market economy, China’s 
urbanization rate increased rapidly from 17.92% to 
59.58%. However, the long-term extensive development 
model has changed the vulnerability of the ecological 
environment and led to environmental degradation. 
Among them, the problem of air pollution caused by 
fine particle matter has become the focus of public 
opinion and academic research in recent years. PM2.5 
in fine particles can directly reach human alveoli  
due to its relatively small diameter, causing great harm 
to the human body [1]. Approximately 1 million people 
died from long-term exposure to PM2.5 in China in  
2013-2017, more than 10% of the national death toll. 
Research results show that PM2.5 has caused serious 
harm to citizens’ physical (respiratory diseases, 
etc.) and mental health (mental diseases, etc.) [2-4]. 
Simultaneously, in recent years, urban air quality has 
been incorporated into China’s binding indicators for 
socio-economic development. Evidently, PM2.5 is poised 
to become a focal point in China’s future endeavors 
pertaining to atmospheric pollution control, concurrently 
representing a significant subject of interest within 
the realm of international atmospheric environmental 
research [5, 6]. The Yangtze River Basin, characterized 
by its extensive geographical reach and dense population 
activities, plays a pivotal role in China’s socio-economic 
development. With the continuous advancement of 
industrialization and economic development, the high 
population density and dense road transportation 
networks have resulted in diminishing pollution buffer 
zones between cities. Consequently, this basin has faced 
significant challenges related to air pollution [7].

In recent years, both domestic and international 
academic communities have made notable progress in 
researching pertinent aspects of PM2.5. In terms of the 
research scale, the current main units are the whole 
country [8-10], urban agglomerations [11-14], provinces 
[14], and individual cities. In addition, existing research 
mainly focuses on seasonal and spatial changes in 
PM2.5 concentration in international metropolises or 
pollution-sensitive cities. And the time span covered 
is relatively short. The spatiotemporal distribution 
characteristics, influencing factors and driving forces of 
PM2.5 concentration have not yet been comprehensively 
analyzed on a large scale and long time frame. In 
terms of the properties of PM2.5, spatial agglomeration, 
spatial variability, and human inhalable microorganisms 
were mainly analyzed. In terms of influencing factors, 
existing research has noted that the causes of PM2.5 
pollution include not only air temperature, precipitation, 
dust and terrain [15], air pressure [16], wind speed, wind 
direction, precipitation, SO2, NO2, CO, O3 concentrations 
[17-18] and other physical and geographical factors but 
also per capita GDP, urbanization, population density, 
traffic factors, energy consumption factors, and other 
economic and social factors [19-21]. However, some 

studies have also confirmed that economic and social 
factors have a greater impact on PM2.5 pollution in 
China [22]. Research methods mainly include the 
gray correlation model, geographical detector method 
[17], geographically weighted regression model [23], 
principal component analysis [24], Gaussian mixture 
regression [25], and spatial econometric model [26]. 
The gray correlation model must subjectively determine 
the optimal value of each index. Principal component 
analysis is difficult to apply to large-scale and long-
term time series research when source analysis is 
performed [27]. Moreover, the linear relationship and 
data distribution assumptions in the geographically 
weighted regression model have certain limitations. 
The premise of using the Gaussian mixture model is to 
make distribution assumptions on the data, including 
the proportion and number of data categories. However, 
the use of geographic detectors can directly test the 
coupling of multiple variable space-time distributions, 
eliminating the error caused by data distribution 
assumptions and subjective judgments and improving 
the accuracy of experimental results [28, 29]. Therefore, 
it is widely used in analysis to study the spatial-temporal 
differentiation characteristics of pollutants [30, 31].

Overall, the research areas of many previous studies 
are mainly based on a single scale, such as the whole 
country, a province, or a single urban area. In addition, 
the spatial-temporal differentiation characteristics 
are difficult to identify effectively at different scales. 
Thus, this study breaks through traditional single-
scale research, starts from the perspective of spatial 
multiscale based on the annual average concentration 
data of PM2.5 and urban socioeconomic data from  
2009 to 2018, and comprehensively uses the methods 
of time-space analysis and geographic detectors in GIS 
to study the Yangtze River. The temporal and spatial 
evolution characteristics of PM2.5 in the watershed and 
its influencing factors are expected to be vital to the 
joint prevention and control of air pollution.

Data Sources and Research Methods

Data Sources

The data sources are mainly divided into two parts: 
(1) PM2.5 concentration data. This research uses 

the atmospheric PM2.5 remote sensing retrieval dataset 
(V4.CH.02) provided by the Atmospheric Composition 
Analysis Group of Dalhousie University in Canada from 
2009 to 2018. The download link is http://fizz.phys.dal.
ca/~atmos/martin/?page_id=140. Compared with the 
point source data provided by ground monitoring points 
in the existing research, satellite monitoring data have 
the advantages of a long time span, high resolution, 
and low degree of human interference. Therefore, 
using this dataset can well reflect the real situation 
of PM2.5 concentration in the region. In view of this, 
this study uses the vector data of each administrative 
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division boundary line as a mask in GIS and performs  
partition statistics on the raster data with an accuracy  
of 10 km. Finally, the annual average data of PM2.5  
in each city in the Yangtze River Basin are extracted, 
and the spatial and temporal analysis of GIS is used  
to visualize PM2.5 in different administrative regions  
of China.

(2) Socioeconomic data. These data are mainly 
derived from the 2010-2019 China Urban Statistical 
Yearbook. The spatial heterogeneity of PM2.5 
concentration in China is notably pronounced, reflecting 
a complex array of contributing factors. These factors 
encompass a spectrum of natural elements, including 
atmospheric circulation patterns, wind direction 
and frequency, and precipitation. Concurrently, 
anthropogenic influences encompass industrial 
particulate emissions, coal combustion, crop residue 
burning, and vehicular exhaust emissions, among others. 
To conduct a comprehensive analysis of the influencing 
factors behind PM2.5 concentration variations, panel 
data spanning the years 2009, 2012, 2015, and 2018  
from 11 provincial-level regions were selected. 
Employing the geographic detector methodology 
facilitated the detection of spatial differentiation 
characteristics and the identification of driving forces 
responsible for spatial disparities.

Human activities, as direct instigators of 
environmental pollution, have consistently remained  
a focal point in research on the impact of PM2.5 pollution. 
Environmental factors, such as temperature, wind speed, 
humidity, and the three-dimensional spatial morphology 
of urban areas, can exert influences on the diffusion of 
airflows and particulate matter, thus being considered 
indirect influencing factors on PM2.5 concentrations 
within the atmosphere. Regarding energy consumption, 
serving as a pivotal conduit for China’s economic 
development, it shoulders the weight of significant 
industrial progress. Concurrently, the Yangtze River 
trunk line, holding the distinction of being the world’s 
busiest inland waterway with the highest transport 
volume for consecutive years, features well-developed 
ports along its route, a high level of urbanization, and 
factors related to transportation, such as vehicular 
emissions and urban road infrastructure, undoubtedly 
contribute to increased PM2.5 concentrations.

By sorting out existing research and on the basis 
of available data, 11 variable factors affecting PM2.5 
pollution are finally selected, including four population 
and urbanization factors, namely, population density, 
proportion of urban built-up areas, per capita GDP, 
and urban greening rate; five industries and energy 
consumption factors, namely, the proportion of 
tertiary industry employees, industrialization level, 
science and technology expenditure, industrial soot 
emissions, and industrial sulfur dioxide emissions;  
and two traffic factors, namely, the actual urban road 
area and the total number of urban buses at the end of 
the year.

Research Methods

Spatial Autocorrelation Analysis

In the global spatial autocorrelation, the average 
similarity of PM2.5 concentration in the adjacent area 
unit can be expressed by the Moran index, which is 
calculated as shown in Formula (1).

           (1)

Where I represent the global Moran index; xi and 
xj are the PM2.5 concentrations of city i and city j, 
respectively; and x is the average PM2.5 concentration 
of the whole city. wij represents the spatial weight 
between city i and city j, which is calculated by the 
Queen proximity method. When i = j, the spatial 
weight is 0; n is the number of research units, that is, 
the total number of cities. The value range of the global 
Moran index is [−1,1]. When I = 0, no correlation exists 
between the regional units; when I>0, a positive spatial 
autocorrelation exists. The stronger the agglomeration 
is, when I<0, a negative spatial autocorrelation is 
found; the smaller the value is, the stronger the spatial 
dispersion.

The significance level of the local Moran index can 
be measured by the Z statistic, which is calculated as 
shown in Formula (2).
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In the formula, ZI is the significance level, and E[I] 
and V[I] are the mathematical expectation and variance 
of the local Moran index, respectively.

Geographic Detector

Geographic detectors have been widely used in 
various fields, such as natural society. Its research 
scope includes the township scale to the national scale.  
At present, it is mainly used in the fields of social 
economy and ecological environment. In these 
applications, a geographic detector was mainly used 
to analyze the driving force and influencing factors 
of various phenomena and the interaction of multiple 
factors, and its calculation is shown in Formula (3).

                (3)

In the formula, q represents the contribution  
value of the factor to the variable Y; i = 1, 2, ..., L  
is the stratification (class/area) of the factor or variable;  
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σi
2 and Ni are the variance and the number of samples 

of the i-th layer; and σ2 and N are the variance and 
the sample size of the whole area, respectively. If the 
stratification is generated by variable Y, its spatial 
differentiation becomes more evident with the increase 
in the q value. If the stratification is generated by the 
factor X, then the degree of interpretation of the factor to 
the variable Y increases as the q value increases, which 
can be measured by 100 × q %. The value range of q is 
[0,1]. When q = 0, the factor has no correlation with the 
variable Y; when q = 1, the factor can completely explain 
the spatial differentiation of the variable Y. The p value 
is defined by the noncentral F distribution, and the q 
value is tested for significance through the p value. If the 
p value is less than 0.05, then the alternative hypothesis 
is satisfied, and the null hypothesis is rejected; if the p 
value is greater than or equal to 0.05, then the q value 
is not significant, and no evidence is found to reject the 
null hypothesis.

Interaction detection evaluates whether the 
interaction between the X1 and X2 factors will affect 
the explanatory power of Y. By comparing the q 
value of each single factor with the q value after the 
superposition of the two factors, the strength of the 
interaction between the two factors can be judged. 
The symbol “∩” is used to represent the interaction 
between the two factors. Let the influence of the factor 
interaction be q (X1∩X2). If q (X1∩X2)>q (X1) + q (X2), it 
is nonlinear enhancement. If q (X1∩X2) > Max (q (X1), 
q (X2)), it is a two-factor enhancement; if q (X1∩X2)  
= q (X1) + q (X2), the two factors are independent; if Min  
(q (X1), q (X2))<q (X1∩X2)<Max(q (X1), q (X2)), it is  
a single-factor nonlinear attenuation; if q (X1∩X2)<Min 
(q (X1), q (X2)), it is nonlinear attenuation.

Results

Analysis of the Time Series Characteristics of PM2.5 
in the Yangtze River Basin

To reflect the spatial distribution of PM2.5 in each 
prefecture-level city of each urban agglomeration 
clearly, the legend is unified to compare the spatial 
and temporal changes in PM2.5 more effectively and 

avoid the excessive influence of extreme values on the 
classification, referring to the World Health Organization 
and China’s Ambient Air Quality Standards (Table 2); 
the annual average concentration of urban PM2.5 is 
divided into seven intervals. The proportion of the 
number of cities in the Yangtze River Basin from 2009 
to 2018 is analyzed (Table 3).

The specific results are as follows (Fig. 1): 1) The 
overall trend of cities below 10 μg/m3 (annual average 
base value) is not evident, and the number of cities is 
relatively small. 2) The proportion of cities with an 
annual average mean PM2.5 below 35 μg/m3 (the annual 
mean limit in China) continued to increase from 12.38% 
in 2009 to 55.75% in 2018. 3) The proportion of cities 
with a grade of more than 75 μg/m3 peaked to 14.16% 
in 2010, followed by a wave-like decline, and no cities 
of this level appeared until 2014. This phenomenon is 
related to the important directive documents related to 
the prevention and control of air pollution issued by the 
state during 2010–2012 (“Guidance on Promoting Joint 
Prevention and Control of Air Pollution to Improve 
Regional Air Quality,” “Air Pollution Prevention and 
Control Action Plan,” etc.). It shows that after 2010, as 
the government began to pay attention to the continuous 
growth of PM2.5 concentration, the cities exceeding 
this level were well controlled. 4) From 2009 to 2014, 
the proportion of cities with an average annual PM2.5 
concentration exceeding 35 μg/m3 changed most 
evidently, showing a trend of “first increasing and then 
decreasing”  from 87.61% to 44.25%, and the decrease 
was nearly doubled. It reached the highest value of 
91.95% in 2011 and 2012 and then began to decline 
sharply, falling to the lowest value of 44.25% in 2018. 
Overall, the number of cities with low concentrations of 

Table 1. PM2.5 Concentration Standard Value.

Country/Organization Category Annual Mean /(μg·m−3) Daily Mean (μg/m3) Sources

World Health
Organization

Base Value 10.0 25.0
Global Air Quality 

Guidelines 
(2005)

Transition Period Goal 1 35.0 75.0

Transition Period Goal 2 25.0 50.0

Transition Period Goal 3 15.0 37.5

China Base Year
Level 1 Level 2 Level 1 Level 2 Ambient Air Quality 

Standards 
(2016)15.0 35.0 35.0 75.0

Table 2. PM2.5 Concentration Global Moran’s I Index.

Year Moran ‘s 
index z score p value

2009 0.8202 20.4118 0

2012 0.8408 21.3599 0

2015 0.9752 25.1254 0

2018 0.8895 21.6705 0
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As shown in Fig. 2, the low-value areas of PM2.5 
concentration below 35 μg/m3 are mainly concentrated 
in Qinghai Province, Tibet Autonomous Region, 
Yunnan Province, Chongqing City, Guizhou Province, 
Sichuan Province, Shaanxi Province, Gansu Province, 
and other regions. Therefore, the change trend of PM2.5 
concentration in the central and western regions of  
the Yangtze River Basin is small, and the change  
in the northeastern region is more significant.  
The high-value areas with more than 50 μg/m3 are 
mainly concentrated in Hubei, Jiangsu, Zhejiang, 
Anhui, and other regions. In 2012, the concentration of 
PM2.5 in Jingzhou, Xiaogan, Wuhan, and Ezhou in the 
eastern part of Hubei Province and Yueyang, Changsha, 
and Xiangtan in the northern part of Hunan Province 
decreased in comparison with 2009, but in 2015,  

PM2.5 increased from 2009 to 2018, whereas the number 
of cities with high PM2.5 concentrations decreased, and 
urban air pollution improved with relevant government 
control.

Analysis of Spatial Variation Characteristics 
of PM2.5 in the Yangtze River Basin

To explore the spatial differentiation characteristics 
of PM2.5 concentration further, this study spatially 
clustered the mean value of PM2.5 concentration in the 
Yangtze River Basin over the years. After comprehensive 
consideration, representative 2009, 2012, 2015, and 2018 
were selected for visual analysis. After comprehensive 
consideration, representative 2009, 2012, 2015, and 2018 
were selected for visual analysis.

Table 3. Global Detection Results of PM2.5 pollution causes in China.

Type Detection Factor
2009 2012 2015 2018

q value p value q value p value q value p value q value p value

Population And 
Urbanization 

Factors

Population Density 0.2093 0.0068 0.3091 0 0.1975 0.0352 0.2892 0.0077

Per Capita GDP 0.1362 0.0091 0.1391 0 0.2515 0 0.1562 0.0191

Proportion of Urban Built-Up Areas 0.3000 0 0.2783 0.0038 0.2199 0.0204 0.3008 0

Open Space Ratio of Urban 0.1100 0.0036 0.2334 0.0499 0.2626 0.0033 0.2014 0.0167

Industry 
And Energy 

Consumption 
Factors

Employee Proportion of the Tertiary 
Industry 0.1947 0.0170 0.1980 0 0.2025 0.0088 0.1947 0.0270

Industrialization Level 0.1295 0.2503 0.1880 0.0315 0.2413 0 0.1423 0.0317

Expenditure On Science and 
Technology 0.1404 0 0.2635 0 0.3263 0 0.1450 0

Industrial Smoke Dust Emissions 0.0806 0.0058 0.0548 0.0395 0.0745 0.0121 0.0326 0.0358

Industrial Sulfur Dioxide Emissions 0.0808 0 0.1069 0.0088 0.1064 0.0180 0.0208 0.0432

Traffic Factor

Actual Urban Road Area at the End 
of The Year 0.1721 0.0122 0.2871 0 0.2244 0 0.1514 0.0051

Total Number of Urban Buses at the 
End Of the Year 0.1418 0.0324 0.1237 0.0215 0.1639 0.0132 0.1417 0.0003

Fig. 1. Proportion of Cities Among PM2.5 Concentration Zones From 2009 to 2018.
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a large area of high pollution appeared. Hubei and Anhui 
increased to high-pollution areas, and the concentration 
of PM2.5 decreased until 2018.

In general, the distribution of low-value areas of 
PM2.5 annual average concentration in the Yangtze River 
Basin from 2009 to 2018 is relatively stable, and the 
high-value areas generally show a trend of decreasing 
first, then increasing and then decreasing. Considering 
the large economic differences among cities, the 
pollution concentration of PM2.5 may have an inseparable 
geospatial correlation with population density and 
economic activity density. Therefore, to compare 
the differences more significantly between cities and 
realize the analysis of multiscale spatial–temporal 
differentiation characteristics and its influencing 
factors, this study analyzes the Yangtze River Basin 
from the perspective of social economy, with a view to 
the joint prevention and control of air pollution and the 
construction of ecologically civilized cities.

Analysis of Temporal and Spatial Pattern 
Evolution of PM2.5 Concentration 

in the Yangtze River Basin

The results of the spatial autocorrelation test of PM2.5 
concentration in cities in the Yangtze River Basin from 
2009 to 2018 by GIS software are shown in Table 2.  
The Moran’s index under the Queen spatial weight matrix 

was greater than 0.8, which passed the significance test 
at the 1% level, indicating that PM2.5 in the Yangtze 
River Basin cities showed spatial aggregation during 
2009-2018, and the “cold spot-hot spot” aggregation 
characteristics could be further analyzed by GIS.  
In summary, the geographic detector method can be used 
to study the influencing factors of PM2.5 concentration.

The spatial aggregation pattern of the PM2.5 annual 
average concentration in the Yangtze River Basin in 
2009, 2012, 2015, and 2018 is shown in Fig. 3. Overall, 
the spatial-temporal agglomeration effect is evident, 
showing an “east-hot, west-cold” agglomeration pattern. 
From 2009 to 2018, the high-value agglomeration area 
expanded to the middle of the Yangtze River Basin 
and then shrank to the northeastern Hubei Province, 
northern Hunan Province, Anhui Province, Jiangsu 
Province, Zhejiang Province, and Shanghai City, 
which have always maintained high-value clusters. 
The low-value accumulation areas are concentrated in 
the western part of the Yangtze River Basin, Qinghai 
Province, Tibet Autonomous Region, Yunnan Province, 
western Guizhou Province and other places, and the 
trend of range change is not significant. In 2009, the 
hot spots were mainly concentrated in the northeastern 
coastal areas of the Yangtze River Basin with high 
population density, developed economy, and large traffic 
energy consumption. In 2012, it began to spread to the 
central region. Changde, Yueyang, Yiyang, Changsha, 

Fig. 2. Spatial Distribution of PM2.5 Annual Average Concentration.
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Loudi, Xiangtan, Hengyang, and other places in 
Hunan Province began to have high-value clusters. 
However, after 2015, the hotspots began to shrink to 
the north of the Yangtze River Basin, and the hotspots 
in Loudi, Xiangtan, Hengyang, and other places in 
Hunan Province did not continue to appear. During 

2009-2018, the cold spots of PM2.5 concentration were 
mainly distributed in the Tibet Autonomous Region and 
Yunnan Province, which were mainly characterized 
by mountains and plateaus, sparse population, and 
relatively underdeveloped economy.

Table 4. Interactive Dominant Factor Interpretation.

Factor code Interpretation Factor code Interpretation

Y PM2.5 X12 Industrialization level

X1 Per capita GDP X13 Proportion of technology expenditure

X2 Proportion of urban built-up areas X14 EOY actual urban road area

X3 Urban open space ratio X15 EOY actual total number of buses

X4 Green coverage ratio of built-up areas X16 The number of buses per 10,000 people

X5 Proportion of the primary industry in GRP X17 Total annual bus passenger traffic volume

X6 Proportion of secondary industry in GRP X18 Industrial smoke dust emissions

X7 Proportion of tertiary industry in GRP X19 Industrial SO2 emissions

X8 Proportion of employees in primary industry X20 Industrial electricity consumption

X9 Proportion of employees in secondary industry X21 Population density

X10 Proportion of employees in the tertiary industry X22 Birth rate

X11 Number of industrial enterprises X23 Mortality

Fig. 3. Distribution of PM2.5 Spatial Aggregation Patterns.
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Analysis of Influencing Factors of PM2.5 
Concentration

Single-Factor Contribution Analysis

Before conducting the geographical detector, this 
study used SPSS software to conduct correlation 
analysis on 11 variables and verified that no collinearity 
problem exists among the variables. Then, from the 
data collected from the China Statistical Yearbook, 
the urban socioeconomic data in the Yangtze River 
Basin in 2009, 2012, 2015, and 2018 were taken as the 
analysis object, and data were standardized. Afterward, 
the geographical detector method was used to analyze 
the influence of each influencing factor on the annual 
average concentration of PM2.5. The results are shown 
in Table 3. Population and urbanization factors, industry 
and energy consumption factors, and traffic factors 
have varying degrees of influence on the temporal and 
spatial distribution of PM2.5. Among them, population 
density and the proportion of urban built-up areas in 
the population and urbanization index layer are strongly 
correlated factors.

(1) Driving factors of population and urbanization
Given that the q values of population density and 

proportion of urban built-up area have the largest values 
among all influencing factors, they contribute the most 
to PM2.5. The detection results of urban population 
density were 20.93%, 30.91%, 19.75%, and 28.92%, 
showing a “W-shaped” evolution trend of “rising first, 
then falling, and then rising.” The q-values of urban 
built-up areas are 30.00%, 27.83%, 21.99% and 31.22%, 
respectively, showing a “V-shaped” evolution trend of 
“declining first and then rising” as the degree of urban 
construction changes. The contribution value of the 
urban green space rate to PM2.5 is only lower than that of 
population density, and its q values are 11.00%, 23.34%, 
26.26%, and 20.14%. Studies have shown that vegetation 
absorbs atmospheric pollutants during photosynthesis; 
thus, the effect of PM2.5 concentration can be alleviated 
by increasing greening construction. The contribution 
values of per capita GDP were 13.62%, 13.91%, 25.15%, 
and 15.62%. Economic development and human 
activities also have a greater impact on PM2.5.

(2) Driving factors of industry and energy 
consumption

The contribution value of industrialization level and 
science and technology expenditure to PM2.5 has certain 
fluctuation, and the overall trend is “first increasing 
and then decreasing.” The q values are 12.95%, 
18.80%, 14.23% and 14.04%, 26.35%, 32.63%, 14.50%.  
As industrial production increases energy consumption, 
its emissions are one of the important sources of urban 
air pollution. Industrialization is the main driving 
factor of PM2.5 pollution in most areas. The number 
of employees in the tertiary industry has a greater 
impact on PM2.5 and is relatively stable, with q values 
of 19.47%, 19.80%, 20.25%, and 19.47%. Given that 
the 12th five-year plan for 2011-2015 proposed scientific 

and technological innovation to accelerate industrial 
upgrading and transformation, the improvement of 
industrial production efficiency has reduced industrial 
pollution to a certain extent. The contribution of 
industrial smoke and dust emissions and industrial 
sulfur dioxide emissions decreased from 8.06% and 
8.08% in 2009 to 3.26% and 2.08% in 2018, and their 
contribution to PM2.5 concentration decreased.

(3) Driving factor traffic
The actual road area and the total number of urban 

buses at the end of the year can roughly reflect the traffic 
situation value of the city. The q values of the actual 
road area at the end of the year are 23.98%, 24.75%, 
18.75%, and 13.61%, showing a downward trend.  
At the end of the year, the contribution value of the 
total number of buses to PM2.5 in real cities increased 
from 14.18% in 2009 to 16.39% in 2015 and maintained  
an upward trend but decreased to 14.17% in 2018.  
This decline is related to the popularization and use of 
new energy buses nationwide in 2016. At the end of 
2016, the total number of new energy buses nationwide 
exceeded 160,000. Air pollution caused by automobile 
exhaust emissions decreased with the increase in the 
number of new energy buses and taxis. With the further 
promotion of new energy buses and taxis, the impact of 
total urban buses on PM2.5 concentration may continue 
to decline at the end of the year.

Analysis of the Interaction Mechanism 
of Leading Factors

Many factors affect the concentration of PM2.5 in 
the Yangtze River Basin, and the driving factors are 
complex. Accurately identifying the dominant factors, 
especially the interaction mechanism between different 
factors, is the most difficult and key to alleviating air 
pollution. Geographic detectors were used to detect the 
dominant interaction factors of cities in the Yangtze 
River Basin during the four-year period, and the 
detection results are shown in Fig. 4.

In terms of single-factor detection results, the 
dominant factor in 2009 and 2018 was the proportion 
of urban built-up areas, with q values of 30.00% and 
31.22%, respectively, indicating that the proportion of 
urban built-up areas in these two periods can reflect 31% 
of the PM2.5 spatial distribution. In 2012 and 2015, the 
dominant factor was population density, and its q values 
were 30.91% and 32.63%, respectively, indicating that 
the population density dominant factor could explain 
32% of the PM2.5 situation. In the detection results of 
interaction dominant factors, the strength of interaction 
between a single dominant factor and another factor 
is significantly greater than that of a single factor, and  
a nonlinear strengthening or double factor strengthening 
relationship is found between the dominant factor and 
other factors. The interaction analysis of each factor 
influences the spatial differentiation characteristics of 
PM2.5 concentration, but some differences are found 
in the intensity of interaction in different periods.  
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Fig. 4 shows that the average q values of the dominant 
interaction factors in 2009 and 2018 were 47.98% and 
47.23%, respectively, and the q values of the dominant 
interaction factors increased by 17.98% and 16.01%, 
respectively, compared with the single dominant 
factor. Among the dominant interaction factors, the 
interaction between the dominant factor of urban 
built-up area and industrial smoke and dust emissions 
has the largest contribution to PM2.5 concentration, 
which are 59.13% and 56.59%, respectively. These 
values increased by 29.13% and 25.37%, respectively, 
compared with the single dominant factor. Results show 
that in the case of moderate urban construction and 
development, increasing scientific and technological 
innovation and accelerating industrial upgrading and 
transformation have the best mitigation effect on PM2.5 
pollution. The contribution rate of dominant interaction 
factors increased greatly in 2012 and 2015, and the 
average q values after interaction were 48.57% and 
53.00%, respectively. Among them, the q value of the 
population density dominant factor and per capita GDP 
in the dominant interaction factor is the largest, which 
is 57.70% and 62.19%, respectively, which is 26.79% 
and 29.56% higher than that of a single dominant factor. 
Results show that in the case of population density 
growth, the rapid growth of per capita GDP has the 
greatest impact on PM2.5 concentration.

Discussion

Existing studies have explored the mechanistic role 
of PM2.5 in air pollution using approaches based on land 
use models, nighttime light data, and employing methods 
such as random forest regression and spatiotemporal 
dynamics. ZHOU Liang et al. utilized geostatistics, 

geographic detectors, and spatial analysis techniques 
to assess the spatiotemporal evolution patterns and 
driving factors of PM2.5 concentration in China [32, 33].  
In a parallel study, Jianhua Cheng et al. employed 
statistical analysis, hotspot analysis, spatial 
autocorrelation, mean centers, and geographic 
detectors to investigate the spatiotemporal variations 
in the air quality index of major Chinese cities. Their 
findings revealed that forested areas and industrial 
land use exerted a more substantial influence on PM2.5 
concentration than other land use types.

Considering this, this study departs from traditional 
single-scale research and adopts a spatial multiscale 
perspective. Drawing upon annual average PM2.5 
concentration data spanning the years 2009 to 2018 
and urban socioeconomic data, as well as utilizing 
atmospheric PM2.5 remote sensing inversion datasets, 
a comprehensive approach that integrates GIS spatial-
temporal analysis and geographic detectors is employed. 
The objective of this investigation is to examine the 
spatiotemporal evolution characteristics of PM2.5 in the 
Yangtze River Basin from 2009 to 2018, along with an 
exploration of its influencing factors.

Population and urbanization factors, industry and 
energy consumption factors, and traffic factors have 
varying degrees of influence on the temporal and spatial 
distribution of PM2.5. The material transmission and 
exchange in the atmosphere is uneven, causing local 
circulation in the city, thereby changing the atmospheric 
environment, and resulting in PM2.5 Concentrations 
exhibit spatial heterogeneity. These factors can 
significantly affect the spatial-temporal heterogeneity of 
PM2.5. How to identify the dominant factors accurately 
and explore the interaction mechanism of different 
factors is a difficult and innovative point in the study of 
air pollution influencing factors.

Fig. 4. Interactive Dominant Factor Contribution Value Analysis.
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The detection results of interactive dominant factors 
reveal that the interaction between population density 
and per capita GDP, the proportion of urban built-up 
areas, and industrial smoke and dust emissions have 
a huge impact on PM2.5 concentration. The research 
results show that the population density and the 
proportion of urban built-up area in the population 
and urbanization index layer are the dominant factors. 
Population density is closely related to the intensity of 
human activities. The higher the population density, 
the higher the intensity of human activities, and the 
higher the PM2.5 concentration. This relationship occurs 
mainly because the increase in population density leads 
to an increase in the demand for housing and travel and 
building construction projects brings environmental 
pollution. The increase in car ownership also brings 
more exhaust emissions, producing a large amount of 
nitrogen oxides and pollutants, such as carbon dioxide 
and sulfur dioxide. At the same time, human activities 
after population aggregation bring more production and 
domestic waste. The incineration of domestic waste 
and the combustion of industrial raw materials lead to 
an increase in PM2.5 concentration. Empirical studies 
in developed countries have shown that high-density 
residential areas bring more serious air pollution. 
Therefore, the population density must be further 
reduced to decrease the concentration of PM2.5 [34].

The dominant factor in 2009 and 2018 is the 
proportion of urban built-up areas, and its interaction 
with other factors can significantly enhance the intensity 
of another factor. Urban construction land is the main 
area of human activities and energy consumption and the 
main source landscape of air pollution. Green spaces can 
reduce PM2.5 by adsorbing and purifying air pollutants 
through vegetation. Many international studies have 
shown that land use factors are closely related to  
PM2.5 concentration, and different land use types have 
different effects on air pollution. Construction land 
is the most influential factor of PM2.5 concentration 
in many land use types. The larger proportion of 
urban construction land indicates that more frequent 
economic activities occur in the city, which bring more 
air pollutants. The development degree of Chinese 
cities is mainly related to the area of construction 
land, which is also consistent with the conclusion of 
international research. The urban construction land 
shows accumulation characteristics. When the scale 
of construction land is large, the residents’ living, 
industrial activities, economic activities, and traffic 
behavior on the construction land bring considerable air 
pollution.

Urban industry and energy consumption are 
also important factors affecting air pollution.  
This study explores the impact mechanism from the 
perspective of industrial structure, technological 
innovation, and industrialization level. In addition 
to exploring the direction and degree of influence of 
the secondary industry on PM2.5 concentration, the 
influence mechanism of the tertiary industry on PM2.5 

concentration was further explored. From 2009 to 2015, 
China’s industrialization level had an increasing impact 
on PM2.5 concentration, and its source landscape function 
continuously improved. From 2015 to 2018, the impact 
of the industrialization level decreased significantly, 
indicating that China’s industrial structure and industrial 
transformation strategy are conducive to alleviating air 
pollution and creating a “blue sky.” The influence of 
the proportion of personnel in the tertiary industry and 
the variable of science and technology expenditure has 
been remarkable for a long time, and the parameters are 
high. Highlighting the service industry and technology 
can considerably improve the air environment. Science 
and technology expenditure mainly represents the city’s 
emphasis on industrial science and technology progress, 
which brings greener and more efficient industrial 
technology, reduce pollutant emissions, and improve air 
quality.

Urban traffic is closely related to air pollution. 
Vehicle emissions are an important source of PM2.5 
pollution. However, this study examines the mechanism 
of traffic on PM2.5 from the two variables of urban road 
area and urban bus volume. The urban road area reflects 
the number of urban cars from the side. The larger the 
number of cars, the larger the road area delineated in 
the process of urban planning and urban construction, 
and the more automobile exhaust emissions, which 
reflects the significant improvement effect of urban 
road area on PM2.5 concentration. The total amount 
of urban public transport can alleviate urban air 
pollution. The significant difference between public 
transportation and car commuting lies in commuting 
efficiency, commuting capacity, and pollution emissions. 
Cities around the world are implementing policies to 
reduce the use of motor vehicles and prioritize the 
development of public transportation to solve traffic 
congestion, air pollution and greenhouse gas emissions. 
Private car travel increases the traffic burden, causes 
traffic congestion and parking conflicts, and reduces 
air quality and environmental quality. Therefore, the 
encouragement of public transportation, especially in 
high-density residential areas, significantly reduce PM2.5 
concentrations and improve air environmental quality.

This study investigates PM2.5 in the Yangtze River 
Basin mainly from the perspective of socioeconomic 
factors but does not involve natural factors (such as 
wind speed, sunshine speed, air humidity, temperature, 
and rainfall), which may also have a significant impact 
on PM2.5 pollution. In the later stage, the quarterly or 
monthly changes in the annual average concentration 
of PM2.5 must be studied further for the joint prevention 
and control of air pollution.

In response to the problem of PM2.5 emissions 
caused by human activities in the Yangtze River 
Basin, the government can alleviate the problem of 
high population density by optimizing the population 
layout and formulating effective population migration 
policies. The industrial structure must be adjusted, the 
development of low-pollution green industries must be 
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prioritized without restricting industrial development 
and economic downturns, support for policies on green 
industries must be increased, and the transformation of 
investment and industrial structures must be promoted. 
Furthermore, the transportation system must be 
optimized, the popularization of new energy vehicles 
must be encouraged and supported, advanced public 
transportation systems must be used, and the utilization 
rate of motor vehicles must be reduced through 
reasonable traffic diversion. In the case of moderate 
urban construction and development, scientific and 
technological innovation should be increased, industrial 
transformation should be accelerated, and the impact 
of human activities on PM2.5 should be prevented and 
controlled.

Conclusion

(1) The proportion of cities with PM2.5 annual 
average concentrations below 35 μg/m3 (China’s annual 
average limit) continued to increase from 12.38% in 
2009 to 55.75% in 2018. After reaching the highest value 
of 14.16% in 2010, the proportion of cities exceeding the 
75 μg/m3 level, followed by a wave-like decline, did not 
appear until 2014. From 2009 to 2014, the proportion 
of the number of cities with an average annual PM2.5 
concentration exceeding 35 μg/m3 had the most evident 
change, showing a trend of “rising first and then falling” 
from 87.61% to 44.25%, nearly doubling the rate of 
decrease. Therefore, from 2009 to 2018, the number of 
cities with low PM2.5 concentrations increased, whereas 
the number of cities with high PM2.5 concentrations 
decreased, and urban air pollution improved with 
relevant government control.

(2) The overall PM2.5 concentration in the Yangtze 
River Basin is higher in the east and lower in the west, 
with different interannual changes in different regions. 
The low-value areas of PM2.5 concentration below  
35 μg/m3 are mainly concentrated in the upper reaches 
of the Yangtze River Basin. The PM2.5 concentration has 
a small change trend in this area, but the change is more 
significant in the northeastern area. The high-value 
areas of more than 50 μg/m3 were mainly concentrated 
in the middle and lower reaches of the Yangtze River 
Basin. The distribution of low-value areas for the overall 
annual average concentration of PM2.5 was relatively 
stable, and the high-value areas showed a trend of “first 
decreasing, then increasing, and then decreasing.

(3) The spatial-temporal agglomeration effect is 
evident, showing an agglomeration pattern of “east-
hot, west-cold.” From 2009 to 2018, the high-value 
clusters expanded to the central part of the Yangtze 
River Basin and then shrank to the north. The middle 
reaches and lower reaches of the Yangtze River have 
always maintained high-value clusters. The low-value 
accumulation area is concentrated in the western region 
of the Yangtze River Basin and other places, and the 
trend of range change is not significant.

(4) While each variable concurrently engages in 
interactions, they also exhibit varying degrees of 
influence on the spatiotemporal distribution of PM2.5. 
Among them, population density and the proportion of 
urban built-up areas in the population and urbanization 
index layer are the dominant factors, and the interaction 
between population density and per capita GDP, the 
proportion of urban built-up areas, and industrial 
smoke and dust emissions have a great impact on 
PM2.5 concentration. The Yangtze River Basin must 
be under the condition of moderate urban construction 
and development and must increase scientific and 
technological innovation and accelerate industrial 
transformation to prevent and control the impact of 
human activities.
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