
Introduction 

Soils provide the second largest CO2 fluxes (effluxes)
from terrestrial ecosystems to the atmosphere [1, 2] and
have significant implications to the global carbon balance
[3-5]. Conventionally, these fluxes are comprised of two
biological components controlled by distinct processes,
namely the autotrophic respiration of plant root and the
decomposition of soil organic carbon (SOC) by fauna and
microbes (heterotrophic respiration), during which soil CO2

is released [6-8]. Not surprisingly, soil respiration fluxes
were always thought to be positive and significantly con-
tributed to the increasing atmospheric CO2 [9, 10].
However, recent studies in some arid and semiarid ecosys-
tems demonstrated that soil respiration flux in special arid
regions can be temporally negative, in which CO2 flux

entered rather than was released from the ground [11, 12].
The negative fluxes cannot be attributed to the biological
processes. To rationalize these negative fluxes, some non-
biological processes, such as pH-mediated CO2 dissolution
and diffusion in soils and the surface adhesion of CO2 onto
the  soil minerals, were suggested, contributing the third
dominant soil respiration flux in arid regions [13-16].
Despite of all these studies, however, the significance of
soil CO2 influx in the total soil respiration flux remains
undetermined and the magnitude of negative soil respira-
tion flux in arid regions is still a matter of controversy [17-
19]. Arid regions characterize more than 30% of the Earth’s
total land surface and are still increasing due to the global
trend toward increasing desertification [16, 20]. To cut
down uncertainties in the global/regional carbon balance
and in the prediction of future feedbacks in the coupled car-
bon-climate system, it is crucial to determine whether neg-
ative soil respiration flux in arid regions are worthy of being
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Abstract

This study examines the hypothesis that soil respiration fluxes are always positive, neglecting negative
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taken into account [14, 19]. Hence we reconciled the soil
respiration fluxes as a direct sum of CO2 influxes and
effluxes and significance of negative soil respiration flux in
arid regions was evaluated according to a comparison of
annual intensities of influxes and effluxes at a typical, large
arid region (Central Asia) in the past three decades (1979-
2011). 

Materials and Methods

Analyses in this study were based on the output data of
an incorporated model for soil respiration flux (Fc) in arid
land [21]. The input data of the incorporated model (includ-
ing the surface air temperature, Ta), soil volumetric water
content (θs) at 5 cm depth were collected from the Xinjiang
and Central Asia Scientific Data Sharing Platform, where
we got access of the data of Ta, θs, and annual precipitation
(AP) for Central Asia (only considering the area with ele-
vation <1500 m) in 1979-2011.  

Temporal and spatial variations of pH are very impor-
tant for the estimation of soil CO2 flux. But there are no reli-
able and prepared data of temporal and spatial variations in
pH at Central Asia in 1979-2011. To reduce uncertainty, a
constant pH value (8.5) was applied, hypothetically repre-
senting the mean pH value at the large region in the past
three decades. 

A temperature-dependent Q10 model (the derivative of
the exponential chemical reaction-temperature equation
originally developed by Van’t Hoff) has been widely per-
formed around the world to estimate the temperature sensi-
tivity of soil respiration fluxes (i.e., Fc) and predict the
future feedbacks of Fc to climate change [22-24]. However,
for arid regions where negative soil respiration fluxes fre-
quently occur [13], the Q10 model must be refomulated as
an incorporative model [18, 21]:

(1)

…where the database of Fc was divided into two sub-
datasets of soil organic respiration (Fa) and soil inorganic
respiration (Fx); λ=0.0059, µ=0.0003, r7=3.0191, q7=0.7562,
e= –2.5081, R10=0.3625, and Q10=1.5.

These parameters are hypothetically applicable world-
wide in this study, and so the model has global implications.
To calculate Fe and Fi, similar to Chen et al. [18], two half
components of Fx, Fx+, and Fx–, termed as efflux and influx
in Fx, respectively, were defined as:

(2)

…and hence Fc was reconciled as a direct sum of soil CO2

effluxes (Fe) and influxes (Fi), which were respectively for-
mulated as:

(3)

To determine the contributions of Fe and Fi in Fc, an
index E/I was naturally defined as:

(4)

This calculated E/I at the given pH (8.5). In order to fur-
ther consider the variations of (the temporal and spatial
average of Fc (µmol·m-2·s-1) with pH, the results were eval-
uated as well to investigate the dynamics of soil CO2 flux-
es at the local extremes of pH (8.1-8.5; see [18, 21]). This
generated the contours of the annual soil respiration at the
Central Asia annual) in the past three decades (coordinated
to the year and soil pH).

Results and Discussions

Annual soil CO2 effluxes were only 8% higher than soil
CO2 influxes at non-vegetated soil sites at Central Asia in
the last three decades (referring to the trend of E/I; Fig.1).
Negative soil respiration fluxes in the typical, large arid
regions are unneglectable and hence must be taken into
account in the budget of Fc in arid and semiarid ecosystems.
This is essentially significant to cut down uncertainties in
the global C budget accounting and in predictions of future
feedback in the coupled carbon-climate systems. From
1979 to 2011 there is a significant decrease in the annual
total precipitation and a corresponding decrease in θs. But
there are no significant fluctuations in Ta and E/I. The sig-
nificance of negative CO2 fluxes (E/I) was sensitive to tem-
perature changes since Ta and E/I at Central Asia exhibited
a similar pattern in the past three decades.
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Fig. 1. Trends of climate changes in Central Asia in 1979-2011
(a – annual precipitation, b – surface air temperature, c – soil
volumetric water content at 5 cm depth) and significance of
negative CO2 fluxes (d – evaluated by the index E/I) in Central
Asia 1979-2011. 



Contours of annual soil respiration (µmol·m-2·s-1) in
Central Asia in the past three decades (coordinated to the
year and soil pH) implied that the significance of negative
soil respiration fluxes are decreasing in the past decades
(Fig. 2). Referring to Fig. 1, such a decrease is largely dri-
ven by regional warming. At soil sites with pH<8.1, the
average annual soil respiration fluxes are positive. But at
soil sites with pH>9.5, the annual soil respiration fluxes are
negative, implying that the extreme local soil respiration
fluxes are largely negative. 

There is strong evidence suggesting that negative soil
respiration fluxes exert potential influences on the dynam-
ics of soil respiration fluxes in arid regions. Note that arid
regions characterize more than 30% of the Earth’s land sur-
face, and are still increasing due to the regional/global trend
towards increasing desertification, the negative soil respira-
tion flux in arid regions are worthy of being taken into
account in evaluating the regional and global carbon bal-
ance [14].

Significance of negative soil respiration flux also high-
lighted the difference between “the real soil respiration”
(dominantly biological) and “the apparent soil respiration”
(dominantly non-biological at local extremes). The inter-
pretation of soil respiration fluxes as biological processes
(including autotrophic and heterotrophic respiration) is
only true for real soil respiration, but it was not true for the
measured Fc, which could only represent “apparent soil res-
piration” [18]. Because of the complicated porous structure,
a part of the CO2 effluxes from the real soil respiration are
delayed and subsequently released in a physical diffusion
[21]. Especially after precipitation, the infiltration of water
reduces the stored space for CO2 in the soil and always
aggravates the CO2 release in Fc (the so-called Birch effect),
which can be largely attributed to non-biological processes
[13]. Negative soil respiration fluxes are important for
understanding the carbon cycle in arid and semiarid ecosys-

tems [16]. The whole story of the little-known non-biolog-
ical CO2 absorption by soils and its overall importance on
the regional and global carbon balance are worthy of further
exploration [15].

Conclusion 

Although Fc is useful as a measure of CO2 fluxes from
the soils, its value as a measure of ecosystem processes is
very much limited. Since negative CO2 fluxes observed
with both chambers and the open- or close-path eddy sys-
tems were still included in the nocturnal data of ecosystem
respiration, it should not be excluded from the data of soil
respiration flux in arid and semiarid ecosystems. The Q10

model applied to these ecosystems must be replaced with a
developed form to adopt negative fluxes. 
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