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Abstract

To determine some physiological and biochemical changes in Capsicum annuum L. grown in vitro, the

effects of different Cu concentrations on this plant were investigated. Cu was applied in the form of Cu sul-
fate (CuSO,) in three levels (0, 0.1, and 0.2 mM) and at three times (days 8, 10, and 12). With Cu treatments,

superoxide dismutase (SOD), catalase (CAT) activities, and total phenolic compound amounts increased com-

pared to the control. The protein amount gradually declined with increasing Cu concentrations. This study

demonstrated that Capsicum annuum L. is quite tolerant of Cu and mobilizes catalase, superoxide dismutase,

and phenolic compounds in order to mitigate Cu-stress damage.
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Introduction

Heavy metals are defined as that group of elements that
have specific weights higher than about 5 g/cm’. A number
of them (Co, Fe, Mn, Mo, Ni, Zn, Cu) are essential
micronutrients and are required for normal growth and take
part in redox reactions, electron transfers, and other impor-
tant metabolic processes in plants [1].

Copper (Cu) is a ubiquitous pollutant in the environ-
ment due to the emissions and atmospheric deposition of
metal dust released by human activities. In addition, soils
may contain elevated levels of Cu because of its wide-
spread use as a pesticide, land application of sewage sludge,
and mining and smelting activities [2].

Cu is an essential micronutrient for normal growth and
development of plants, although it is also potentially toxic
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[3]. Cu participates in numerous physiological processes;
however, as a redox active transition metal, excess Cu caus-
es oxidative stress by generating free radicals via Haber-
Weiss and Fenton reactions at higher-than-optimal concen-
trations [4, 5]. Also, excessive Cu can interfere with numer-
ous physiological processes such as enzyme activity
(i.e. ascorbate peroxidase, glutathione reductase, and super-
oxide dismutase), DNA alterations, protein oxidation, and
membrane integrity — all of which can lead to growth inhi-
bition of plants [2, 6, 7].

Capsicum annuum L. is an economically important
crop plant belonging to the family Solanaceae, and two
main consumption types of pepper spice and vegetable are
prevalent throughout the world [8]. It is an annual herba-
ceous plant that grows to a height of 30-90 cm and bears
many-seeded fruit, usually borne singly or occasionally in
clusters at the nodes. Fruit is extremely variable in size,
shape, and color (ranging from blue to green, orange, red,
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yellow, violet, cream, white, and black) [9]. Peppers are a
good source of vitamins C and E [10, 11], as well as provi-
tamin A and carotenoid compounds with well-known
antioxidant properties [12, 13]. Hot cultivars are rich in
capsaicinoid alkaloids with pharmacological properties that
give pepper fruit its specific taste [11, 14]. Also present are
flavonoids and phenolic compounds [15].

Capsicum annuum L. is a very important agricultural
crop grown in the field in Kahramanmaras, Gaziantep,
Urfa, Diyarbakir, Adiyaman, and Hatay, and in greenhouse
production in Antalya, Icel, Mugla, and Izmir in Turkey
[16], but its yield is affected by numerous limiting factors
[17], including diseases. Bacterial spots caused by
Xanthomonas axonopodis pv. vesicatoria bacteria is con-
sidered to be one of the most destructive diseases in sweet
peppers [18, 19]. In these regions, cupreous preparations
are used against this disease and their unnecessary or exces-
sive use leads to stress, and some morphological, physio-
logical, and biochemical changes in pepper plants [19, 20].

In this study, the effects of Cu on the content of total
phenolics and protein, and the activities of catalase and
superoxide dismutase enzymes in pepper were investigated.
It was determined how some physiological and biochemi-
cal parameters were changed due to Cu concentrations.

Material and Methods

Plant Material

Seeds of C. annuum L. (Maras-1) were obtained from
the East Mediterranean Transitional Zone Agricultural
Research Station.

Culture Conditions

Seeds of C. annuum L. were sterilized with 70% ethanol
for three minutes and sodium hypochlorite for 20 minutes
followed by washing with sterile distilled water. C. annuum
seedlings were germinated in Murashige and Skoog’s (MS)
medium [21] without hormones. Hypocotyle explants of
seedlings were taken into MS medium (0.1 mg/L kinetin,
1 mg/L 2.4 D, 3% sucrose and 0.7% agar) to produce callus
tissue at 25°C. Callus tissues were subcultured two times
and taken into liquid medium (MS medium without agar) to
produce cell suspensions in 100 ml erlenmeyer flasks.
The cultures were incubated on a shaker at 110 rpm and
25°C [22]. Experiments were carried out in 100 ml erlen-
meyer flasks containing 40 ml of fresh medium. Each flask
was inoculated with 1 g fresh weight of cells. After 14 days
of growth, 0, 0.1 mM CuSO, (added to the medium as elic-
itors to enhance the capsaicin production of pepper), and
0.2 mM CuSO, were added. The cultures were maintained
on an orbital shaker at 25°C for 8 d., 10 d., and 12 d.

Physiological and Biochemical Analyses

Cell samples were collected after incubation. Total pro-
tein amount was determined according to Bradford’s

method [23]. Superoxide dismutase activity (SOD) assay
was based on the method of Beauchamp and Fridovich
[24], and catalase activity (CAT) was estimated according
to the method of Bergmeyer [25]. Total phenolic content of
callus was determined using the Folin-Ciocalteu assay [26].
Experimental data were analyzed with Tukey test at P<0.05
level. Standard errors (%) are calculated [27].

Results and Discussion

Excessive Cu can interfere with numerous physiological
processes such as photosynthesis, pigment synthesis, nitro-
gen and protein metabolism, membrane integrity, and min-
eral uptake, since Cu can inactivate and disturb protein
structures as a result of unavoidable binding to proteins [28].

In the current study, the total protein amounts decreased
with CuSO, treatments to the control in all treatment days
(Fig. 1). The greatest reduction in protein amount was
75.924% at 0.2 mM CuSO, on day 10. These results are in
agreement with Hou et al. [29], who showed that CuSO,
treatment negatively affects the soluble protein and photo-
synthetic pigments of duckweed.

It is well known that transition metals like Cu catalyze
the formation of hydroxyl radicals (OH-) from the non-
enzymatic chemical reaction between superoxide (O,) and
H,0, (Haber-Weiss reaction) [30]. Hence, the presence of
excess Cu can cause oxidative stress in plants and subse-
quently increase the antioxidant responses due to increased
production of highly toxic oxygen-free radicals.
Accordingly, it was observed that excess Cu in plants leads
to oxidative stress-inducing changes in the activity and con-
tent of some components of the antioxidative pathways (i.e.,
ascorbate peroxidase (APX), monodehydroascorbate reduc-
tase (MDHAR), dehydroascorbate reductase (DHAR), glu-
tathione reductase (GR), superoxide dismutases (SODs),
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Fig. 1. Effects of CuSO, at different concentrations on the
amount of total protein in the cells of Capsicum annuum L. in
different time.

a) Control, b) 0.1 mM CuSO,, ¢) 0.2 mM CuSO, day 8&;
d) Control, ¢) 0.1 mM CuSO,, f) 0.2 mM CuSO, day 10;
g) Control, h) 0.1 mM CuSO,, i) 0.2 mM CuSO, day 12.
Vertical bars represent SE (n=4). Same letters are not signifi-
cantly different at p<0.05 on each treatment day (Tukey test)
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Fig. 2. Effects of CuSO, at different concentrations on the
amount of SOD enzyme in the cells of Capsicum annuum L. in
different time.

a) Control, b) 0.1 mM CuSO,, c) 0.2 mM CuSO, day §;
d) Control, e) 0.1 mM CuSO,, f) 0.2 mM CuSO, day 10;
g) Control, h) 0.1 mM CuSO,, i) 0.2 mM CuSO, day 12.
Vertical bars represent SE (n=4). Same letters are not signifi-
cantly different at p<0.05 on each treatment day (Tukey test)

and catalase (CAT)) [6, 7]. The rapid inducibility of some
of these enzymes makes them early and sensitive indicators
of heavy metal toxicity [31].

SOD enzyme activity increased in the treatment groups
compared to the control in all treatment days. The highest
increases were observed with 431.95% on day 8,
1,027.65% on day 10 at 0.1 mM CuSO,, and with
1,587.44% on day 12 at 0.2 mM CuSO, (Fig. 2).

Thounaojam et al. [32] determined that SOD activity
increases by 62.85% and 64.58% at 100 pM Cu with
respect to control in shoots and roots, respectively, after the
first day of recording when exposed to 100 uM Cu.
Their results showed that the levels of SOD induced in
response to Cu stress differ at different Cu concentrations.
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Fig. 3. Effects of CuSO, at different concentrations on the
amount of CAT enzyme in the cells of Capsicum annuum L. in
different time.

a) Control, b) 0.1 mM CuSO,, c¢) 0.2 mM CuSO, day 8;
d) Control, ¢) 0.1 mM CuSO,, f) 0.2 mM CuSO, day 10;
g) Control, h) 0.1 mM CuSO,, i) 0.2 mM CuSO, day 12.

Vertical bars represent SE (n=4). Same letters are not signifi-
cantly different at p<0.05 on each treatment day (Tukey test)

Treatments with 0.1 mM CuSO, were more effective
than other treatments in increasing CAT enzyme activity.
The highest value was 2.593 eu/g f.w. in treatment day 12.
CAT activity decreased only at 0.2 mM CuSO, on day 8
(48.92%) compared to the control (Fig. 3). Similarly, Cu
stimulated the capacity of catalase and ascorbate peroxi-
dase in Phaseolus vulgaris L. [33].

Devi and Prasad’s [34] study supports our results. Cu
(2 and 4 uM) considerably increased the activities of ascor-
bate peroxidase, catalase, and superoxide dismutase.
The extent of increase with 4 pM Cu was lower compared
to 2 uM Cu for catalase and superoxide dismutase in
Ceratophyllum demersum L. Also, stress due to Cu toxici-
ty resulted in an increase in total catalase and superoxide
dismutase activity and a simultaneous induction of Sod and
Cat gene expression in Prunus cerasifera [35] and
Astragalus neo-mobayenii [36]. During the exposure of
plants to excess Cu, the antioxidant defense system helped
the plant to protect itself from damage.

Plant secondary metabolites are formed from glucose
metabolism intermediated by the shikimic, acetate, and
aminoacid pathways [37]. A range of physiological and
ecological functions have been reported for these natural
products, such as hormone regulation, organogenesis, plant
defence against biotic and abiotic agents, chemical sig-
nalling to guide pollinators or fruit dispensers, and
plant+microorganism symbiosis [38-41].

There have been many reports of induced accumulation
of phenolic compounds in plants treated with high concen-
trations of metals [1, 42, 43]. Antioxidant action of pheno-
lic compounds is due to their high tendency to chelate met-
als. Phenolics possess hydroxyl and carboxyl groups and
are able to bind particularly iron and copper [44]. The roots
of many plants exposed to heavy metals exude high levels
of phenolics [45].

Total phenolic contents increased at all treatments groups
in all days to the control. It increased with increasing con-
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Fig. 4. Effect of CuSO, at different concentrations on the
amount of total phenolic contents in the cells of Capsicum
annuum L. in different time.

a) Control, b) 0.1 mM CuSO,, c¢) 0.2 mM CuSO, day 8;
d) Control, ¢) 0.1 mM CuSO,, f) 0.2 mM CuSO, day 10;
g) Control, h) 0.1 mM CuSO,, i) 0.2 mM CuSO, day 12.

Vertical bars represent SE (n=4). Same letters are not signifi-
cantly different at p<0.05 on each treatment day (Tukey test)
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centrations of Cu on day 8. The highest value is 266.665
ug GAE/mL at 0.2 mM CuSO, on day 8, 244.924 ng
GAE/mL at 0.1 mM CuSO, on day 10, and 159.560 pg
GAE/mL at 0.1 mM CuSO, in on day 12 (Fig. 4). Similarly,
total phenolic contents increased with Cu treatments com-
pared to the control in Raphanus sativus [46] and Withania
somnifera [47].

Phaseolus vulgaris exposed to Cd acccumulated solu-
ble and insoluble phenolic, and Phyllantus tenellus leaves
contain more phenolics than control plants after being
sprayed with Cu sulphate [48]. An increase of phenolic
correlated to the increase in activity of enzymes involved
in phenolic compounds metabolism was reported, suggest-
ing de novo synthesis of phenolics under heavy metal
stress [1].

Conclusions

Since Cu is both an essential cofactor and a toxic ele-
ment involving a complex network of metal trafficking
pathways, different strategies have evolved in plants to
appropriately regulate its homeostasis as a function of the
environmental Cu level. Such strategies must prevent accu-
mulation of the metal in the freely reactive form (metal
detoxification pathways) and ensure proper delivery of this
element to target metalloproteins. This study demonstrated
that Capsicum annuum L. is quite tolerant to Cu and mobi-
lizes catalase, superoxide dismutase, and phenolic com-
pounds in order to mitigate Cu-stress damages. Phenolics
may inactivate iron ions by chelating and additionally sup-
pressing the superoxide-driven Fenton reaction, which is
believed to be the most important source of ROS. So, some
antioxidant enzymes (superoxide dismutase, catalase, etc.)
may activate.
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