
Introduction

Water pollution is generally caused by increases in 
industrial, mining, agricultural, and domestic activities 
unless certain precautions are taken [1]. Freshwater 
sources in many countries are being challenged and 
their capacity to handle the waste from human activity 
is reaching its limits. The growing needs to control and 
monitor pollution are about the investigation of the 
responses of waterways to pollutants and mitigating them 

[2]. Water quality modelling generally allows investigators 
to develop a more in-depth understanding of the fate and 
transport of pollutants in river reaches. The relationships 
between pollution characteristics, sources, and the effects 
of these pollutants on water quality can be dealt with 
mathematically [3]. Water quality models have been widely 
used for creating the scientific basis for environmental 
management decisions by providing a predictive link 
between ecosystem response and management actions [4-
7]. The well-known advection dispersion equation (ADE) 
model has limitations to apply for natural streams due to the 
non-uniform flow conditions and difficulty in determining 
the parameter longitudinal dispersion coefficient, DL [8-
11]. There are a wide range of theoretical and experimental 
methods to estimate DL. The variation in available methods 
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Abstract

The Hybrid Cells in Series model consists of a plug flow cell – first and second well-mixed cells in 
series that represent advective-dispersive transport pollutants in river reaches. The key model parameters 
are the cell residence times (α, T1, and T2), which require parameter optimization to calibrate the model 
and to identify the sensitivity of model parameters. The least square error optimization method was used to 
determine the model parameters. Tracer test data was adopted to evaluate the sensitivity of the hybrid model 
response to a unit impulse input of a conservative pollutant. Factor perturbation was applied to determine the 
parameter with the greatest influence on hybrid unit output. The nth hybrid unit output was generated using 
a convolution technique and compared to the observed output from available field data. Traditionally, the 
longitudinal dispersion coefficient (DL) of a particular waterway is calculated according to the physical flow 
and channel properties. These properties are hardly regular, and the investigation into the use of moments 
to determine DL helps to eliminate uncertainties for future hydraulic modelling ventures. Parameters α and 
T2 are more sensitive, needing accurate estimation to correctly reproduce concentration-time profile, and to 
simulate river water quality.
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gives rise to the uncertainty in applying a particular water 
quality model, since a value of river flow velocity, u, and 
longitudinal dispersion coefficient, DL, are required before 
attempting to simulate the transport of the tracer cloud. As 
an alternative to the ADE model, various models – namely 
the cells in series (CIS), aggregated dead zone (ADZ), 
transient storage (TS), variable residence time (VART), 
and hybrid cells in series (HCIS) models – have been 
developed and used [8, 10, 12-16]. The CIS model does 
not simulate advection adequately and the difficulty with 
the ADZ model is in determining model order and model 
parameters [8]. The HCIS model has apparently overcome 
the limitations of the ADE, CIS, and ADZ models, as the 
simulation of contaminant transport under steady flow 
conditions closely resembles the ADE model [8, 14]. The 
HCIS model has three time parameters (α, T1, and T2) that 
are the residence times for the plug flow and the two well-
mixed cells, respectively (i.e., the volume of respective 
cells over flow rate). The desired skewed concentration-
time profile using the HCIS model can be obtained when 
the Peclet number (Pe = u Δx/DL) is larger than or equal to 
4 [8, 14]; in other words, when the hybrid unit size (Δx) of 
the HCIS Model is greater than or equal to 4DL/u., Ghosh 
et al. [14] suggest empirical relationships to determine 
the HCIS model parameters as a function of u and DL. As 
the value of DL is highly variable, the aim of this study 
is to attempt to eliminate any uncertainty that arises from 
the use of the u and DL in determining the HCIS model 
parameters. A sensitivity analysis was previously carried 
out by [17] using synthetic data, but it is necessary to test 
the sensitivity of the model response in comparison to 
field measurements of contaminant concentrations. Thus, 
our study also aims to analyse the sensitivity of the above 
model parameters. 

Methodology

Model Description and Parameter Optimization

A river reach is conceptualized to have a series of 
hybrid units and each hybrid unit consists of a plug flow 
cell and first and second well-mixed cells all connected in 
series. Solving mass balance equation for one process unit 
for step input perturbation, Ghosh et al. [14] has derived 
step response of the HCIS model. Time derivative of the 
step response is an impulse response as given in Eq. (1) 
[8, 14]:
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…where KHCIS and kHCIS are step and impulse responses 
of the HCIS model, respectively, CR is input pollutant 
concentration, t is time, and U(.) is unit step function.

The principle of parameter estimation is based on 
solving for the unknown model time parameters from a 
measured response to a particular input concentration. 
An impulse response function is a C-t profile, which has 
distinctive characteristics such as peak concentration, 
time to peak, and nature of the rising and falling limbs. 
This C-t profile can be used to determine the HCIS model 
parameters by the least square optimization method. The 
method of least squares by Marquardt algorithm provides 
a procedure to reduce the error or difference between the 
observed C-t profile and the same simulated by the model 
with initial guesses of the model parameters. The sum of 
square error between observed and calculated C-t profiles 
is given in Eq. (2) as:
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…where E is sum of square error; kobs is observed 
concentration time profile; α’, T1’, and T2’ are initial 
guesses of time parameters of the model; Δα, ΔT1, and 
ΔT2 are differences in the values of the model parameters 
between iterations; i is integer; and Δt is time step. 

Applying Taylor’s series of expansion and neglecting 
higher order terms, the partial derivatives of Eq. (2) with 
respect to each model parameter are equated to zero. 
Ultimately the solution for the HCIS model parameters 
was derived as an inverse problem by matrix methods and 
the values of Δα, ΔT1, and ΔT2 are determined. After each 
iteration, model parameters were updated by α = α’+Δα,  
T1 = T1’+ΔT1, and T2 = T2’+ΔT2 until the convergences 
were reached. The method of moments was used to 
determine the DL from the C-t profiles obtained at two 
stations. The nth order moment (Mn) of unit impulse 
response function can be obtained from the corresponding 
concentration time data as given by Eq. (3):
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Once the mean and variance of the generated as well as 
the original C-t profiles were available, the Peclet Number, 
Pe, was calculated as given in Eq. (4):
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The rate of change of moments was applied to compute 
the DL as follows in Eq. (5):
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…where um is mean flow velocity, M1 is first moment or 
mean time (tm) of C-t profile, and σx

2 is the spatial variance 
that can be represented as the second moment (M2) of the 
C-t profile at the sampling point. 

Sensitivity Analysis 

The process of determining the change of the response 
of any water quality model in correspondence to changes 
in operating conditions, inputs, or parameters may be 
carried out in a linear or a non-linear manner, according 
to the operating system of the model. In order to identify 
just how sensitive the model is to change in a particular 
parameter, the factor perturbation method may be applied. 
In determining the level of sensitivity of each parameter, 
the sensitivity gradient was obtained by means of the 
partial derivation of the computed model response with 
respect to each parameter. This concept required the slight 
variation of one parameter while holding the other model 
parameters unchanged, and the response of the model was 
tested with known factors from observed data, which may 
not portray the real conditions accurately. In this study, 
the parameters of the HCIS model were varied from their 
optimal values and their sensitivities have been tested. 

Results and Discussion

Tracer Study and Hydraulic Data

Fortnight or weekly basis water quality data only are 
available for most river reaches. Such data would not have 
sufficed for this study, as the concentration measurements 
on a minutely or hourly basis were required. In order 
to demonstrate model capability and optimize model 
parameters, concentration time profiles from a tracer 
test presented in [18] were used in this study. The C-t 
profiles from a slug release of rhodamine WT or B tracer 
experiment and other hydraulic measurements at three 
reaches of Spain’s Tagus River were obtained from [18]. 
The river reach downstream of Ermita reservoir along the 
Tagus has been considered as study reach as presented in 
Fig. 1. The data sets obtained from the aforementioned 
study [18] includes i) input tracer concentration  
CR = 18.52 x 106 mg/m3, ii) mean flow velocity u = 0.38 m/s, 
iii) flow area of 21.06 m2, iv) distance to the first sampling 
location of 611 m, and v) distance to the second sampling 
location of 2,451 m. 

Estimation of Model Parameters 

The obtained C-t profile was taken under a flow rate 
of 8.11 m3/s at a distance of 611 m downstream from 
the tracer injection point, along section one of the Tagus 

Fig. 1. Map of study area (source: Geology.com).
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River. The area under the observed curve was calculated 
and used to normalize the data points that produce unit 
impulse response. Using the least square error optimization 
method as given in Eq. 2 and its partial derivatives with 
respect to model parameters, the HCIS model parameters 
were determined as α = 18 min, T1 = 3.7 min, and 
T2 = 8 min. With the above parameters and time step of 1 
minute, the HCIS profile at the first sampling location (at 
611 m) adequately matched with observed data as shown in  
Fig. 2.

Generation of Downstream Profile Using 
Convolution Technique

The output C-t profile of a downstream location can be 
obtained by applying the convolution technique. The input 
parameters for this procedure were the values obtained 
from the optimization as given in the previous section. 
The distance at which the output was to be generated 
would determine the number of hybrid units to consider 
for the convolution. The parameters were α = 18 min,  
T1 = 3.7 min, and T2 = 8 min to generate the response to a 
unit impulse input from the first hybrid unit. The output of 
this unit was then taken as the input to the second unit and 
so on. In order for the same, a discrete kernel of the HCIS 
model was produced and by successive convolution, the 
downstream concentration profiles were generated. For 
a distance of 2,451 m away from the point of injection  
of the tracer, approximately four hybrid units with 
Δx = 611 m were accommodated, therefore the output 
concentration time profile of the forth unit was generated. 
Theoretically the mean of the distribution from the first 
hybrid unit should be amplified by a factor of four to 
give the mean of the distribution from the forth hybrid 

unit at a distance of 2,444 m (4 x 611 m). This output 
was compared with the observed profile from a closer 
sampling location at a distance of 2,451 m from injection 
point as shown in Fig. 2. It can be noted from Fig. 2 that 
there was a little difference in C-t profiles at the 2,444 m, 
which could be due to the use of constant parameters in 
convolution. Due to variations in the channel properties, 
the model parameters may vary spatially. 

Sensitivity of Model Parameters

As determined from optimization, the optimal 
values of the HCIS model parameters were α = 18 min,  
T1 = 3.7 min, and T2 = 8 min to match with observed profiles. 
In order to find the sensitivity of the model parameters, the 
variation of only one parameter while the other parameters 
remained unchanged may only be applicable over a limited 
percentage change for the application of the model in real 
circumstances. The parameters varied by ±5%, ±10%, 
and ±15% from optimal values and further analyses were 
carried out [19]. From the C-t profiles, it was then possible 
to acquire the new peak concentrations values in order to 
plot the sensitivity gradients of each parameter depending 
on the degree of variation tested as shown in Fig. 3. The 
sensitivity gradients must also be plotted to show the 
variation of the Peclet number with a change in parameters 
shown in Fig. 4. When taking the first time parameter, α, 
to be 85% of its optimal value, the concentration profile 
remains zero for an elapsed time of approximately 15 min. 
On the other hand, an increase in α by 15% of its optimal 
value produced a “lag” time of approximately 20 min. 
Since α governs the pure advection which occurs in the 
plug flow zone of the HCIS model, the Peclet number was 
affected significantly and the proportion of the advective 
process is directly related to the Peclet number. 

The change in T1 essentially affects the amount of 
dispersion that occurs in the first well-mixed cell. The 

Fig. 2. Comparing the observed profile (obtained from Palancar 
et al., 2003) with the HCIS model (α = 18 min, T1 = 3.7 min, and 
T2 = 8 min) output.

Fig. 3. Sensitivity of model parameters on peak concentration.
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value of T1 was first decreased by 5, 10, and 15% from 
optimal value, and respective peak concentrations are 
estimated and presented in Fig. 3. As can be noted from 
Fig. 3, the peak concentration increases from 0.064 mg/l at 
T1 = 3.7 min to 0.068 mg/l when the parameter was taken 
as 85% of its optimal value. Similarly, the value of T1 was 
increased up to a maximum of 15% of its optimal value, 
which resulted in the corresponding peak concentration 
decreasing to 0.06 mg/l. Throughout the investigation on 
the sensitivity of T1, the alterations to the optimum value 
of the parameter caused the Peclet number to vary only 
slightly, which can be seen in Fig. 4. The effect of T1 on the 
Peclet Number was seemingly negligible in comparison to 
the effect which changes in α had on this ratio. Keeping 
T2 at the optimal value of 8 min, the peak concentration 
from the HCIS model was 0.064 mg/l. When T2 was 
decreased by 15%, the peak concentration then increased 
to 0.071 mg/l, indicating that the proportion of dispersive 
transport has been decreased. Conversely, a 15% increase 

in T2 increases the dispersion and decreases the peak 
concentration to 0.059 mg/l as shown in Fig. 3. It can be 
observed from Fig. 4 that the increase in T2 resulted in a 
decrease in of Peclet number. A similar trend was noted to 
that of T1, but at a less noticeable level. The Peclet number 
is 32.11 and increases to 35.79 for a respective increase 
and decrease of T2 by 15%. 

Method of Moments for Dispersion Coefficient 

The DL was determined by Eqs. (3) and (5) as 2.25 m2/s 
and 10.38 m2/s at first and second sampling points from 
the observed C-t profiles. At the first and second sampling 
points, it was calculated in [18] using Taylor’s equation as 
3.66 m2/s and 8.65 m2/s respectively. The DL values were 
calculated using the method of moments along the river 
reach as presented in Fig. 5, which was comparable with 
the same using Taylor’s equation as presented in [18]. 

Conclusion 

The sensitivity of the model response was analyzed 
with regard to perturbations in the three time parameters. 
In the HCIS model the unequal residence times of well-
mixed T1 and T2 cells are interchangeable. The conclusion 
to this investigation is that T2 has the greatest effect on 
the overall model response to a unit impulse input. Small 
errors in T2 have a considerable effect on the dispersive 
processes within a hybrid unit, therefore relating to both 
the peak concentration as well as the Peclet number. The 
peak concentration is most sensitive to changes in T2 and 
least sensitive to changes in α, although the time to peak 
will vary. The Peclet number is considerably sensitive 
to changes in T2, although changes in α cause a greater 
disturbance in this regard.

The Convolution technique applied to generate the 
HCIS model response at a downstream unit yielded 
acceptable results with errors, which can be justified and 
rectified. Thus there is a scope to improve the HCIS model 
with spatially varying model parameters. The profile 
generated from the convolution stage of this investigation 
was used to determine the first and second moments of 
the C-t distribution. It can be concluded that the method 
of moments may be incorporated in determining the DL in 
the application of the HCIS model as well as other water 
quality models to practical field situations. 

The performance of further investigation will aid 
in the elimination of uncertainties brought about by the 
conventional method of determining DL, since physical 
channel properties are hardly ever constant along any river 
reach. Using the change of moment method has become a 
favourable approach when determining the DL.
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