
Introduction

Currently, activated sludge treatment is a basic method 
of biological  treatment of wastewater that originates from 
both large agglomerations and small settlements. The 
amount of influent urban wastewater is primarily affected 
by daily water consumption per person and the number of 
residents in the catchment area. In industrialised countries, 
the unit water consumption per person per day ranges 
120÷175 dm3/p/d [1]. In the classic activated sludge 
process, mechanically treated wastewater is delivered to 
the aeration tank, where it is mixed with activated sludge. 
The latter looks like a flocculant suspension. It is assumed 
that 1g of dry mass (DM) of activated sludge has an area 

of 100-200 m2 [2]. Activated sludge floc is composed of 
numerous different microorganisms, mainly heterotrophic 
bacteria, and also organic and inorganic particles. 
Extracellular polymeric substances are also found, which 
together with other building material, are responsible 
for floc properties and structure, flocculation ability, 
settleability and hydration. Microorganisms constitute up 
to 20% of the floc volume, whereas the remaining part 
are colloidal substances. Components of the colloidal 
part include polysaccharides, lipids, proteins, fatty acids, 
humic substances and numerous heteropolymers. The 
nuclei of activated sludge floc consist mainly of clays 
(Si, Fe, Al), calcium orthophosphates and iron oxides 
[3]. Small-pore floc has poor settleability, whereas large 
and thick floc shows substantial settleability of particles. 
Poorly settling floc is very difficult to dehydrate, therefore 
obtaining floc that has optimal properties is essential  
for the appropriate course of activated sludge treatment  
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[2, 3]. Tests of settleability, performed systematically, make 
it possible to obtain information on problems that occur in 
activated sludge operation, and to take a corrective action. 
Settleability of activated sludge is a relevant parameter 
which decides on the value of the sludge index, which 
is correlated to suspended solids content in the treated 
wastewater [4]. In view of the above, it is necessary to 
monitor suspended solids content on continuous basis. 
However, no attempts have been made to model this 
parameter with numerical methods based on physical or 
stochastic models, or with black box methods.

Software, including GPS-X, WEST, STOAT, 
BioWin, SIMBA, and others, is widely used to assess the 
treatment facility operation, and variation in technological 
parameters of both activated sludge and wastewater. 
To be able to calibrate the mathematical model in the 
applications mentioned above, it is necessary to collect 
key information on processes that occur in individual 
parts of the treatment facility. Due to a large number of 
parameters that need to be accounted for, and especially 
because of the effect of uncertainty of the estimated 
parameters in the models, the calibration of the model is 
not an easy task [5]. Consequently, to model the processes 
going on in the individual parts of the treatment plant, 
i.e. degree of pollutant load reduction (suspended solids, 
biogenic compounds), to optimise the operation of the 
treatment plant parts (determination of oxygen amount 
in activated sludge tanks, the electrical energy used in 
pumping stations), and also to produce biogas, artificial 
neural networks [6-9], genetic programming [10], Support 
Vector Machines (SVM) [11-13], autoregressive models 
[14], regression trees [15-16], and others are used. 

It is therefore purposeful to develop mathematical 
models for predicting settleability over an arbitrary time 
interval. This paper  presents the application and results 
of settleability computations obtained with artificial 
neural networks, Support Vector Machines and genetic 
programming, in which an arbitrary time step between 
individual measurements of a given parameter was 
allowed. For the sake of analysis, results of continuous 
measurements taken from 16 June 2011 to 09 August 2013 
were used. The measurements included the following: 
 the technological parameter of concern of the activated 
sludge, temperature and amount of the inflowing 
wastewater, the degree of its external recirculation (from 
the secondary settling tank to the bioreactor) and of 
internal recirculation (from the aerobic chamber to the 
anaerobic chamber in the bioreactor), and the amount of 
surplus sludge removed from the bioreactor. 

The Object of Investigations

The facility in Cedzyna near Kielce, Poland, is a 
mechanical-biological wastewater treatment plant, 
having a capacity of Qdśr = 1215 m3/d, with aerobic 
sludge stabilisation.  The size of the facility reflected 
by the population equivalent is PE = 9466. Raw 
wastewater inflowing via the sanitary sewer is directed 

to the grit chamber and the grease trap, and then to the 
pumping station. From the pumping station, wastewater 
is introduced, through the separation chamber, to the 
bioreactor, where wastewater is returned from the aerobic 
to the anaerobic part, and surplus sludge is delivered to 
the separate tank (sludge pumping is switched on every 
two hours). Dehydrated wastewater sludge is periodically 
transported to the landfill in Promnik near Kielce. From 
the bioreactor, wastewater flows to the secondary settling 
tank, from where it is pumped for recirculation. Treated 
wastewater is discharged into the Lubrzanka river. 

Materials and Methods 

In the investigations into predictions of activated 
sludge settleability (SE) in the bioreactor chamber, the 
results of the following measurements were used: inflow 
(Q), wastewater temperature in the chamber (T), degree of 
external (RECext) and internal (RECint) recirculation. The 
measurements were taken from 16 June 2011 to 09 August 
2013. For the calculations of activated sludge settleability, 
three methods were used, namely genetic programming, 
Support Vector Machines and artificial neural networks. 
As settleability was measured a few times (twice to four 
times) a day at different time intervals (in the morning, 
at noon, in the afternoon and in the evening or in the step  
1÷6 hour), in the analyses conducted for the study, an 
option was offered to model the parameter of concern with 
a time step forward. 

In this paper, many combinations of input data that 
provided the basis for settleability computations were 
analysed. Additionally, in all variants of concern, degree 
of external (RECext) and internal (RECint) recirculation. 
First, the possibility of predicting the value of settleability 
SE(t) on the basis of temperature T(t) and instantaneous 
wastewater inflow Q(t) was considered. That was 
aimed at finding out whether it was necessary to take 
measurements of the technological parameter of concern. 
The next option to be analysed was predicting settleability 
exclusively on the basis of flow values, namely Q(t-1), 
Q(t-2), and also wastewater temperature, i.e. T(t-1), T(t-
2). Finally, the possibility of modelling settleability on the 
basis of previous measurements of SE was investigated. 
The goal of the analyses was to determine the effect of 
input quantitative data (wastewater inflow), technological 
parameters of the bioreactor (temperature, preceding 
values of settleability) and to examine the possibility of 
using those data to predict the discrete values of OP. Due 
to the fact that in the analyses, the results concerning the 
quality of wastewater flowing into the treatment plant and 
recirculated aquaculture concentration were not available, 
it was not possible to build a physical model, which is 
indicated in numerous studies [17-19].  

An interesting method of finding discriminant 
functions has been proposed by Vapnik, who termed the 
method Support Vector Machines (SVM) [20]. As the 
method has proved to be effective and fast, Vapnik has also 
applied it to regression issues. As in regression problems, 
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the relation between interpreted variable y and interpretive 
variables can be linear in character, in the SVM method, 
linear transformation φ: XL→Z is used, i.e. observations in 
the training set are transformed into space of much larger 
dimensions. In this method, in the goal function definition, 
the so-called error function with insensitive threshold ε is 
used, which is expressed as follows [21]: 

                                 
(1)

where: ε – assumed model accuracy, x – input vector, 
y(x) – value of the model output signal, expressed by the 
dependence:
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...where w = [w1,…, wk]
T – transposed vector of weights, 

φ(x) = [φ1(x),…, φk(x)] – vector of basis functions. 
In the SVM method, the training of the network 

involves the minimisation of the error function, having the 
form: 
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in which: p – number of trained pairs (xi,di). 
After complementary variables ξi and ξi

’ are taken into 
account, the problem of network training can be reduced 
to the following dependence [21]: 
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Constant C in formula (4) is selected by the user 
depending on ε [21]. Using the method of Lagrangian 
multipliers (αi), the set of equations defined by equations 
(4) and (5) can be reduced to a dual problem. The 
solution to the problem, presented in the form dependent  
on the so-called kernel function K, can be written as 
follows [21]: 
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in which: Nsv – number of support vectors, dependent on 
C and ε. The most frequently used kernel functions are 
linear, polynomial and Gaussian  kernels. In this study, 
for computations Gaussian  kernels were applied, and it 
was assumed that  ε = 0.01 while C is set at the stage of 
analysis. 

Genetic Programming

Koza [22] proposed a special type of evolution 
algorithm, termed genetic programming (GP). It is an 
extension of a genetic algorithm (GA) applied to design 
programs having a form of the so-called parse trees that 
solve a problem posed. The model is based on the process 
of collective training of the population of points, called 
individuals. In GP, an individual is represented by a tree that 
has nodes randomly selected from two sets: tree leaves are 
determined from the set of terminal arguments (T) and the 
remaining nodes - from the set of functions (F). Depending 
on the type of function T or F, an individual may be a logical 
expression, or a mathematical function. The terminal set 
can be composed of independent variables that describe 
a given phenomenon (temperature, wastewater inflow, 
settleability  measured in a time step Δt from the prediction 
value) and constants. The set of functions contains basic 
mathematical operators (+, -, /, sine, cosine, exp., etc.) 
which can be used at the stage of model construction. 
The evolution process starts with a random selection of 
n individuals of the population. Next, four operations are 
applied repeatedly (generations): reproduction, genetic 
operations, evaluation and succession, and those go on 
until the algorithm stopping criterion is met. Stochastic 
reproduction operator involves the selection, from the 
current population, of n parent individuals who ensure 
the generation of offspring. Genetic operators are applied 
to parent individuals, in order to mix the information 
contained in them by means of crossover and mutation. 
The offspring individuals created in this way undergo 
evaluation, i.e. the value of the optimised quality criterion, 
called the fitness function, is determined. 

Point mutation substitutes a function or a terminal in 
a selected part of the tree for another function or terminal 
within the same tree. On the other hand, the subtree 
mutation randomly replaces whole subtrees with other 
subtrees, thus creating new ones. Subtree crossover is 
regarded as the most important genetic programming 
operator, which creates new trees by substituting randomly 
selected subtrees in the existing trees. 

In this study, the correlation coefficient provided the 
criterion of fit of given computation results, obtained 
using the mathematical formula based on GP, to the 
measurement data. To construct a model for settleability 
predictions, basic mathematical operators of the type 
+, -, /, · were used, also the probability of mutation was 
assumed to be Pm = 0.25 and that of crossover Pc = 0.65. 
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Artificial Neural Networks  

Neural networks are widely used because they 
can be applied to simulations of linear and non-linear 
processes, optimisation, classification and control [23-
25]. The most common neural networks structure is multi-
layer perceptron (MLP), in which input signals (xi) are 
multiplied by values of weights (wij), and then passed to the 
hidden layer neurons, where in the individual neurons the 
summation occurs ∑zm = xn·wnm – bj, (where: m – number 
of neurons in the network, bl,k – threshold, or the so-called 
bias). The sums obtained (∑xj) are transformed using the 
linear or non-linear activation function (f), and are relayed 
to output neurons. Finding optimal values of weights (wij) 
for individual neurons is obtained by means of training. 
Prior to the start of the construction of mathematical 
models, input and output signals were standardised using 
the dependence: 

 AA
AA

A i
i minmax

min
−

−
=

               (7)

...where: –Ai - standardised value of the i-th element of the 
A set obtained with the min-max method, Ai - value of the 
i-th element of the A set recorded in measurements, max 
A - maximum value of a single element in the A parameter 
set, min A - minimum value of a single element in the A 
parameter set.

Due to the lack of guidelines on the selection of 
neural network structure for settleability predictions, the 
STATISTICA software automatic designer function was 
used in computations. In the simulations conducted for 
the study, 500 different neural networks were generated 
for each input data combination. Also, the parameters of 
computation fit to measurement data were determined. In 
the analyses, it was assumed that in the models, the number 
of neurons in the hidden layer ranged 2 ÷ 10. Hyperbolic 
tangent activation function was assumed in the layer of 
hidden neutrons, whereas in the output layer it was a 
linear function. In order to make the training process in 
the models (ANN, GP and SVM) appropriate, and then to 
properly assess the performance of those models, the data 
were partitioned into three sets (training – 50%, validating 
– 25% and testing – 25%).  The neural network training 
was implemented using the Broyden – Fletcher – Goldfarb 
– Shanno algorithm [25].

Criteria for the Model Assessment 

In the analyses above, to assess the predictive ability 
of the models for settleability predictions, commonly used 
measures were applied, which include: 
 – mean error (MAE)
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where: yi,obs,obl – settleability values, measured and 
computed, respectively, n – size of the set, which was  
n = 2546. 

Computation Results 

Analyses performed for the study (Tables 1 and 2) 
indicate that the models based on artificial neural networks 
show far better predicting abilities as regards settleability 
than those constructed using the SVM method. That was 
unambiguously confirmed by the respective values of 
errors in model fit to measurement data. Additionally, in the 
obtained neural networks (Table 2), the number of neurons 
in the hidden layer ranged from 2 to 6, and the value C in 
the model obtained based on the SVM equal 9 ÷12. On 
the basis of the calculations performed, it can be stated 
that for such input signals as Q, T and RECext, int, the best 
predictions are obtained with ANN, which is confirmed 
by the values of parameters MPE = 19.28% and MAE = 
72.18 cm3/dm3 expressing errors in the prediction per a 
single value of SE. Conversely, the genetic programming 
method shows the worst predicting abilities for the inputs 
mentioned above. In GP, settleability is expressed as 
follows:

(10)             

and the values of mean absolute and relative errors are 
equal to: MAE = 43.21 cm3/dm3 and MAPE = 23.18%, 
respectively. 

Table 1. Comparison of the accuracy of predictions for the math-
ematical models developed using the SVM method. 

Data
Trained set Test set 

MAE, 
cm3/dm3

MAPE, 
%

MAE, 
cm3/dm3

MAPE, 
%

Q(t), T(t) 101.71 31.89 88.86 24.50

Q(t-1) 149.88 50.05 145.55 49.55

Q(t-1), Q(t-2) 141.28 45.78 135.78 44.16

T(t-1) 85.86 24.16 86.34 32.97

T(t-1), T(t-2) 70.28 19.39 68.08 29.03

SE(t-1) 39.43 9.97 43.03 18.91

SE(t-1), T(t-1) 38.98 9.57 40.59 14.19
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...where: Q(t-1, t-2), T(t-1, t-2), SE(t-1) – flow to the 
treatment plant, wastewater temperature, and  settleability 
measured in a time step Δt from the predicted value of 
the technological parameter, Q(t), T(t) – inflow and 
temperature specified at the same time as SE(t). 

Additionally, computations carried out for the study 
show that the mathematical models relying on artificial 
neural networks have far better predictive abilities as 
regards settleability when values of wastewater flow  
Q(t-1) and Q(t-2) to the treatment plant are used, than 
those based on the SVM method. For instance, for OP(t) 
predictions based on Q(t-1), the model  contingent on 
ANN gave relative and absolute error values of MAPE 
= 36.44% and MAE = 98.63 cm3/dm3. For the model 
developed on the basis of the SVM, the parameters of 
computation fit to measurements were MAPE = 49.55% 
and MAE = 145.55 cm3/dm3. 

The analysis of simulation results (Tables 1 and 2) 
demonstrates that much better predictive abilities with 
respect to SE(t) are found for models developed on the 
basis of wastewater temperature measured in time step  

Δt from the predicted value of the technological  
parameter than for the models obtained on the basis of 
wastewater flow to the treatment plant. For instance, the 
values of the relative and absolute error in the model 
developed with the SVM on the basis of T(t-1) are equal 
to MAE = 86.34 cm3/dm3 and MAPE = 32.97%. Also, on 
the basis of analyses (Tables 1 and 2), it can be seen that 
taking into account an additional variable, i.e. wastewater 
temperature T(t-2), in the model leads to improvement in 
the prediction of the technological parameter in cases under 
consideration. In the models based on SVM and ANN 
(Table 1), taking into account an additional variable T(t-2) 
results in reduced values of MAE by 26.5% and of MAPE 
by 13.8%, and also MAE by 9.9% and MAPE by 28.0%, 
respectively. The analysis of results (Tables 1 and 2) shows 
that best predictive abilities as regards SE are found in 
the models in which the results of previous measurements 
were incorporated SE(t-1). When settleability is modelled 
exclusively on the basis of the previous value of SE, 
absolute and relative errors are MAE = 39.16 cm3/dm3 and 
MAPE = 9.19% for ANN, and  MAE = 39.16 cm3/dm3 and 
MAPE = 9.19% for SVM. Additionally, when the model 
for predicting SE = f(SE(t-1)) accounts for the wastewater 
temperature in the previous measurement in the time step 
Δt, the error in computation fit to measurement data is 
reduced. To visualise the results obtained of the best model 
artificial neural network, Fig. 1 shows the comparison of 
forecasts predicting and measurements activated sludge 
settleability. 

On the basis of the results (Tables 1 and 2), it can be 
stated that to determine the  settleability of the activated 
sludge in real time SE(t) using ANN or SVM, it is 
sufficient to use the following: the result of the previous 
measurement of SE(t-1), wastewater temperature  
T(t-1) in the bioreactor, and the degree of external (RECz) 
and internal (RECw) recirculation. That is confirmed by 
the calculated values of correlation coefficients, and those 
of both absolute ME and relative MPE errors. In view of 
the findings above, the following regression model for the 
prediction of settleability was developed:

 
(11)

The regression dependence (11) is capable of producing 
high-accuracy settleability predictions SE(t-1), as 
the values of MAE and MPE are 41.25 cm3/dm3 and 
16.52 %, respectively. Although error values are lower 
than those obtained with the ANN (Table 1), dependence 
(11) will not be troublesome to use by the staff who 
operate the wastewater treatment plant. Conversely, to 
be able to employ artificial neural systems or the support 
vector method, one must have specialist computer skills 
as the models are implemented in the computer software, 
which could be problematic, especially for small treatment 
facilities, and also due to additional costs.

Table 2. Comparison of the accuracy of predictions for the 
mathematical models developed using artificial neural networks 
(ANN).

Data
Trained set Test set

Neuron 
number

MAE, 
cm3/dm3

MAPE, 
%

MAE, 
cm3/dm3

MAPE, 
%

Q(t), 
T(t) 4 70.47 17.96 72.18 19.28

Q(t-1) 4 94.18 32.12 98.63 36.44
Q(t-1), 
Q(t-2) 3 71.22 25.03 63.12 24.51

T(t-1) 2 50.37 24.16 57.14 19.37
T(t-1), 
T(t-2) 2 46.23 17.25 52.01 15.12

SE(t-1) 3 38.95 12.96 39.16 9.19
SE(t-1), 
T(t-1) 6 33.66 10.78 36.63 8.75

Fig. 1. Comparison of predictions of the best model for ANN 
predicting and observed activated sludge settleability. 
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Conclusions

On the basis of computations, it can be concluded that 
artificial neural networks, Support Vector Machines and 
genetic programming can be used to predict activated 
sludge settleability. The results of analyses indicate 
that artificial neural networks have the best predictive 
abilities. That is confirmed by the values of parameters of 
simulation fit to measurement results for the combinations 
of data/inputs considered. In the analysed computational 
variants, slightly worse results, when compared with other 
methods, were obtained for the Support Vector Machines 
method.  Particular attention should be given to the results 
obtained with the genetic programming because the model 
developed using this method is a regression dependence. 
The latter offers a relatively fast and easy means of finding 
settleability, without making it necessary to use specialist 
software. Additionally, the model developed with GP 
yields practically the same results as the ANN-based 
model for input data such as wastewater temperature, 
settleability from the previous measurement and a degree 
of recirculation. 
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