
Introduction

The levels of nutrients in a water body play an 
essential role in identifying the level of pollution [1]. 
Algae and other forms of plants overgrow in the water 
column when nutrient levels increase critically, resulting 
in an imbalanced aquatic ecosystem (eutrophication) 
that favors some organisms over others. Eutrophication 
is normally assessed using different thresholds based 

on the concentrations of nutrients and chlorophyll-a in 
the water [2-3]. However, these criteria do not specify 
the integral impact of nutrients and chlorophyll-a – the 
conditioning factors for eutrophication [4]. Eutrophication 
has been mainly attributed to human activities, including 
urbanization, agricultural, and industrial activities. 
Eutrophication was the subject of numerous research 
studies over the past two decades, including assessment 
of its risks [5-8], environmental and economic impacts [9-
12], its impact on benthic fauna [13], an assessment of 
nutrient enrichment impact in estuaries [14], and numerical 
modeling of eutrophication [15-16]. Dubai has rapidly 
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Abstract

Rapid urbanization in the UAE has led to some environmental implications, one of which concerns 
Dubai Creek – a major attraction in the city of Dubai. The creek’s water quality monitoring program showed 
increased concentrations of phosphorus- and nitrogen-based nutrients starting in 2008 and 2009. The creek 
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susceptibility of the creek to eutrophication considering the principal factors obtained by PCA. The analysis 
showed that three different factors, which included at least nitrates or phosphates, have contributed to 
eutrophication in every quarter of the year in the period of study. Further analysis showed weak correlation 
between principal factors of eutrophication in consecutive quarters. However, strong correlations were 
observed between these factors when the same quarters over the period of the study were considered, 
suggesting a possible seasonal pattern. 
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developed in the past decade and the vast urbanization has 
resulted in a significant impact on the environment.

Dubai Creek is a 14-km saltwater body located at the 
heart of Dubai and is mainly used for trade, transport, 
and recreation. The major source of the creek’s nutrient 
pollution is the treated sewage discharge from Al-Aweer 
Sewage Treatment Plant [17-18]. The Dubai Municipality 
(DM) monitors the creek’s water quality at 10 stations and 
the measured water quality parameters include phosphates, 
nitrates, total nitrogen, chlorophyll-a, turbidity, dissolved 
oxygen, salinity, and pH. Water quality data recorded 
in the past few years showed a pattern of increased 
concentrations of nutrients and chlorophyll-a in the creek 
to levels that exceeded the seasonal averages set in the 
Organization for Economic Cooperation and Development 
(OECD) criteria for assessing eutrophic status and the 
numeric nutrients standard of the U.S. Environmental 
Protection Agency’s (EPA) national nutrient strategy 
[19-20]. This situation has created serious concern in the 
aftermath of the major algal bloom event of 2008 (aka red-
tide), which caused catastrophic fish kills in the creek and 
devastated the coasts of Dubai and UAE. Therefore, the 
vulnerability of the creek to eutrophication needs to be 
assessed. Based on the success of logistic regression (LR) 
in numerous studies – especially those that were carried 
out to map the susceptibility of floods [21], landslides 
[22], and also based on the success in wetland assessment 
and management using geospatial techniques [23] – this 
study is unique in the application of LR within the GIS 
environment to assess the susceptibility of the creek to 
eutrophication. 

The objectives of the study were to identify the principal 
factors of eutrophication in the creek in every quarter 

during the period of study, to estimate the probability 
of occurrence of eutrophication in the creek to produce 
maps of the susceptibility of the creek to eutrophication,  
and to identify the processes that are responsible for 
eutrophication in the creek. LR is a multivariate statistical 
method that considers all of the independent variables 
(referred to as conditioning factors in this study) that 
influence the occurrence of the dependent variable [24]. 
The principal conditioning factors of eutrophication in 
the creek were estimated using the Principal Component 
Analysis (PCA) given the creek’s water quality parameters, 
which were considered the initial factors before LR was 
utilized. This was an essential task because LR requires 
the use of  factors that are uncorrelated or in other words 
have maximum variances. 

Study Area and Data

Dubai Creek is located in Dubai, United Arab  
Emirates (UAE) and is spatially identified by a minimum 
enclosing rectangle that has left top coordinates of 
25°16´30.8´´N, 55°17´30´´E and right bottom coordinates 
of 25°10´58.5 ´´N, 55°21´6.9´´E. The creek is composed 
of a narrow channel segment surrounded by urban and 
vegetation areas on the two banks, while the lagoon part 
is surrounded by bare lands, a sanctuary, and undeveloped 
areas. The creek extends for about 14 km and has a surface 
area of 8 km2, of which about 4.6 km2 is the lagoon’s 
area. Major sources of nutrients into the creek include 
the discharge of the treated sewage from the Al Aweer 
Sewage Processing Plant and surface runoff from urban 
and vegetation areas (Fig. 1). 

Fig. 1. The geographic location of Dubai Creek and the water quality monitoring stations in Dubai, UAE.
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The water quality dataset used in this study was 
collected at the 10 monitoring stations over a two-year 
period from 2012 to 2013 and was provided by the 
Dubai Municipality as monthly averages in the following 
quarters: January-March (first quarter), April-June (second 
quarter), July-September (third quarter), and October-
December (fourth quarter). The measured water quality 
parameters include phosphates, nitrates, total nitrogen, 
chlorophyll-a, turbidity, dissolved oxygen, salinity, and 
pH. Table 1 shows the water quality dataset of the creek in 
the first quarter of 2012 for each monitoring station, which 
is presented herein as a sample of the dataset used in the 
period of study. 

Methods

Logistic regression (LR) is a multivariate statistical 
analysis approach that considers all the conditioning 
factors (independent variables) that may influence the 
probability of occurrence of the dependent variable, in 
this case eutrophication [24]. The LR model can help in 
estimating the probability of occurrence of any event if 
its independent conditioning factors are known. LR has 
a function f (z) of the general simple form of Equation 1 
[25]:

                       (1)

…where f (z) is the LR function and z is the dependent 
variable such that 1≥f (z)≥0. The fact that the logistic 
function, f(z), ranges from 0 to 1 is the main reason for 
LR model uniqueness and popularity as it describes the 
probability of occurrence of the dependent variable z as it 
varies with independent variables. 

In the simplest form of the LR model, inclusion of 
many independent variables makes the model more 
robust. The main reasons for the selection of the LR 
method in this study were: (a) the range of the estimates 

of the LR function f (z) within 0 and 1, which is useful in 
defining different levels of susceptibility of the creek to 
eutrophication; (b) the s-shaped graph of the LR function 
can help in describing the threshold criteria, which is 
commonly used in defining the eutrophic status of a 
water body, and (c) the LR model dependent variable, z, 
can model the combined effects of several conditioning 
factors, which describes the problem we are trying to 
address in this study. That is, the independent variable z 
is a linear combination of “k” independent uncorrelated 
multivariable observations x1, x2, x3…, xk. The general 
equation of the simple LR, which was used in this study, is 
of the following form:

 
(2)

…where ao is the intercept and a1, a2, a3, …, ak are LR 
model coefficients.  

The LR model was employed considering the principal 
conditioning factors of eutrophication in order to estimate 
the probability of its occurrence in the creek and further 
define levels of susceptibility to eutrophication. It is 
important to note that although the LR model is simple, 
it requires the selection of the “principal” independent 
variables (i.e., conditioning factors) that are uncorrelated 
(i.e., have the largest variance). 

The general criteria for selecting the independent 
variables in the LR model require it to have the following 
characteristics: (a) they have relations with the dependent 
variable, (b) they have complete representation in the 
study area, (c) they vary spatially in the study area, (d) 
they are measurable, and (e) they are not repeated [26-
27]. Based on this criterion, the following six water 
quality parameters collected at the monitoring stations 
were selected as the initial conditioning factors given their 
relationships with eutrophication: chlorophyll-a, nitrates, 
total nitrogen, phosphates, turbidity, and dissolved 
oxygen. These parameters were originally collected as 

Table 1. Values of water quality parameters in the first quarter of 2012.

Stations Salinity 
ppt

pH Chlorophyll-a 
mg/L

DO Conc 
mg/L

Turbidity  
N.T.U

Nitrates 
mg/L

Total Nitrogen
mg/L

Phosphates
mg/L

Creek Mouth 38.68 8.05 5.3 6.91 1.5 0.74 2.47 0.11

Hayat Regency 39.81 8.08 6.8 7.31 1.5 0.47 1.74 0.05

Abra 38.23 8.04 8.2 6.2 1.5 1.02 2.92 0.14

Wharfage 37.76 8.14 40.8 7.36 1.5 1.14 3.47 0.16

Floating Bridge 36.05 8.29 51.2 11.21 1 1.7 5.44 0.16

Al Garhoud Bridge 36.8 7.96 17.9 7.23 1.5 1.94 6.04 0.19

Dubai Festival City 34.52 8.05 13.3 7.9 1 3.22 8.2 0.31

Sewage Treatment 
Plant (STP) Outfall

36.08 8.08 11.5 7.61 1 8.75 24.7 0.95

Jaddaf 33.67 8.21 3.5 7.97 1 3.46 11.55 0.28

Sanctuary 36.54 8.27 6.4 8.88 1 1.72 5.95 0.23
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daily averages by Dubai Munciplaity, but were provided 
as monthly averages and were converted in this study to 
quarter-based averages in the following quarters: January-
March (first quarter), April-June (second quarter), July-
September (third quarter), and October-December (fourth 
quarter).

For high performance of the LR model, it is essential 
to ensure that the selected conditioning factors are 
independent and uncorrelated. In order to achieve this 
requirement and also to satisfy the main characteristics 
of the conditioning factors presented above, we used 
principal component analysis (PCA). This can help to 
avoid multicollinearity, which may lead to non-identifiable 
model coefficients (Härdle and Simar, 2012). In order 
to calculate the principal components, consider the “k” 
independent observations presented in equation (2) above 
and define covariance between xi and xj as shown below 
for i, j = 1, 2, 3, …, k [28-29]:

                    (3)

Let µ1>µ2 >µ3> … >µk> 0 be the eigenvalues of R 
and let q1, q2, q3, …,qk be the corresponding eigenvectors, 
which are normalized as shown below: 

                               (4)

The first principal component (PC1) is a linear 
combination of the multivariable observations; x’s shown 
in equation (2) that have the largest variance:

                     (5)

The second principal component (PC2) has the 
largest variance among all linear combinations of  
the multivariable observations, x’s that are orthogonal  
to PC1.

                     (6)

The remaining principal components (third, fourth, 
fifth, and six, in this case) are computed using the same 
procedure shown above for obtaining PC1 and PC2. 

Results and Discussion

The resulting principal components were classified 
in ArcGIS 10.1 using the quantile classification method, 
and frequency ratio (FR) analysis was carried out on 
the selected principal components (PCs) to obtain the 
frequency ratios, which were used to compute weights 
for every class. The LR model was then run in SPSS 
V.19 software to establish the relationship between 
eutrophication occurrence (dependent variable) and its 
conditioning factors (the selected PCs). 

Principal component analysis (PCA) was carried out in 
ArcGIS 10.1 for the initial six conditioning factors in every 
quarter in the period of study. Sample PCA results, which 
include the correlation matrix of the initial conditioning 
factors as well as the principal components, are shown 
in Tables 2 and 3, respectively, for the first quarter of 
2012. In this quarter, the correlations between nitrates, 
phosphates, and total nitrogen are high (above 0.96). The 
three principal components with the highest variance 
values in the first quarter of 2012 were PC4, PC5, and PC6. 
These are basically the conditioning factors that were later 
adopted in the LR model as independent variables.  

In the data of the first quarter of 2012, the most 
significant component was PC4, which illustrated a 
high positive contribution from nitrates and a negative 
contribution from total nitrogen. One reason for the 
negative contribution from total nitrogen could be its 
recorded high concentration at the STP Outfall station 
the second station from the bottom of the creek. The 
second significant principal component was PC5, which 
illustrated high positive contribution from turbidity and 
a negative contribution from phosphates. The record 
high concentration of phosphates at the STP Outfall 
station could be the reason for the negative contribution 
from phosphates. Nitrates and dissolved oxygen have 
approximately the same level of contribution to this 
principal component. The third significant principal 
component was PC2, which illustrated high positive 
contribution from total nitrogen and a positive  
contribution from nitrates. The fourth significant 
principal component was PC6, which illustrated high 
positive contribution from phosphates. The principal 
components PC4, PC5, and PC6 – which have respective 
high contributions from nitrates, turbidity, and phosphates 
– were selected as the principal conditioning factors of 
eutrophication in this quarter. 

The LR model was then run in SPSS V.19 software 
to establish the relationship between eutrophication 
occurrence and its conditioning factors in this quarter, and 
accordingly the LR model equation (2) can be re-written 
with the coefficients as:
   

z = -0.545 + 0.212 (PC4) + 0.084 
(PC5) + 0.187 (PC6)  

(7)
The probability of occurrence of eutrophication in the 

creek in this quarter was estimated by running equations 
(7) and then equation (1) in ArcGIS 10.1 and is shown 
in Fig. 2. The map of the susceptibility of the creek to 
eutrophication was then created from the probability of 
occurrence map using the quantile classification method 
and is shown in Fig. 3.  

The maps of probability of occurrence of eutrophication 
and susceptibility of the creek to eutrophication in the 
second, third, and fourth quarters of 2012 are shown in 
Figs 4 and 5, respectively.

In the second quarter of 2012, high correlations were 
observed between the following factors: chlorophyll-a 
and nitrates, chlorophyll-a and phosphates, nitrates and 
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phosphates, dissolved oxygen and total nitrogen, and 
dissolved oxygen and turbidity. The high correlations 
between dissolved oxygen on the one hand and total 
nitrogen and turbidity on the other were notable.  
The principal components in this quarter were PC2, PC3, 
and PC5, with major contributions from phosphates, 

chlorophyll-a, and total nitrogen, respectively. In the 
third quarter of 2012, no high correlations were observed 
between the initial factors. The principal components 
in this quarter were PC3, PC4, and PC5, with major 
contributions from chlorophyll-a, phosphates, and 
nitrates, respectively. In the fourth quarter of 2012, 

Table 2. The correlation matrix for the six initial conditioning factors in the first quarter of 2012.

Table 3. Principal components (PC) for the six initial conditioning factors in the first quarter of 2012.

Layers Chl-a Nitrates Phosphates Total nitrogen Dissolved Oxygen Turbidity

Chl-a -0.30726 -0.4028 -0.33871 0.38275 0.42996

Nitrates 0.96715 0.99392 -0.17773 -0.43111

Phosphates 0.96463 -0.16515 -0.50181

Total nitrogen -0.12409 -0.48854

Dissolved Oxygen -0.55679

Turbidity

Layers  PC1 PC2 PC3 PC4 PC5 PC6

Chl-a 0.79666 0.16361 -0.03003 -0.00621 -0.01023 -0.00011

Nitrates -0.05097 0.33285 -0.11649 0.98461 0.2045 -0.11362

Phosphates -0.00601 0.02902 -0.00196 0.15843 -0.2156 0.99309

Total nitrogen -0.15543 0.92813 0.04003 -0.33127 -0.05363 0.01363

Dissolved Oxygen 0.03133 0.005 0.98186 0.0929 0.16062 0.02272

Turbidity 0.00622 -0.01188 -0.14097 -0.19539 0.99964 0.2426

Fig. 2. The probability of occurrence of eutrophication in the 
creek in the first quarter of 2012.

Fig. 3. The levels of susceptibility to eutrophication obtained 
with PCA and LR in the first quarter of 2012.
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high correlations were observed between phosphates, 
total nitrogen, and nitrates. Also observed was a rather 
medium to high correlation between dissolved oxygen and 
turbidity. The principal components in this quarter were 
PC2, PC4, and PC5, with major contributions from total 
nitrogen, turbidity, and nitrates, respectively. Following 
the LR approach used with the first quarter of 2012 data, 
the maps of the probability of occurrence of eutrophication 
in the three quarters of 2012 were created. Accordingly, 
maps of the susceptibility of the creek to eutrophication 
were produced. The results suggest that susceptibility to 

eutrophication in every quarter in this period was directly 
influenced by three conditioning factors that included at 
least nitrates or phosphates. 

In the first quarter of 2013, high correlations were 
observed between chlorophyll-a and dissolved oxygen, 
chlorophyll-a and turbidity, and nitrates and total 
nitrogen. In the second quarter of 2013, high correlations 
were observed between phosphates and nitrates and 
then phosphates and total nitrogen. In the third quarter 
of 2013, high correlations were observed between 
dissolved oxygen and turbidity, phosphates and nitrates, 

Fig. 5. Maps of susceptibility of the creek to eutrophication in the second, third, and fourth quarters of 2012.

Fig. 4. Maps of probability of occurrence of eutrophication in the second, third, and fourth quarters of 2012.
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and phosphates and total nitrogen. In the fourth quarter 
of 2013, high correlations were observed between 
chlorophyll-a and dissolved oxygen, chlorophyll-a and 
turbidity, and dissolved oxygen and turbidity.  Following 
the same LR approach used with 2012 data, the maps of 
the probability of occurrence of eutrophication in the creek 
in the four quarters of 2013 were created, followed by 
maps of the susceptibility of the creek to eutrophication. 
Based on the identified PCs in all four quarters of 2013 
and their respective major contributing factors, at least 
one of nitrates or phosphates was identified as a major 
contributing factor to the respective principal components 
in all quarters of 2013. 

Comparing the PCA results for 2012 and 2013, it 
was evident that two of the major contributing factors to 
the principal components in every quarter of 2012 were 
the same in the respective quarter in 2013. For example, 
nitrates and phosphates were two of the major contributing 
factors to the PCs in quarter 1 in both 2012 and 2013. 
This can indicate a seasonal pattern that characterizes 
eutrophication and its major factors in the creek in the 
period of study.  

Further investigation was carried out using linear 
regression analysis to study the relationships between the 
probability of occurrence of eutrophication in any quarter 
(as estimated with LR) in the period of study and the 
previous quarter’s concentrations of nitrates, phosphates, 
and chlorophyll-a, considered individually and jointly 
[30-31]. The selection of these factors in this analysis 
was based on the following facts: (a) at least one of the 
nitrates or phosphates was one of the major contributors 
to the principal components in all eight quarters of 2012 
and 2013, and (b) chlorophyll-a is the common parameter 
used by many threshold-based guidelines for assessing 
eutrophication in water bodies. Table 4 below lists the 
resulted R-square values obtained through regression 
analysis for the relationships between the probability of 
occurrence of eutrophication in a quarter and the selected 
factor combinations in the previous quarter. Low values of 
R-square were obtained for the relationship between the 
occurrence of eutrophication in a quarter and the levels 

of each of the three factors in the preceding quarter when 
considered individually. This is an indication that the use 
of a single parameter to assess the creek’s eutrophication 
status can be misleading. However, high correlation 
coefficients were obtained for this relationship when the 
combination of all three factors was considered (column 
8 in Table 4). This outcome indicated the fact that the 
assessment of the eutrophication status in the creek would 
be much more robust when a combination of more than 
one parameter is used.

Conclusion

PCA was used to identify the main conditioning 
factors of eutrophication in Dubai Creek. LR modeling 
was used to study the susceptibility of the creek to 
eutrophication based on the principal conditioning factors 
identified by PCA. Accordingly, maps of probability of 
occurrence of eutrophication in the creek as well as the 
levels of susceptibility of the creek to eutrophication 
were created. Analysis showed that susceptibility of the 
creek to eutrophication in any quarter of the year during 
the period of study was influenced by three conditioning 
factors, which included nitrates or phosphates. Therefore, 
the use of threshold criteria based on the value of one 
or two parameters to assess the “eutrophic” status in 
the creek can be misleading. The analysis showed weak 
correlations between principal factors of eutrophication 
in consecutive quarters of the year during the period of 
study. Further analysis showed stronger correlations 
between these factors when same quarters over the two-
year period of study were considered, which suggests a 
possible seasonal pattern. Furthermore, weak correlations 
were obtained between the occurrence of eutrophication 
in any quarter and the levels of nitrates, phosphates, and 
chlorophyll-a in the creek’s water in the following quarter 
(when considered individually). Stronger correlations 
were obtained between the occurrence of eutrophication in 
any quarter and the levels of these factors in the following 
quarter (when considered jointly). 

Quarters in 
consideration 

R-square values (%) of relationships of the occurrence of eutrophication  between the consecutive
 quarters shown in column 1

NT1 PHOS2 CLA3 NT1+PHOS2 NT1+CLA3 PHOS2+CLA3 NT1+PHOS2+CLA3

Q1 & Q2-2012 45 52 48 59 56 59 73

Q2 & Q3-2012 33 58 29 61 42 63 70

Q3 & Q4-2012 28 63 64 63 66 69 76

Q4-124 & Q1-135 29 48 53 52 58 58 79

Q1 & Q2-2013 34 51 50 52 55 55 75

Q2 & Q3-2013 59 60 44 65 62 64 74

Q3 & Q4-2013 45 58 56 60 59 61 78
1 Nitrate, 2 Phosphate, 3 Chlorophyll-a, 4 2012, 5 2013

Table 4. R-square values of regression analysis of the relationships between the occurrence of eutrophication in a quarter and the values 
of the selected factor combinations in the preceding quarter.
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