
Introduction

Vegetation is an essential component of terrestrial 
ecosystems, and is important in regulating climate change, 
the carbon cycle, and energy exchange via biophysical 

factors such as photosynthesis, evapotranspiration, surface 
albedo, and roughness [1-4]. Vegetation has obvious 
interannual and seasonal variations that are recognized 
as indicators for the detection of climate trends in global 
change studies [5-8]. Thus, we can better understand 
and simulate the dynamic characteristics of terrestrial 
ecosystems and reveal the regulation of global change by 
monitoring long-term vegetation variations. Studies of the 
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Abstract

Vegetation is an essential component of terrestrial ecosystems, and it plays an important role in 
regulating climate change, the carbon cycle, and energy exchange. And permafrost is extremely sensitive 
to climate change. In particular, aboveground vegetation on permafrost has great sensitivity to that change. 
The permafrost zone of northeastern China, within middle and high latitudes of the northern hemisphere, is 
the second-largest region of permafrost in China. It is at the southern edge of the Eurasian cryolithozone. 
This study analyzes growing-season spatiotemporal variation of the normalization difference vegetation 
index (NDVI) in this permafrost zone and the correlation between NDVI and climate variables during 
1981-2014. Mean growing-season NDVI significantly increased by 0.0028 yr-1 over the entire permafrost 
zone. The spatial dynamics of vegetation cover in the zone had strong heterogeneity on the pixel scale. 
Pixels that showed increasing trends accounted for 80% of the permafrost area, and were mostly found in 
the permafrost zone with the exception of western steppe regions. Pixels that showed decreasing trends 
(approximately 20% of the permafrost area) were mainly in the cultivated and steppe portions of the study 
area. Our results indicated that temperature was the dominant influence on vegetation growth during the 
growing season in most permafrost zones.
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spatiotemporal variations of vegetation activities caused 
by climate change, including plant phenology [9-13], net 
primary productivity [14-17], vegetation cover [18-22], 
biomass [23-24], and carbon process models [25], have 
used various methods. These studies have revealed that 
vegetation activities have increased at middle and high 
latitudes of the northern hemisphere over the past few 
decades.

Remote sensing is a powerful and useful approach to 
investigating vegetation dynamics. The satellite-derived 
normalized difference vegetation index (NDVI), which 
is defined as a ratio of near-infrared and red visible 
reflectance, is an indicator of vegetation cover, productivity, 
and growth [26]. A large NDVI value is equivalent high 
green plant density [20]. NDVI has been broadly used to 
detect characteristics of vegetation dynamics because of 
its strong correlation with biophysical and biochemical 
variables, such as plant coverage, leaf area, chlorophyll 
density, biomass, and growth. There are various available 
NDVI datasets, such as AVHRR NDVI, MODIS NDVI, 
and SPOT VEG NDVI [13, 16-18, 27-28]. Most studies 
focus on vegetation dynamics by using a single NDVI 
dataset. Such a single data resource is limited to analysis 
of a long-term NDVI sequence. Therefore, it is valuable 
to develop a consistent long-term dataset from the 1980s 
through recent years, combining advanced very high 
resolution radiometer (AVHRR) NDVI and moderate 
resolution imaging radiometer (MODIS) NDVI. 

Vegetation variations have been shown to be correlated 
with climate change. Ichii et al. found significant 
correlation between interannual change of NDVI and 
temperature at middle and high latitudes of the northern 
hemisphere, consistent with Zhou et al. [5, 29]. At these 
latitudes, the permafrost zone of northeastern China is 
the second largest expanse of permafrost in the country 
and is at the southern edge of the Eurasian cryolithozone 
[30]. The zone is thermally unstable and ecologically 
sensitive to global climate change [31]. Some studies 
have suggested that vegetation growth in most areas of 
China has increased over the past few decades [27, 32-
33]. However, these studies mainly dealt with vegetation 
responses to climate variables on a national scale. There 
have been few detailed studies at the regional scale, such 
as the permafrost zone of northeastern China. Therefore, 
a long-term NDVI dataset is needed to detect vegetation 
dynamics and correlation between NDVI and climate 
variables. 

The major aim of this study was to probe spatiotemporal 
variations of NDVI associated with climate in the 
permafrost zone of northeastern China from 1981 to 2014 
based on satellite and climate datasets. We address the 
following questions:
–– How did the vegetation cover (NDVI) vary 

spatiotemporally in the permafrost zone over a 34-year 
period? 

–– Which climate variable (temperature or precipitation) 
determined the vegetation change? 
Our result serves as a guide for managing forest in the 

permafrost region.

Our study focuses on growing-season NDVI and so 
avoids outlier NDVI values caused by winter snow cover 
[33-35]. Here, the growing season is defined as April 
through October. We determine mean growing-season 
NDVI to detect variations of vegetation related to climate 
change.

Materials and methods

Study area 

The permafrost region studied is in the northernmost 
part of northeastern China. It extends from 115°52′E 
to 135°09′E and 46°30′N to 53°30′N, with an area of 
~42 million hectares (Fig. 1). The climate regime is 
characterized by long periods of dry and cold in winter, 
and short moist and hot periods in summer. Annual average 
temperatures range from -5ºC to 4ºC (Fig. 2a), and annual 
precipitation is between 261 and 599 mm (Fig. 2b). The 
region is mainly covered by forest that is dominated by 
larch and white birch, and there are small proportions of 
shrubs, woodland, steppe, meadow, swamp, and cultivated 
land intermixed (Fig. 1). 

NDVI datasets

We used two datasets, the land long term data 
record (LTDR) NDVI (AVH13C1) for 1981-99 and 
MODIS NDVI (MOD13C2) for 2000-14, to depict the 
spatiotemporal variation of growing-season vegetation 
cover in the permafrost region of northeastern China during 
1981-2014. LTDR AVH13C1 products are supported by 
the LDTR project, which is funded as part of the National 
Aeronautics and Space Administration (NASA) Earth 

Fig. 1. Location and vegetation types of permafrost zone in 
northeastern China.
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Science Research, Education, and Application Solution 
Network. A project objective is to derive consistent and 
long-term datasets from the AVHRR series satellites 
(NOAA 7, 9, 11, 14, and 16) [36] and MODIS apparatus 
for research into global climate change [20, 37]. LTDR 
AVH13C1 products include daily NDVI data produced 
for the period 1981-99 with spatial pixel resolution 
0.05°, which are preceded by an improved atmospheric 
correction scheme and bidirectional reflectance 
distribution function correction [37]. The LTDR dataset 
and product documents can be downloaded at ltdr.nascom.
nasa.gov/cgi-bin/ltdr/ltdrPage.cgi. MODIS has been a key 
sensor aboard the Terra (generally known as EOS AM-1) 
and Aqua (generally known as EOS PM-1) satellites from 
2000 onward, and provide the opportunity to monitor 
earth’s terrestrial photosynthetic vegetation activity in 
support of phonologic, change detection, and biophysical 
interpretation [38-39]. The MOD13C2 datasets are cloud-
free spatial composites of the gridded 16-day, 1-km 
NDVI (MOD13A2) [40], and are provided monthly on a 
level-3 product geographic climate modeling grid, with 
a projected spatial pixel resolution of 0.05°. These data 

may be obtained from the NASA Level 1 and Atmosphere 
Archive and Distribution System site (ladsweb.nascom.
nasa.gov). 

Both datasets involve atmospheric calibration and 
geometric corrections, especially errors produced by 
satellite alternation, to ensure data quality [20, 38]. 
MOD13C2 monthly dataset composites were generated 
using the maximum value composite (MVC) approach to 
further reduce the influence of clouds, atmosphere, and 
solar zenith angle. The MVC method selects the largest 
NDVI per pixel [41-42]. The compound algorithm reduces 
the effect of angular and sun-target-sensor variations and 
provides robust spectral measures of the amount of ground 
vegetation, allowing precise comparison of spatiotemporal 
variations in terrestrial photosynthetic activity [43]. We 
produced monthly composites from the AVH13C1 NDVI 
products, using the MVC method for confirming the 
consistency of temporal resolution between the two NDVI 

Fig. 2. Spatial patterns of a) annual mean temperature and b) 
precipitation in permafrost zone during 1981-2014.

Fig. 3. Comparison of NDVI time sequences obtained from 
LTDR AVH13C1, MODIS MOD13C2, and GIMMS NDVI for 
the permafrost region: a) monthly NDVI time series of the three 
datasets, 1995 to 2005; b) AVH13C1 (blue) and MOD13C2  
(red) versus GIMMS NDVI – the red line represents regression 
that passes through the origin; and c) Annual NDVI time series 
of the three datasets from 1982 to 2006 (the longest time series of 
GIMMS NDVI was provided from July 1981 through December 
2006).
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datasets. Therefore, we obtained long-term monthly 
NDVI data from AVH13C1 NDVI and MOD13C2 NDVI 
with spatial resolution 0.05°. 

For land-climate studies, continuity and consistency 
of the two NDVI datasets are indispensable [44-45]. To 
evaluate their consistency in the permafrost region, we 
analyzed the monthly NDVI for the 1995-99 LTDR and 
2000-05 MODIS datasets with corresponding parts of 
the 1995-2005 Global Inventory Modeling and Mapping 
Studies (GIMMS) dataset for the entire permafrost zone 
(Figs 3a and b). We also compared the annual average 
NDVI between LTDR and MODIS over 1982-2014, 
in correspondence with the GIMMS NDVI from 1982 
to 2006 (Fig. 3c). The results suggest that the GIMMS 
NDVI was systematically underestimated (as much as 
0.06) in the permafrost zone (Fig. 3a). Regression slopes 
between LTDR and GIMMS NDVI for 1995-99 and 
between MODIS and GIMMS NDVI for 2000-05 were 
very similar (Fig. 3b). The annual average NDVI during  
1982-2006 was also very similar to that of the 1982-99 
LTDR, 2000-06 MODIS, and 1982-2006 GIMMS. This 
result demonstrates good systematic agreement between 
LTDR and MODIS (Fig. 3c). The sharp increase and 
decrease of NDVI from the LTDR to MODIS also occurred 
in the GIMMS NDVI. Therefore, the long-term monthly 
NDVI dataset with spatial resolution 0.05° generated from 
LTDR and MODIS is reliable. 

We calculated the mean growing-season NDVI by 
averaging monthly maximum values from April through 
October. Pixels at which the average growing-season 
NDVI<0.05 were masked as non-vegetated areas [27]. 

Climate and vegetation datasets

The monthly climate data for the period 1981-2014 
included temperature and precipitation, and were provided 
by the National Meteorological Information Center of 
China. The data during the growing season each year were 
from 35 meteorological stations across the permafrost 
region. These data were interpolated by ArcGIS 9 software 
using co-Kriging based on a digital elevation model with 
spatial resolution 0.05°. This matched both temporally 
and spatially the time sequences of mean growing-season 
NDVI. 

Vegetation data with scale 1:1,000,000 were obtained 
from a digitized actual vegetation map of China derived 
from ground-based observations [46].

Permafrost zone in northeastern China

The permafrost region covers 4.2×105 km2. Digital 
data for permafrost boundaries were obtained from the 
U.S. National Snow and Ice Data Center (nsidc.org/data/
docs/fgdc/ggd603_pf_maps_china). 

Mehods

To detect vegetation and climatic variations over 
the 34 years, mean growing-season NDVI (MGS-

NDVI), growing-season average temperature (GS-AT), 
and growing-season total precipitation (GS-TP) were 
calculated and then used as a proxy for the annual state of 
vegetation growth. We treated linear time trends using the 
ordinary least-squares regression method for NDVI and 
climatic factors to quantify the magnitude of those trends 
(Equations (1) and (2)) [18, 28, 34, 44]:

                       (1)

                  (2)

… where y is the MGS-NDVI or climate variables, t is 
the year, and y–  and t–  are corresponding mean values of y 
and t. Slope a represents the magnitude of the trend, b is 
the intercept, and ε is residual error. To further investigate 
the trends of growing-season NDVI, linear trends from 
1981-2014 on a per-pixel basis were examined. The 
expression is [27, 44, 47-48]:

Fig. 4. Spatial distribution of mean growing-season NDVI for 
the permafrost zone during 1981-2014.
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   (3)

…where Slope is the trend of vegetation dynamics or 
climate variables, n = 34, i is the number of the year 
(1-34) in the study period, and NDVIi is the MGS-NDVI 
in i the th year. The MGS-NDVI during 1981-2014 has 
an increasing trend when Slope>0 and a decreasing trend 
when Slope<0. 

To understand the climate drivers of vegetation variables 
in the permafrost zone, Pearson’s correlation coefficient 
between NDVI and climate variables was computed. 
Correlations range from +1 to -1. Zero correlation 
indicates no relationship between the variables. A negative 
correlation indicates that as one variable increased, the 
other declined. A positive correlation indicates that both 
variables changed in the same direction. Correlation was 
analyzed at both the spatial-average value scale and pixel 
scale (Equation (4)) [49-50]:

      (4)

…where rxy represents the correlation coefficient for x 
and y, whose value is from -1 to 1, xi and yi are values of 
the two variables in the ith year, and x–  and y–  are average 
values of x and y during the study period, respectively. 

Results

Trends of NDVI

Spatial distribution of vegetation cover

The spatial pattern of MGS-NDVI is shown in Fig. 
4. Overall, the MGS-NDVI was large and had obvious 
heterogeneity, and there was an increasing trend from 
west to east. Pixels with NDVI>0.6 mainly covered the 
Great Khingan Mountains and the southeastern area 
embraced the Small Khingan Mountains, which accounted 
for 40.5% of the permafrost area and was dominated by 
needleleaf, broadleaf, and mixed broadleaf and conifer 
forests. Moderately large values between 0.4 and 0.6 were 
observed in scattered areas of the central permafrost zone, 
which accounted for about half the study area (49.2%). 
There, the land was largely composed of cultivation, 
meadow, and swamp. Sparse vegetation cover with 
NDVI<0.4 was found in the temperate steppe of western 
areas, making up 10.3% of the study area. 

Dynamics of vegetation cover

Fig. 5 illustrates the interannual variation of spatial 
average MGS-NDVI for the entire study region. This  
index significantly increased at a rate of 0.0028 year-1 
(P<0.001). Spatial dynamics of the vegetation cover are 

depicted in Fig. 6a. There was strong spatial heterogeneity 
from the per-pixel analysis. Pixels with increasing trends 
(NDVI trend>0) accounted for 80% of the permafrost 
area, which were mostly found across the permafrost 
zone, with the exception of the western steppe. Pixels with 
decreasing trends (NDVI trend <0) (~20% of the total area) 

Fig. 5. Trend in spatial average growing-season mean NDVI over 
the entire permafrost zone of northeastern China, 1981-2014.

Fig. 6. Variation in mean growing-season NDVI for the 
permafrost zone of northeastern China, 1981-2014: a) magnitude 
and b) statistical test result at 5% significance level.
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were mainly in the cultivated lands and steppe of the study 
area. Results of a statistical test at 5% significance level of 
MGS-NDVI trends are shown in Fig. 6b. The MGS-NDVI 
in 77.7% of the study area showed a significant increase, 
and only 9.6% of that area showed a significant decrease. 

Trends of climate variables 

GS-MT significantly increased at a rate of  
0.051ºC/yr (Fig. 7a), consistent with the dynamic 
characteristics of MGS-NDVI. Fig. 7b shows the 
variations in GS-TP, which decreased at a rate of  
-1.412 mm/yr (non-significant). Spatial variations of 
temperature (Fig. 8a) and precipitation (Fig. 8b) at pixel 
scale showed great spatial heterogeneity across the 
permafrost zone. In the Great Khingan Mountains and 
central parts of the Small Khingan Mountains, which are 
mainly covered by forest, temperature increased at the 
highest average rates. However, the greatest precipitation 
decreases in the study area were found in the southeastern 
Small Khingan Mountains. 

Correlation between vegetation dynamics 
and climate factors

Correlation between growing-season mean NDVI 
and climate variables at the scale of the entire 

permafrost zone

At the entire permafrost zone scale we analyzed the 
correlation between the MGS-NDVI and climate variables. 
The MGS-NDVI was positively and significantly 
correlated with GS-MT (R = 0.779; P<0.01), but 

weakly and negatively related with GS-TP (R = -0.086; 
P = 0.103). We compared correlation coefficients between 
MGS-NDVI and climate variables, finding that correlation 
between MGS-NDVI and GS-MT was much stronger 
than between MGS-NDVI and GS-TP. Thus, we conclude 
that GS-MT was the primary determinant of vegetation 
dynamics in the permafrost zone of northeastern China.

Correlation between growing-season mean NDVI 
and climate factors at pixel scale 

To further assess correlations between MGS-NDVI and 
climate variables, we calculated correlation coefficients 
between MGS-NDVI and the two climate factors at all 
pixels (Fig. 9). There was strong and positive correlation 
between MGS-NDVI and GS-MT in most permafrost 
areas, which constituted ~68.2% of the total permafrost 
area (1% and 5% significance levels). Especially in the 
central and eastern permafrost zone where there were 
large NDVI values and extensive forest cover, correlation 
was significant even at the 0.01 level (~59.4%) (Fig. 9a). 
However, in the steppe-dominated areas of the western 
study area, GS-MT had significant and negative correlation 
with MGS-NDVI, at ~8.5% of all pixels.

Fig. 7. Trend in spatial average growing-season a) mean 
temperature (ºC) and b) total precipitation (mm) in permafrost 
zone, 1981-2014.

Fig. 8. Variation in a) growing-season mean temperature (ºC) 
and b) growing-season total precipitation (mm) for permafrost 
zone of northeastern China, 1981-2014.
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Compared with the correlation between MGS-NDVI 
and GS-MT, there was an opposite spatial pattern of 
correlation between MGS-NDVI and GS-TP (Fig. 9b), i.e., 
strong and positive correlation was mainly in the western 
study area that was covered by steppe, accounting for 
17.8% of all pixels. Correlation between MGS-NDVI and 
GS-TP was weakly negative in most parts of permafrost 
zone (~77.9%). Significant negative correlation was found 
in some scattered parts of the permafrost zone (~4.3%).

Discussion

Trends of growing-season mean NDVI 
(MGS-NDVI)

As the most active stage in the entire phenology cycle 
of non-evergreen vegetation [51], the growing season 
is often used to detect vegetation dynamics. Therefore, 
MGS-NDVI was an effective indicator of vegetation 
variation conditions [18]. The combination of climate 
and vegetation during the growing season suggests 

that vegetation dynamics have significantly increased 
on global and regional scales [16, 32, 35, 52-58]. For 
example, Piao et al. indicated a significant (R = 0.768; 
P<0.001) increasing trend of growing-season NDVI 
on the national scale, with an annual increase rate of 
0.0015 year-1 over 1982-99 [33]. In the permafrost areas, 
vegetation variations of net primary productivity and 
vegetation cover increased significantly [26, 50, 59] and 
are consistent with our results, which show that MGS-
NDVI had a significant increasing trend with a rate of 
0.0028 year-1 in the permafrost zone of northeastern China 
during 1981-2014. 

Correlations of growing-season mean NDVI 
and climate variables

Vegetation changes were strongly correlated with 
climate variables [60-62]. At the scale of the entire 
permafrost zone, the MGS-NDVI was positively and 
significantly correlated with GS-MT (R = 0.779; 
P<0.01), but weakly and negatively related to GS-TP 
(R = -0.086; P = 0.103). The correlation between 
MGS-NDVI and climate factors (temperature and 
precipitation) on the scale of the entire permafrost zone 
suggests that vegetation growth was greatly influenced  
by GS-MT, consistent with the results of previous studies 
[27, 63-66]. The permafrost zone of northeastern China 
is in a cold region, where the positive and significant 
correlation can be physiologically explained by an  
increase of temperature accelerating plant photosynthesis 
[33]. 

The spatial pattern of per-pixel correlation between 
MGS-NDVI and climate variables showed strong 
heterogeneity. The positive correlation between MGS-
NDVI and GS-MT in most parts of the permafrost 
zone (except for the west) is attributed to an increased 
growing-season temperature. This enhanced vegetation 
photosynthesis comes with an extended growing season 
and increased plant activity (amplitude of the growth 
cycle) [67-69]. This can be interpreted as an increase in 
photosynthesis and respiration for vegetation growth in 
response to a warmer climate [66]. Negative correlation 
between MGS-NDVI and GS-MT was observed in the 
western study area (Hulun Buir grassland), because 
increased temperature limited plant growth in these 
semiarid regions. In such a region, increased temperature 
may reduce moisture availability for vegetation growth 
[33, 44]. Increasing GS-MT invigorated transpiration and 
indicates that vegetation cover decreases with increasing 
temperature during the growing season. However, the 
correlation between MGS-NDVI and GS-TP showed a 
spatial pattern opposite that of the correlation between 
MGS-NDVI and GS-MT. Significant positive correlation 
between MGS-NDVI and GS-TP in the western 
permafrost zone is attributed to water availability in  
this semiarid region, which is the primary limiting factor 
for plant growth [20]. The decreasing vegetation cover 
in the Hulun Buir grassland was caused by declining 
GS-TP, which reduced effective moisture for vegetation 

Fig. 9. Correlations between mean NDVI and climate varia-
bles of growing season: a) correlations between NDVI and 
mean temperature and b) correlations between NDVI and  
total precipitation in permafrost zone of northeastern China, 
1981-2014.
 * and ** denote 5% and 1% significance levels, respectively.
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growth [44]. Additionally, there was non-significant 
negative correlation between MGS-NDVI and GS-TP in 
most permafrost areas, where the climate in the growing 
season is cold and humid [70]. Apparently in these areas, 
increased precipitation is associated with greater cloud 
cover that reduces incident radiation and which is essential 
for plant growth [33, 44, 62]. However, seasonal freezing 
and thawing of the permafrost provided sufficient moisture 
for vegetation growth in areas insensitive to variations of 
precipitation. 

Conclusions

In this paper, we reveal spatiotemporal variations in 
vegetation cover and the correlation between vegetation 
and climate variables. The main conclusions are:
1.	 The MGS-NDVI significantly increased at a rate 

of 0.0028 year-1 at the scale of the entire permafrost 
zone. Spatial dynamics of the vegetation cover in the 
permafrost zone had strong heterogeneity at pixel 
scale. 

2.	 At the scale of the entire permafrost zone, the 
NDVI is positively and significantly correlated with 
temperature, but weakly and negatively related to 
precipitation. This indicates that temperature was the 
dominant influence on vegetation growth during the 
growing season. 
Although the results of the present study are valuable, 

there are several aspects that remain unclear and must be 
addressed in the future. For example, despite a strong NDVI 
increase in the permafrost zone of northeastern China over 
the last three decades, we still do not understand carbon 
exchange in the zone under the background of climate 
change. More studies are needed to assess the role of this 
zone in regional carbon balance. In addition to climate 
variables, CO2 and human activities may also influence 
NDVI change. We should consider other available data 
of variables affecting vegetation growth. Finally, we 
will examine the effect of permafrost degradation on 
vegetation growth. 
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