
Introduction

For a long time the surface and subsurface places have 
mirrored the social, traditional, and economic features 
considered as a marker of heritage. This should be passed 
on to upcoming generations for its protection, and for 
such an approach landscape connectivity activities 
should be given priority. The protection and sustainability 
of an area is a prime objective during modeling of the 
landscape connectivity design. Mapping landscape 
connectivity works best at landscape scale, where the 
given population or species are highly diversified with 
different forms of connectivity based on geographic 
information system (GIS) to quantify connectivity [1-8]. 
A growing number of quantitative approaches facilitate 
measuring and mapping connectivity, which can 
integrate large amounts of information needed to evaluate 

connectivity for a given population or species. Th hour is 
needed to identify an effective approach for maintaining 
and restoring connectivity [9-12], and GIS is a valuable 
technique in this regard [13-17]. A graph represents the 
landscape as a set of nodes and edges. The nodes are the 
distinct entities in the landscape where edges represent 
connectivity between nodes as shown in Fig.1. Edges may 
or may not be interconnected and deliver information 
about connectivity [18]. Landscape connectivity is 
characterized by graph-making with to base on GIS. 
Some of studies show that a GIS-based approach is used 
to quantify landscape connectivity [1-8]. Landscapes or 
networks connect the people in many ways and can be 
viewed as a network of environmental territory connected 
by scattering individuals in [19]. The arrangement of 
a network along with its nodes and connecting lines is 
worth noticing, as it is one of the growing properties that 
affects humanity in various ways [20].
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In this paper we investigated finite, simple, and 
undirected graphs. Graph G consists of the vertex-set 
V(G) and the edge-set E(G).

A graph labeling is a mapping that assigns numbers to 
graph elements. The domain will be the set of all vertices, 
the set of all edges, or the set of all vertices and edges 
in this paper.  Total labeling is a labeling in which the 
domain is set of vertices and edges. If the sum of edge 
weights constitutes an arithmetic progression with initial 
term and difference d, then the total labeling is said to 
be (a, d) edge antimagic total labeling. If the least labels 
are assigned to vertices, then the total labeling is known 
as super (a, d)-edge antimagic total labeling. Harmonius, 
cordial, graceful, and antimagic are the types of graph 
labelings. This paper deals with the super (a, d)-edge 
antimagic total labeling.

The super magic labeling was introduced in various 
classes [21-22]. For (V, E) graph G, a bijective mapping 
f : V(G) ∪ E(G) → {1,2,3,...|V| + |E|} is an edge-magic 
total labeling of G if f (x) + f (xy) + f (y) = k(constant), 
where k is a constant, independent of the choice of edge 
xy ∈ E(G). The concept of edge magic total labeling 
and super edge-magic total labeling of graph G was 
appplied by various authors for landscape connectivity 
[23-26] as a bijective function f : V(G) ∪ E(G) → 
{1,2,3,...|V| + |E|}, such that in addition to being an edge-
magic total labeling of G , if it satisfies the extra property 
that is  f(V(G)) = {1,2,3,...,v}. Wallis named this labeling 
strongly edge-magic.

The concept of antimagic labeling was introduced by 
Kim and Keown in [27-28]. In their terminology, graph 
G is called antimagic if its edges are labeled with labels 
{1,2,3,...,e} in such a way that all vertex-weights are 
pairwise distinct, where a vertex-weight of a vertex v is 
the sum of labels of all the edges incident with v.

An (a, d)-EAT labeling of graph G is defined as a one-
to-one mapping f from V(G) ∪ E(G) to the set {1,2,3,...,
v + e} so that the set of edge-weights  { f (x) + f (xy) + f (y) 
: xy ∈ E(G)} equals {a, a + d, a + a2,...a + (e – 1) d} for 
two integers a>0 and d≥0. Notice that the same labeling 
would be an edge-magic total labeling when d = 0. In 
other words an (a,0) -EAT labeling is an EMT labeling 
of G.

An (a,d)-EAT labeling is called super if the 
smallest labels appear on the vertices of G, i.e., f(V(G)) = 
{1,2,3,...,v}. The (a,d)-edge antimagic total labeling and 
super (a,d)-edge antimagic total labelings are natural 
extensions of the notion of an edge-magic total labeling 
[29-31].

Ngurah et al. [9] proved that mCn (n≥3) has an (a,d)-
edge antimagic total labeling in the following cases: 

, where m is even, (a,d) = (2mn + 2,2), 

 for m and n odd, (a,d) = ((mn + 3),4)  

for m and n odd, and mCn has a super (2mn + 2, 1)-edge 
antimagic total labeling. They also proved that the 
following Cn has a super (a,d)-edge antimagic total 
labeling if either d is 0 or 2 and n is odd, or d = 1; for odd 
(n≥3) and m = 1 or 2, the generalized Peterson graph  
P(n,m) has a super -edge antimagic total 

labeling and a super -edge antimagic total 

labeling; and for odd n≥3,  has a super 

-edge antimagic total labeling and a super 

-edge antimagic total labeling.

Super edge-antimagic total labeling for Harary  
graphs C tp was constructed by Hussain et al. [28]. They 
worked on super (a,d)-edge antimagic total labeling and 
super (a, d)-vertex antimagic total labeling. They also 
constructed the super edge-antimagic and super vertex-
antimagic total labelings for a disjointed union of k  
identical copies of the Harary graph.

Super edge-antimagic total labeling and super  
edge magic labeling for subdivided stars were made  
in [33-35]. Javaid et al. [36] proved (a,d)-EAT labeling  
of extended w-trees and super edge-magic total labeling 
on w-trees was defined [37]. All trees are super edge 
magic with at most 17 vertices proven [38-39]. 

 

Fig. 1. Landscape connectivity.
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Harary Graph

For t≥2 and p≥4, a Harary graph Ct
p is a graph 

constructed from a cycle Cp by joining any two vertices 
at distance t in Cp. 

Subdivided Harary Graph

For t≥6 and p≥6, a subdivided Harary graph C t,h
p  

is a graph constructed from Harary graph Ct
p after the 

subdivision (for even h≥2) of each edge of graph C tp.

Super (a,2)-edge Antimagic Total Labeling 
of Subdivided Harary Graphs

Main Results

We prove that subdivided Harary graph is a super 
(a,2)-edge antimagic total labeling for even h≥2.

Theorem 2.1.1. For any p≥25 with h = 2 and for 

t = 6, 6,2
pCG ≅  admits a super (4p + 1,2) edge-antimagic 

total labeling.

Proof. Consider the vertex and edge set of G as 
|V(G) | = p and |E(G) | = q . Let V1(G), E1(G) and V2(G), 
E2(G) denote the vertices on the outer and inner cycles, 
respectively. The vertex [V(G) = V1(G) ∪ V2(G)] and edge 
[E(G) = E1(G) ∪ E2(G)] sets of G are defined as follows: 

where ζ = 3i – 2,3i – 2 + t, η = 3i – 2 + t and all indices are 

taken in mod 
5

3p . Now we define labeling λ : V(G) ∪ 

E(G) → {1,2,3,..., p + q}. We label the vertices on outer 
and inner cycle as follows: 

We label the edges on outer and inner cycle as follows: 

Edge weights of all edges in E1(G) will form 
consecutive integers , where the 

weight 4p + 1 is obtained by the edge  if  . 

Edge weights of all edges in E2(G) will form consecutive 

integers . Therefore, all 
the edge weights form consecutive integers 

. Since all vertices receive 
smallest labels so λ is a super (4p + 1,2) edge antimagic 
total labeling. Fig. 2 shows super (141,2)–EAT labeling of 

.

Theorem 2.1.2. For any p≥20n + 5, with h = 2n,n≥1 

and for t = 4n + 2,n≥1, nn
pCG 2,24 +≅  admits a super 

(4p + 1,2) edge-antimagic total labeling.

Fig. 2. Super (141,2)-EAT labeling of .
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Proof. Let us denote the vertex and edge set of G as 
|V(G)| = p and |E(G)| = q. Let V1(G), E1(G) and V2(G), 
E2(G) denote the vertices on the outer and inner cycles, 
respectively. The vertex [V(G) = V1(G) ∪ V2(G)] and edge 
[E(G) = E1(G) ∪ E2(G)] sets of G are defined as follows: 
	

 

where α = (2n + 1)i – 2n, (2n + 1)i – 2n + t, β = (2n + 1)

i – 2n + t and all indices are taken in mod . 

Now we define labeling λ : V(G) ∪ E(G) → {1,2,3,..., 
p + q}. We label the vertices on outer and inner cycle as 
follows: 
 

where γ = (2n – 2k + 1) – 2ni and δ = (4n – 1) + 2ni. The 
edges on the outer and inner cycles are labelled as:  

 

where ζ = (2n – 2k + 1) – 2ni, ρ = (2n – 1 – 2k) – 2ni and 
.

14
=

+n
ξη

 

        
Edge weights of all edges in E1(G) will form 

consecutive integers , 

where the weight 4p + 1 is obtained by the edge 

, if . Edge weights of 
all edges in E2(G) will form consecutive integers  

. 

Therefore, all the edge weights form consecutive 
integers . Since all 

vertices receive the smallest labels, λ is a super (4p + 1,2)-
EAT labeling. 

Theorem 2.1.3. For any even p, p≥16 with h = 2 and 
for any t (which is multiple of 3), t≥6, ,2t

pCG ≅  admits a 
super (4p + 1,2) edge-antimagic total labeling.

Proof. Let us denote the vertex and edge set of G as 
|V(G) | = p and |E(G) | = q . Let V1(G), E1(G) and V2(G), 
E2(G) denote the vertices on the outer and inner cycles, 
respectively. The vertex [V(G) = V1(G) ∪ V2(G)] and edge 
[E(G) = E1(G) ∪ E2(G)] sets of G are defined as follows: 

 
	
where α = 3i – 2,3i – 2 + t, β = 3i – 2 + t and all indices 

are taken in mod 
4

3p . Now we define labeling λ : V(G) ∪ 

E(G) → {1,2,3,..., p + q}. We label the vertices on outer 
and inner cycle as follows: 
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The edges on outer cycle and inner cycle are labelled 
as: 

            

 
	

E1(G) has edge weights of all edges form consecutive 

integers as: ,
where the weight 4p + 1 is obtained by the edge 

 if .
E2(G) has edge weights of all edges form consecutive 

integers as: .
Combining both the sequences E1(G) and E2(G) as: 

.
As all vertices obtain the smallest labels, so λ is a 

super (4p + 1,2)-EAT labeling (Fig. 3). 

Theorem 2.1.4. For any even p, p≥12n + 4 with 
h = 2n, n≥1 and for any t (which is multiple of 2n + 1), 
t≥4n + 2, n≥1, nt

pCG ,2≅  admits a super (4p + 1,2) edge-
antimagic total labeling.

Proof. Let us denote the vertex and edge set of G 
as |V(G)| = p and |V(G)| = q. Let V1(G), E1(G) and V2(G), 
E2(G) denote the vertices on the outer and inner cycles, 
respectively. The vertex [V(G) = V1(G) ∪ V2(G)] and edge 
[E(G) = E1(G) ∪ E2(G)] sets of G are defined as follows: 
	

 
	
where α = (2n + 1)i – 2n, (2n + 1)i – 2n +t, β = (2n + 

1)i – 2n +t and all indices are taken in mod , 
n≥1. Now we define labeling λ : V(G) ∪ E(G) → {1,2,3,..., 
p + q}. We label the vertices on outer and inner cycle as 
follows: 
 

  
       
where γ = (2n – 2m + 1) – 2ni. We label the edges on outer 
and inner cycles as follows: 
      

 
      
where δ = (2n + 1 – 2k) – 2ni and ζ = (2n – 2k + 1) – 2ni.

.
Edge weights of all edges in E1(G) will form 

consecutive integers , n≥1, 
where the weight 4p + 1 is obtained by the edge Fig. 3. Super (161, 2)-EAT labeling of .
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 if , n≥1. Edge weights of 

all edges in E2(G) will form consecutive integers 
, n≥1. 

Therefore, all the edge weights form consecutive integers 
, n≥1. Since all vertices 

receive smallest labels, λ is a super (4p + 1,2)-EAT 
labeling.

This work focuses on landscape connectivity as it is 
an important part of biodiversity preservation efforts. 
It subsidizes the assurance of approach to the genetic 
variability and persistence of extinct biota, which helps 
stabilize the adverse effects of habitat crumbling. It is also 
affected regarding species range in response to climatic 
diversification.

The application of graph-theory, particularly  
Harary graph, has been endorsed in the last decade for this 
purpose [41-45]. This can work as an effective analytical 
tool for the study of the landscape fragmentation effects 
on the fauna and to augment the selection of reserve 
networks. Particularly, the graph structures have been 
revealed to be an influential way of modeling landscape 
networks and performing complex analysis regarding 
[46]. 

The advantage of a graph-theory application over the 
other techniques is the special framework that is made 
applicable to very small sets of data. Graph theory can be 
applied for huge populations and also provide leverage on 
applications concerned with landscape connectivity [42-
48].

Conclusions

This model is an effective approach for landscape 
connectivity in an authentic and reliable way. Graph 
theory and its implementation through subdivision of  
a Harary graph by antimagic total labeling helps to  
develop connectivity responses and to reduce the 
uncertainty associated with previous models. The hour 
is to preserve and protect the surface and subsurface 
environment without disturbing the original character of 
the region. Keeping this in view, landscape connectivity 
by using this graphic approach and design is worth 
applicable.
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