Introduction

Light and water are important ecological factors in plant physiology and growth [1-4]. In recent years, with the changes in the global climate and the aggravation of environmental problems such as soil erosion and desertification, environmental stress factors have clearly limited plant growth and development [5-7]. In a natural environment, soil moisture in different regions is obviously influenced by rainfall, runoff, leakage, and evaporation, which in turn affect a series of physiological changes in plants such as water status, photosynthesis, and material transport [8-11]. Therefore, we explored the photosynthetic, transpiration, and light responses of plants under different soil water conditions [12-14]. These results contributed to our understanding of the adaptive characteristics of plant physiological processes to light and water, and provide physiological and ecological
evidence for the scientific introduction, cultivation, and management of this species.

Photosynthesis is not only related to structure and physiological function of the genetic characteristics of the species themselves [15], but it is also affected by ecological factors such as light, temperature, and soil moisture [16-18]. Under drought stress, plants can regulate and adjust the physiological pathways of leaf movement through stomatal regulation so as to achieve a balance between carbon assimilation and water loss [19]. To improve the WUE is the main adaptation strategy for plant survival and reproduction in arid areas. According to the limiting factors of ecology, it can be seen that there are different levels of threshold values of the plant physiological processes with reference to soil moisture, and what extremely high or low water levels can affect [20-21]. In recent years the changes of plant anatomical structure, physiological and biochemical factors under different water conditions, and its adaptation characteristics and mechanism to water stress were investigated and discussed [22-23]. However, the study of physiological processes under different soil water conditions was limited to PEG habitat and single potting simulation under 3-4 water stresses. Also, the studies on the quantitative relationships between photosynthesis, transpiration, moisture, and light are limited.

A. elata, which belongs to the *Araliaceae* family, is a perennial deciduous small arbor species with a high medicinal and edible value [24] that is also used in landscaping to conserve water and soil [25]. With decreases in wild resources and increases in market demand of this species, people are paying more attention to resource protection, introduction, and cultivation. Thus far, most of the studies performed on *A. elata* have been confined to its pharmacological action, edible value, artificial breeding, and cultivation techniques [26-27]. The physiological and ecological processes, photosynthetic productivity, and suitable water conditions for the growth of *A. elata* under different soil water conditions were still not clear. Therefore, in this paper, the light responses of photosynthetic physiological parameters of 2-year-old *A. elata* were studied and the quantitative relationships between photosynthetic physiological parameters and soil water content as well as light intensity were analyzed to investigate the physiological adaptability of *A. elata* to environmental changes. Meanwhile, *P* and WUE as the indexes of plant productivity and soil water efficiency at light saturation point, respectively, were defined. Based on photosynthetic and physiological parameters, soil moisture availability and productivity of *A. elata* were graded and evaluated. Moreover, the high productivity and high efficiency water range of plants were determined, which could provide the theoretical basis and technical guidance for the introduction, cultivation, and management of *A. elata*.

Experimental Procedures

Experimental Site Description

The experimental site is located at the forestry experimental station, Shandong Agricultural University, Taian City, at north latitude 35°38′~36°33′ and east longitude 116°02′~117°59′. This area has a semi-humid, warm temperate, continental monsoon climate with four hot rainy seasons. The annual average precipitation is 741.8 mm, most of which falls in July, August, and September. The annual average temperature is 12.9°C, with the highest temperature on record in July (26.4°C on average) and the lowest temperature on record in January (-2.6°C on average). The highest temperature on record was 41°C and the lowest temperature was -27.5°C. The annual accumulated temperature over 10°C is 2,350°C~4,777°C, and the average frost-free period is 195 days. The main soil types are cinnamon soil and brown soil.

Experimental Material and Humidity Control

Nine two-year-old *A. elata* seedlings were used as the experimental samples. These plants exhibited strong growth vigor and were not infected with disease or insect pests. In late March 2016, nine pots (0.6 m in diameter and 1.2 m deep, with drainage holes at the bottom; the shape of the pot is cylindrical, and the volume per pot is 0.34 m³) containing brown soil were prepared to conduct the pot experiment, the average height of the plants was 58.6±1.3 cm and the average diameter at chest height was 1.62±0.32 cm, and the management was underway by July. When the experiment was finished, the soil around the plant root was dug up by ring sampling, and each pot was measured three times. The average field capacity and soil density of the pots were 26.1±1.3% and 1.34±0.12 g cm⁻³, respectively.

Different degrees of soil water stress were imposed by changing the water content in the field environment (the pots were buried in the soil for a long time to ensure that the pot and field soil were at the same temperature). First, two days before the experimental observations we provided sufficient water until moisture saturation was reached and we determined gravimetric water content (*MWC*; %) using an oven-drying method with an *LNW-50A* neutron probe (CAS, Nanjing, Jiangsu, CHN). For comparability with other tree species over the literature, relative soil water content (*RWC*) was calculated as the ratio of *MWC* and field capacity (*FC*; %) by ring sampling [28]. Two days later we obtained the initial water content (*MWC* of 26.0%, *RWC* of 99.6%) and for the first time the physiological parameters of photosynthesis and transpiration were measured. Then, based on natural water consumption, we obtained the soil water content every two days. When the *MWC* values were 22.7%,
19.6%, 17.2%, 14.6%, 12.8%, 9.8%, and 7.3% (RWC values were 87.0%, 75.1%, 65.9%, 55.9%, 49.0%, 37.5%, and 28.0%, respectively), we measured photosynthesis, transpiration, and light.

Photosynthetic Response to Light

Three strong seedlings of pot-cultured *A. elata* were selected from the nine seedlings, and three strong mature leaves were selected from the top of each seedling. We repeatedly measured each sample leaf three times and calculated the mean value for further analysis. Photosynthesis, transpiration, and light responses of *A. elata* under different soil conditions were measured using a portable photosynthesis system (CIRAS-2, PP System, UK). To reduce the effect of light fluctuations, all measurements were collected between 09:00 and 11:00 in all of the soil moisture treatments. During this time environmental factors, for example external light intensity, air temperature, atmospheric moisture and atmospheric CO$_2$ concentration, were similar.

During each measurement, CO$_2$ concentration, air temperature, and relative humidity were maintained at 375 ±6.0 ppm, 25-26ºC, and 65 ±3.0%, respectively, by using a CIRAS-2 portable photosynthesis system. For each observation, PFD was controlled at 1,800, 1,600, 1,400, 1,200, 1,000, 800, 600, 400, 250, 150, 100, 50, and 20 μmol m$^{-2}$ s$^{-1}$, respectively. The measuring time was 120 s under each PFD. The photosynthesis system automatically recorded the physiological indexes, such as the net photosynthetic rate (P_n), PFD, transpiration rate (T_r), stomatal conductance (G_s), and intercellular CO$_2$ concentration (C_i), etc. Leaf WUE was calculated as follows [29]:

$$WUE = \frac{P_n}{T_r}$$

Data Processing and Regression Analysis

The experimental data were analyzed using SPSS 12.0 software and statistical techniques such as variance analysis and logistic analysis were carried out. A nonrectangular hyperbolic model was used to fit the photosynthetic light response curves of *A. elata* under the different water contents and to calculate the specific parameters.

The model expression is [30-31].

$$P_n = \left[\left(\Phi \cdot PFD + P_{n_{\text{max}}} - \sqrt{\Phi \cdot PFD + P_{n_{\text{max}}}}\right)^2 + \frac{4 \cdot \Phi \cdot PFD \cdot k \cdot P_{n_{\text{max}}}}{2k - R_d}\right]$$

...where P_n is net photosynthetic rate, PFD is photon flux density, $P_{n_{\text{max}}}$ is maximum net photosynthetic rate, Φ is photosynthetic quantum efficiency, R_d is dark respiration rate, and k is inflection point of the photosynthetic light-response curve.

The light compensation point (LCP) of photosynthesis was calculated using the following formula [32]:

$$LCP = \frac{R_d \cdot P_{n_{\text{max}}} - k \cdot R_d^2}{\Phi(P_{n_{\text{max}}} - R_d)}$$

The light saturation point (LSP) of photosynthesis can be directly obtained from the light response curve [33].

Fig. 1. Light response processes of net photosynthetic rate (P_n), transpiration rate (T_r), and water use efficiency (WUE) of *A. elata* under different relative soil water contents with: 1) 99.6%, 2) 87.0%, 3) 75.1%, 4) 65.9%, 5) 55.9%, 6) 49.0%, 7) 37.5%, and 8) 28.0%. Points are the mean of at least 27 replicate P_n, T_r, and WUE responses for each light. Vertical bars indicate ±1 SE of the means. Lines are fitted to the response of P_n, T_r, and WUE to light.
Results

Photosynthetic Response of A. elata Leaves to Light

The photosynthetic light response of A. elata was similar under different soil water contents (Fig. 1). Below a PFD of 800 μmol m⁻² s⁻¹, the \(P_n \) exhibited a significant increasing trend with an increase in PFD. However, when the PFD was higher than this value, \(P_n \) stabilized at a certain level. This showed that the light intensity threshold of A. elata photosynthesis was the LSP, and the corresponding \(P_n \) value was the maximum net photosynthetic rate (\(P_{n_{\text{max}}} \)) of A. elata. This also showed that the adaptability of A. elata photosynthesis to light intensity was strong, and under the same water content photosynthesis was maintained at a high level within a PFD range of 800 to 1,800 μmol m⁻² s⁻¹. The LSP was little affected by the changes in soil moisture, and stabilized at a PFD value of approximately 800 μmol m⁻² s⁻¹ (or approximately 600 μmol m⁻² s⁻¹ when the RWC was 99.6% or 28.0%).

The variance analysis showed that \(P_{n_{\text{max}}} \) and \(\Phi \) of A. elata differed significantly under different soil moisture conditions (Fig. 2). The net photosynthesis rate (\(P_n \)), apparent photosynthetic quantum yield (\(\Phi \)), dark respiratory rate (\(R_d \)), light compensation point (LCP), transpiration rate (\(T_r \)), and water use efficiency (WUE) of A. elata under different soil moisture conditions. Each point represents the mean of at least three plants with 27 replicate \(P_n, \Phi, R_d, \text{LCP}, T_r \), and WUE for each RWC. Regression lines were fit using a polynomial expression. Error bars represent ±1 SE of the mean.

![Graphs showing photosynthetic response of A. elata to light](image-url)
moisture contents ($P<0.01$); the maximum photosynthetic rate ranged 2.2-7.91 μmol m$^{-2}$ s$^{-1}$, and the Φ ranged 0.004-0.029 μmol m$^{-2}$ s$^{-1}$. The P_{max} and Φ of *A. elata* decreased significantly with a change (increase or decrease) in soil water content (Fig. 2). As the soil water content increased, P_{max} and Φ reached rapidly. When RWC reached a certain threshold (RWC was approximately 65.9%), P_{max} and Φ reached their highest levels of 7.92 μmol m$^{-2}$ s$^{-1}$ and 0.029 μmol m$^{-2}$ s$^{-1}$, respectively. After reaching the maximum, these variables gradually decreased with an increase in the RWC.

The dark respiration rate (R_d) of *A. elata* ranged 0.24-0.86 μmol m$^{-2}$ s$^{-1}$ and exhibited clear threshold value responses to RWC (Fig. 2). When RWC was between 55.9% and 75.1%, R_d was maintained at a high level of approximately 0.85 μmol m$^{-2}$ s$^{-1}$. However, when $RWC<75.1%$ or $>55.9%$, R_d decreased significantly to respective values of approximately 0.43 μmol m$^{-2}$ s$^{-1}$ and 0.26 μmol m$^{-2}$ s$^{-1}$. The LCP of *A. elata* ranged from 26.2-91.2 μmol m$^{-2}$ s$^{-1}$ and was less influenced by the changes in soil moisture. When RWC was between 37.5% and 87.0%, LCP was maintained at approximately 30 μmol m$^{-2}$ s$^{-1}$. However, when RWC was 99.6% or 28.0%, LCP increased significantly to respective values of 54.8 μmol m$^{-2}$ s$^{-1}$ and 91.2 μmol m$^{-2}$ s$^{-1}$.

Transpirational Response of *A. elata* to Light

Under different soil water contents, response of transpiration in *A. elata* similar to changes in PFD (Figs 1 and 2). When PFD was less than 400 μmol m$^{-2}$ s$^{-1}$, T_r increased rapidly with an increase in PFD; when RWC was higher than this value, T_r showed a gradual decreasing trend. The maximum transpiration rate (T_{max}) of *A. elata* was measured at a PFD of 400 μmol m$^{-2}$ s$^{-1}$; above this value, T_r exhibited a decreasing trend. T_{max} maximum rate of transpiration measured under the various soil moisture contents was in the range 0.45-1.69 μmol m$^{-2}$ s$^{-1}$. The variance analysis showed that T_{max} differed significantly under the various soil water contents ($P<0.01$). When $RWC = 65.9%$, T_r reached a maximum value of 1.69 mmol m$^{-2}$ s$^{-1}$, and an increase or decrease in the soil water content led to a decrease in T_r.

Leaf WUE of *A. elata* in Response to Light

Under different soil moisture contents, the leaf WUE of *A. elata* showed a gradual increasing trend with an increase in PFD, and no asymptote was reached (Fig. 1). At a $PFD<400$ μmol m$^{-2}$ s$^{-1}$, the WUE increased considerably with an increase in PFD. However, when the PFD exceeded this value, the WUE increased slowly with an increase in PFD. This showed that *A. elata* leaf WUE can be improved under strong light. However, this response varied significantly under different soil moisture conditions. Under the highest light intensity ($PFD = 1,800$ μmol m$^{-2}$s$^{-1}$), the maximum water use efficiency (WUE_{max}) was in the range of 2.9-6.3 μmol mol$^{-1}$. WUE_{max} gradually increased with an increase in the soil water content and reached a maximum value ($WUE_{\text{max}} = 6.3$ μmol mol$^{-1}$) when $RWC = 55.9%$. At RWC values higher than this value, WUE_{max} decreased obviously. This showed that higher soil moisture will lead to lower WUE in *A. elata*.

Net Photosynthetic Rate and Water Use Efficiency of *A. elata* in Responses to Soil Moisture

We analyzed the photosynthetic response of *A. elata* to soil moisture using the RWC value that corresponded to P_n at $PFD = 1,000$ μmol m$^{-2}$ s$^{-1}$ (i.e., light-saturating conditions; Fig. 3). (This PFD value exceeded the LSP, and under various soil moisture conditions, P_n of *A. elata* remained basically unchanged with increasing light intensity.) The fitting results were in agreement with the quadratic equation. Thus, the value of RWC that corresponded to P_{max} was 65.9%; the values of RWC that corresponded to $P_n = 0$ were 21.0% and 108%. When the RWC exceeds 100%, it has no actual biological significance and 108% should be replaced by the measured maximum of 99.6%. The integration according to the fitting equation was:

$$ P_n = -0.0033RWC^2 + 0.245RWC - 7.507 $$

$$ R^2 = 0.8781 $$

$$ WUE = -0.0017RWC^2 + 0.1918RWC + 0.0749 $$

$$ R^2 = 0.8372 $$

Fig. 3. The responses of net photosynthetic rate (P_n) and water use efficiency (WUE) of *A. elata* to soil moisture under $PFD = 1,000$ μmol m$^{-2}$ s$^{-1}$. Regression lines were fit using a polynomial expression. Lines are fitted to the response of P_n and WUE to RWC.

How Soil Moisture Affects Photosynthetic... 1873
When RWC was in the range of approximately 28.0–99.6%, the values of P_n were calculated using the integral fitting equation. The mean P_n value was 4.7 μmol m$^{-2}$ s$^{-1}$, and the corresponding RWC values were 44.5% and 85.1%. Therefore, *A. elata* photosynthesis stabilized at a high RWC that ranged from 44.5% to 85.1%. The most suitable RWC was 64.5%, and the minimum RWC that sustained photosynthesis was 21.3%.

The response of WUE to soil moisture were also in agreement with the quadratic equation under the saturated light intensity of photosynthesis ($PFD = 1,000 \mu$mol·m$^{-2}$·s$^{-1}$). Thus, the value of RWC that corresponded to WUE_{max} was 55.9%. The integration according to the fitting equation was:

$$WUE = \frac{1}{99.6 - 28.0} \int_{28.0}^{99.6} \left[0.0033x^2 + 0.425x - 7.507\right] dx$$

When RWC was in the range of approximately 28.0–99.6%, the values of WUE were obtained from the integral fitting equation. The mean WUE value was 4.6 mol·mol$^{-1}$, and the corresponding RWC values were 34.6% and 79.2%, respectively. Therefore, *A. elata* photosynthesis was stabilized at a high RWC in the range 34.6-79.2%.

Grading and Evaluating Soil Water Availability and Productivity

Grading criteria of soil moisture were based on plant water physiology theory and the results of moisture threshold analysis combined with the response rule of photosynthetic process to soil moisture. Based on the physiological significance of determining the critical water points, the classification and evaluation criteria of soil water availability of *A. elata* were studied (Table 1). The water point at $P_n = 0$ was taken as a critical water point, and a water point lower than this value was considered as non-productive and non-efficient. The water point corresponding to P_n and WUE_{max} was taken as the high productivity and high efficiency water point, respectively. The mean values of P_n and WUE that corresponded to RWC values were calculated using the integral fitting equation. Water points above average were considered as the medium productivity and medium efficiency water points, and water points below average were considered as the low productivity and low efficiency water points. In this study, six types of the soil water gradings of *A. elata* were established based on the size of P_n and WUE under different soil water contents. The RWC of less than 21.3% corresponded to non-productivity and non-efficiency water; the RWC of 21.3-34.6% and 85.1-99.6% corresponded to low productivity and low efficiency water; the RWC of 34.6-44.5% and 79.2-85.1% corresponded to low productivity and medium efficiency water, and medium productivity and low efficiency water, respectively; the RWC of 44.5-55.9% and 64.5-79.2% corresponded to medium productivity and medium efficiency water. The RWC of 55.9-64.5% corresponded to high productivity and high efficiency water. In this range (55.9-64.5%), *A. elata* had the highest photosynthetic capacity and efficient physiological characteristics for water consumption. As a result, the soil water should be maintained in the range of 44.5-79.2%, in which P_n and WUE can reach their maximum values of 60% and 70%, respectively, so that the *A. elata* can attain higher productivity and efficiency.

Discussion

The factors that affect Φ of plant photosynthesis are internal physiological factors such as the carbon metabolism pathway, respiration, pigment content, etc., and environmental factors such as light, temperature, water, etc. [34-37]. Studies have shown that an unsuitable soil moisture level (too high or too low) can lead to a decrease in plant Φ [38-40], but the quantitative

Table 1. critical water point of photosynthetic efficiency and its threshold grade in leaves of *A. elata*.

<table>
<thead>
<tr>
<th>Critical index of soil water</th>
<th>Critical point of RWC</th>
<th>Grading of soil water availability</th>
<th>Threshold grade of RWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCPP$_n$</td>
<td>21.3%, 99.6%</td>
<td>NPNEW</td>
<td><21.3%</td>
</tr>
<tr>
<td>WSP$_n$</td>
<td>64.50%</td>
<td>LPLEW</td>
<td>21.3-34.6%; 85.1-99.6%</td>
</tr>
<tr>
<td>WSPWUE</td>
<td>55.90%</td>
<td>LPMEW</td>
<td>34.6-44.5%</td>
</tr>
<tr>
<td>MVP$_n$</td>
<td>44.5%, 85.1%</td>
<td>MPLEW</td>
<td>79.2-85.1%</td>
</tr>
<tr>
<td>MVPWUE</td>
<td>34.6%, 79.2%</td>
<td>MPMEW</td>
<td>44.5-55.9%; 64.5-79.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPHEW</td>
<td>55.9-64.5%</td>
</tr>
</tbody>
</table>

1) WCPP$_n$, water compensation point of net photosynthetic rate; WSP$_n$, water saturation point of net photosynthetic rate; WSPWUE, water saturation point of water use efficiency; MVP$_n$, mean value point of net photosynthetic rate; MVPWUE, mean value point of water use efficiency. 2) NPNEW, no-productivity and no-efficiency water; LPLEW, low-productivity and low-efficiency water; LPMEW, low-productivity and medium-efficiency water; MPLEW, medium-productivity and low-efficiency water; MPMEW, medium-productivity and medium-efficiency water; HPHEW, high-productivity and high-efficiency water.
relationship between soil moisture and Φ has not been reported for different plants. This study shows that the Φ of *A. elata* that corresponded to changes in soil moisture ranged between 0.004 and 0.029; an approximate “F”-shaped quantitative relationship existed between these variables (Fig. 2). When RWC was in the range 55.9-75.1%, the Φ of *A. elata* was higher than 0.26 (approximately 90% of its maximum level); however, when RWC was outside of this range, Φ decreased obviously. When RWC ranged 49.0-87.0%, Φ was 0.014 (approximately 48% of its maximum level). This indicates that soil moisture has a significant effect on the Φ of *A. elata*.

Φ is an index that reflects a plant’s capacity to absorb, transform, and utilize light under low-light conditions [41]. Measurements of plant Φ generally range from 0.03 to 0.05 under suitable conditions. The maximum value of Φ of *A. elata* was approximately 0.029, i.e., less than Φ of plants in general. The results show that the Φ of *A. elata* is low under low-light conditions, i.e., light use efficiency is low.

The LSP and the LCP are two main indexes that reflect the light requirement characteristics of plants [42-45]. The study shows that the *A. elata* LSP and LCP were little affected by variation in the soil moisture content. When the water content was within the range 37.5-87.0%, LSP and LCP were 800 μmol m⁻² s⁻¹ (Fig. 1) and 30 μmol m⁻² s⁻¹ (Fig. 2), respectively. Plants can be divided into heliophilous species and scirophytes according to their light intensity requirements. LSP of heliophilous species is generally above 540 μmol m⁻² s⁻¹ and LCP is in the range of 13-36 μmol m⁻² s⁻¹, while LSP of scirophytes is generally 90-180 μmol m⁻² s⁻¹, and LCP is below 10 μmol m⁻² s⁻¹ [46]. The *A. elata* LSP and LCP were similar to typical heliophilous plants. When PFD was in the range 800-1,800 μmol m⁻² s⁻¹ and light intensity was increased, *A. elata* photosynthetic rate did not decrease significantly, but Tᵣ decreased continuously and leaf WUE obviously increased (Fig. 1). This indicates that *A. elata* photosynthesis responds strongly to light, and the ability of this plant to use low levels of light is poor. Therefore, *A. elata* has a strong adaptability to high light conditions, it can improve WUE to adapt to strong light stress.

Research has shown that plants have a certain degree of adaptability and resistance to soil water deficits, and various physiological activities are increased in the moderate water deficit range [47-50]. This range varies in different plant species and for different physiological processes. *Pₙ* of *A. elata* stabilized at a high soil water content that ranged 44.5-85.1%; an RWC of 64.5% was the optimum soil moisture content for photosynthesis (Fig. 3). Within this RWC range, *A. elata* transpiration was maintained at a high level (Fig. 2), and an RWC of 65.9% was the optimum soil moisture content for transpiration. As the leaf WUE is affected by photosynthetic and transpiration rates, the suitable soil water content of WUE was different from that of photosynthesis. *A. elata* WUE stabilized at a high soil water content that ranged 34.6-79.2%; an RWC of 55.9% resulted in the highest WUE (Fig. 3). At present, one of the most important problems in the water management of *A. elata* is to achieve highly efficient utilization of water resources and to improve photosynthetic productivity. Therefore, we quantified the “productivity” (biomass) and “efficiency” (root resistance to water absorption) in traditional agricultural research, and graded the soil water of *A. elata* into non-productivity and non-efficiency water (NPNEW), low-productivity and low-efficiency water (LPLEW), low-productivity and medium-efficiency water (LPMEW), medium-productivity and low-efficiency water (MPLEW), medium-productivity and medium-efficiency water (MPMEW), and high-productivity and high-efficiency water (HPHEW). As a result, the soil water should be maintained in the range of 44.5% to 79.2%, in which *Pₙ* and WUE can reach their maximum values of 60% and 70%, respectively, so that the *A. elata* can obtain higher productivity and efficiency. The results can provide theoretical support for water management of *A. elata*. Relevant results show a suitable RWC of 40.6-60.4% for Juglans regia [51], 47.5–64.2% for Robinia pseudacacia [52], 40.5–52.0% for Platycladus orientalis [52], and 58.8–76.6% for Syringa oblata [53]. Compared with the moderate soil water deficit range of these plants, *A. elata* can maintain a high photosynthetic rate and high WUE under a relatively higher soil water deficit.

Conclusions

The results show that photosynthesis, transpiration, and water use efficiency of *A. elata* were closely correlative to soil moisture and light intensity and had a notable threshold of responses. Light responses of physiological parameters exhibited higher plasticity, indicating that *A. elata* had better adaptability to light and soil water conditions. At 44.5%≤RWC≤79.2% was the economic water threshold value that maintained higher productivity and efficiency. Therefore, it can provide theoretical support for highly productive and highly efficient water management in *A. elata*.

Acknowledgements

This work was financially supported by research and demonstration of the key technology of vegetation restoration and reconstruction in the open pit of the eastern Shandong hilly area (201504406), and the National Natural Science Foundation of China (No. 31370702).

References

