
Introduction

 A large amount of energy consumption and sharp 
growth of greenhouse gases, which result in global 
warming, has become a key problem globally [1]. It 
has been proved that greenhouse gas emissions are 
responsible for sea level rise and the increase in the 
frequency of droughts. In this respect, the signing of the 
Kyoto Protocol to control atmospheric greenhouse gas 
concentrations worldwide and the Copenhagen Accord 

that followed it, on the basis of objective evidence, states 
the necessity for significantly decreasing greenhouse gas 
emissions worldwide. 

Due to increased warnings of environmental 
pollution and technical innovation to reduce the 
emissions of greenhouse gas, greenhouse gases of 
developed countries are in decline while in developed 
countries they have grown at high-speed [2]. China, 
as the largest carbon emission country in the world, 
will certainly face great responsibility in reasonably 
reducing and controlling carbon emissions and the 
greenhouse effect [3-6]. Therefore, it is important for 
energy waste and the greenhouse effect to take the 
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necessary treatment. In the 13th Five-Year Plan the 
Chinese government has formulated more specific 
energy program development goals. Achieving the above 
objectives is highly correlated in order to reduce CO2 
emissions and improve energy efficiency [7]. Beyond 
that, China has committed to reducing its carbon 
emissions by 40-45% per unit of GDP by 2020 compared 
with 2005. The heart of the matter is how to decompose 
the total goal for each province in an effective and 
reasonable way and to improve efficiency with a huge 
difference like development level and energy structure 
between these provinces [8-9]. We also should adopt 
a more efficient way to optimize resource utilization 
and improve the environment. It can help the regional 
governments or the relevant departments to improve 
energy configuration efficiency and rectify the condition 
of energy use, and timely adjust energy management 
principles, put forward a more effective low-carbon 
program, and put it into action.

Data envelopment analysis (DEA) has been a 
relatively non-parametric approach widely used in 
solving the problem of energy allocation. Charnes et 
al. [10] used DEA to evaluate the energy efficiency of 
many decision-making units (DMUs). DEA can also 
obtain a better result without prior functional form and 
assumptions [11]. Zhou et al. [12] used a non-radial 
DEA method based on entropy weight and SBM model 
to directly address the evaluation of environmental 
efficiency of the power industry in order to make it more 
reliable and reasonable. For the problem of economic 
determinants of energy efficiency in the European iron 
and steel industry, Florens Fluesa [13] investigated the 
factors of market and policy related to the decreased 
specific energy consumption, and found out that the 
increased energy prices lead to higher energy efficiency. 
Yuan Peng [14] established an input-output method that 
can be used to measure carbon emissions growth to be 
four factors of carbon emissions intensity, technology, 
domestic final demand, and trade. Sheng et al. [15] 
presented a non-parametric input distance function 
for estimating the shadow price to described energy 
utilization. The results obtained from these provinces at 
lower energy utilization can by improved upon in order 
to reallocate inputs. 

DEA has been accepted as an effective tool for 
evaluating energy efficiency in many studies, but 
few studies for analysis of carbon emissions use this 
technique. Cao Ming et al. [16] proved that the SBM 
model that considered undesirable outputs can better 
evaluate energy efficiency and the development of 
industrial low carbon. Wang et al. [17] presented a non-
radial directional distance function method for the 
problem of carbon emissions efficiency and reduction 
cost who indicated that provincial carbon emission 
efficiencies are different because of provincial economic 
development. Yang et al. [18] examined the impact of 
carbon emissions on provincial economic convergence 
by using the environmental total factor productivity. 
In addition, the results showed that GDP and carbon 

emissions had a great deal of influence on provincial 
economic convergence.

In the above-mentioned traditional energy efficiency 
analysis model, the author typically treats energy 
efficiency as a direct result of DUM technological level 
and energy demand, ignoring the effect of energy price. 
In fact energy price has a significant impact on making 
the energy program of the region government. Market 
energy price and energy technology result in the existing 
energy use and the level of carbon emissions. As a 
result of this deletion, existing research has commonly 
overlooked economic factors for the efficiency of energy 
use, making the existing energy efficiency research 
results fail in reacting more comprehensively and 
accurately to the situation.

This paper decomposes CO2 emissions growth 
from energy consumption in China into 3 categories of 
factors: technology efficiency, domestic final demand, 
and price. Considering that the energy price was 
influenced by global energy scenario and government 
macro-control, each DUM had to change already market 
price effects, therefore each DUM has to contend with 
and obey price factor. The aim of the present paper is to 
evaluate carbon efficiency with price factor. Compared 
with traditional functions, the distance function model 
with price factor improved model accuracy. Matching 
real production status with the more reliable method of 
formulating the optimal allocation schemes of energy 
use on the macro-level provides a reliable base for 
regional governments to improve energy efficiency.

Material and Methods

 Return to Scale

In this section, we first judge return to scale (RTS) of 
DMUs by measuring the energy use and CO2 emission 
efficiency for each province in CCR and BCC models. 
Then we present a slack-based measurement model to 
provide us with more accurate efficiency and to capture 
excess slack movement of inputs and outputs. Lastly, 
considering economic variables such as price of inputs 
and outputs, a modified model is given to allocate the 
waste gas emissions and energy-effective reductions 
among the province based on cost of inputs and revenue 
of outputs.

Suppose there are n decision-making unites (DMU) 
denoted by DMUj (j = 1,2,…,n). Every DMU includes m 
different kinds of inputs and q different kinds of outputs. 
Define Xj = (X1j,X2j,…,Xmj)T, and Yr = (Y1j,Y2j,…
,Yqj) as the input and the output vectors of DMUj. 
Where θ is scalar, the value obtained is the efficiency 
value of the DMUj.

Data envelopment analysis model with constant scale 
pay (CCR):
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be the optimal value, if θ* is 1, and the slack variable 
qi

+ = qr
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for DEA if the relaxation variable is not all 0. It is valid 
for weak DEA, otherwise DEA is invalid.

Data envelopment analysis model with variable scale 
pay (BCC):
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As we know, there are undesirable outputs like 
SO2, NOX, and CO2 emissions, and the correct handling 
of undesirable outputs leads to better efficiency of 
numerical value measurement and a more accurate 
efficiency score. There are mainly three ways to process 
data about undesirable outputs. The first is treating the 
undesirable outputs as fictitious inputs [19-20]. The 
second is changing the form of the undesirable outputs 
[21], which is what we have chosen for this paper. The 
third way is adding a fictitious inverse on undesirable 
outputs and enough large positive vector [22-24].

By applying the CCR and BCC models [25], we 
get technical efficiency (TE, the efficiency value CCR 
model find) and pure technical efficiency (PTE, the 
efficiency value BCC model find) of each province. The 
score of PTE is equal to or greater than the TE score, so 
the relationship can be used to measure scale efficiency 
(SE) [26-27]:

SE = TE/PTE                     (1)
                                                             

We can also know the value of ∑λ*, which refers to 
the sum of the weight coefficiency of Lambda. Known 
by the judgment method of RTS:

1)	 SE = 1 means the DMUj is in a state of scale reward 
and is constant (CRS).

2)	 SE < 1 and in the optimal solution ∑λ*<1, means the 
DMUj is in a state of increasing return to scale (IRS).

3)	 SE < 1 and in optimal solutions ∑λ*>1 means the 
DMUj is in a state of diminishing return to scale 
(DRS).
If we know the right RTS that each DMU belongs 

to, we can choose a corresponding model to get more 
accurate energy use and CO2 emission efficiency for 
each province.
 

Slack-Based Measurement Model 
(SBM)

This model was introduced by Tone (2001). Besides 
allowing us to measure the energy use and CO2 
efficiency of different provinces, it can also calculate the 
excess slack movement of inputs and outputs. The slack 
movement expresses how far the current performance of 
the DMU in each variable is from its ideal performance 
[28].

                  (2)

In model (2), ρ is the efficiency score, which 
measures the inefficient situation from two aspects of 
input and output at the same time, so it’s a non-oriented 
model. e stands for a row vector in which all elements 
are 1, as e = (1,1,...,1); s+, s– are slack movement. In 
the SBM model, we calculate the average efficient 
score by measuring degree of inefficiency of all input 
(output) that can be reduced (increased), which solved 
the problem that the radial model doesn’t contain the 
measuring of inefficiency of slack movement.

Distance Function Model with Price Factor

DEA is widely used because its efficiency analysis 
doesn’t need the price information of index. But when 
the price information is known, we can further use price 
information on the analysis of configuration efficiency 
[29-30].

In 2007 the ratio efficiency of income and cost 
(RE/CE) was proposed by Cooper William W, which 
extends the traditional cost efficiency (CE) and revenue 
efficiency (RE) models to a comprehensive model with 
input-output data, and their corresponding prices are 
known. 
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If we know all prices of each index, we get a whole 
new model based on cost efficiency (CE) and revenue 
efficiency (RE) models, the ratio efficiency of income 
and cost (RE/CE).

                      (3)

x̄i,j stands for the element of matrix X̄, xi,j = ci,j × xi,j, 
ci,j is price of xi,j (i = 1,2,...,n). ȳi,j stands for the element 
of matrix Ȳ, ȳi,j = ri,j × yi,j, ri,j is price of yi,j (i = 1,2,...,q), 
( j = 1,2,...,n) and (e = 1,1,...,1) like Eq. (2).

Generally speaking, when we calculate efficiency we 
can’t enumerate all relevant input and output elements, 
so the profit may be a negative number [31], which 
means when we know some, maybe not all, index 
variables and their prices, we can use the ratio efficiency 
of income and cost model to get a more comprehensive 
and accurate efficiency score.  

Variables and Date

In this section, we select four kinds of variables: 
labor, energy consumption, value added, SO2 and NOX, 
and CO2 emissions with the associated data. After this, 
we judge RTS of each DMU to choose a corresponding 
model. Then the SBM model under NIRS (no-increasing 
to scale) status is used to analyze the energy and CO2 
emission efficient score for 30 provinces while obtaining 
the slack movements of each variable. Lastly we 
analyzed the influence of price on energy use and CO2 
emission efficiency to each province by using the RE/CE 
model.

In this section, we examine the efficient score of 30 
provinces in China (with 2016 being the latest available 
date). As the number of DMUs should not be less than 
five times the number of index variable [32], the paper 
selects five variables as inputs and outputs. We employ 
(1) labor: the number of employed people of each 
province in the country and city as the non-energy 
inputs variable; (2) energy consumption includes coal, 
crude oil, and natural gas as energy inputs variable; 
(3) value-added of each province in 2016 as desirable 
outputs variable; (4) harmful gas emissions of SO2 
and NOX is regarded as one kind of undesirable output 
variable, and the emission of CO2 as the main dioxide 
emission is regarded as another undesirable output 
variable. Measurement of variables is summarized in 
Table 1.

Date shown in Table 2 is about inputs, value added 
and emission of SO2 and NOX collected from “The 
Provincial Statistical Yearbook” and “The Provincial 
Energy Statistical Yearbook.”

As there are no CO2 emissions data in these 
yearbooks, we calculated the emission of CO2 using a 
model called fuel-based carbon footprint, which has 
been successfully used in some theses [33-35].

 
(4)

In this model, Ai is the consumption of different 
fuel, CCFi is the carbon content factor, HE is the 
heat equivalent, and COFi is the carbonaceous fuel. 
According to Eq. (4) and date in Tables 2-3, we can get 
the estimation value of CO2 shown in Table 2.

Before applying the model to measure the efficient 
score of each province, we should process the date of 
undesirable outputs. Assuming that a DMUj undesirable 
outputs primitive value is Cj, conversion equation is 
Cj* = maxCj + minCj - Cj (which not only achieves 
the purpose of avoiding output value of 0, but also 
guarantees the transformation with the original values 
in the same magnitude, laying a foundation for the 
introduction of price factor). 

At the Subsection 3.4 we will use the RE/CE model, 
but we should know the price of all variables. The price 
can be divided into two categories: the price of the 
inputs variable and the price of the outputs variable. 

The Price of Inputs Variable

We can get the price of different provinces in 
primary, secondary, and tertiary industries about labor 
and energy from the “Provincial Statistical Yearbook.” 
Treating the proportion of labor and energy consumption 
in different industries as weight, we calculated the 
average of labor and energy price. Then we get the 
average price of inputs variable (Table 4).

The Price of Outputs Variable

1) Value added: As valued added treats “yuan” as its unit, 
we make the price of value added as one yuan/yuan. 

Inputs/Outputs Variable Unit

Non-energy inputs Labor 104 persons

Energy inputs Energy 104 tons of coal equiva-
lent (10,000 tce)

Desirable outputs Value added 108 RMB

Undesirable 
outputs

SO2 and NOX 104 tons
CO2

Table 1. Introduction of variables.
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2)	 SO2 and NOX: Chinese file “Standard of Pollutant 
Discharge Fee and Calculation method” points out 
the fee of pollutant discharged based on the type and 
quantity of the pollution. Each pollution equivalent’s 
imposition standard is 0.6 yuan. The calculation 
method of pollution equivalent is shown in Eq. (5). File 
specifies SO2 and NOX pollution equivalent value is 

0.95 kg, so we know: price of SO2 and NOX emissions 
(emission tax) = 6.3158*106 yuan/104 ton.

 
(5)

DMU
Energy inputs Non-energy 

inputs
Desirable 
outputs

Undesirable outputs
(unprocessed) 

Undesirable outputs
(processed)

Energy Labor Value added SO2&NOX CO2 SO2&NOX CO2

Beijing 21,330.83 4,230.68 755.86 22.99 8,856.28 308.13 92,732.70 

Tianjin 15,726.93 6,480.97 299.96 49.15 15,068.33 281.96 86,520.66 

Hebei 29,421.15 21,900.30 656.16 270.24 53,330.82 60.87 48,258.17 

Shanxi 12,761.49 28,584.46 455.40 227.81 70,167.80 103.30 31,421.18 

Inner Mongolia 17,770.19 27,226.90 258.80 257.07 66,968.81 74.04 34,620.18 

Liaoning 28,626.58 22,674.75 658.94 189.66 53,690.24 141.46 47,898.75 

Jilin 13,803.14 9,138.65 300.22 92.15 22,122.71 238.96 79,466.28 

Heilongjiang 15,039.38 13,243.19 430.80 120.28 31,805.95 210.83 69,783.04 

Shandong 59,426.59 40,400.82 1,252.03 318.35 97,036.86 279.02 84,105.35 

Shanghai 23,567.70 7,661.80 730.46 52.09 17,483.64 117.38 39,777.42 

Jiangsu 65,088.32 25,927.06 1,602.39 213.73 61,811.56 204.93 66,592.51 

Zhejiang 40,173.03 14,794.89 1,126.32 126.19 34,996.48 201.08 70,425.01 

Anhui 20,848.75 12,804.61 521.78 130.03 31,163.98 254.35 79,357.22 

Fujian 24,055.76 9,445.22 650.85 76.76 22,231.77 223.66 86,502.06 

Jiangxi 15,714.63 6,199.22 453.55 107.45 15,086.92 12.76 4,552.12 

Henan 34,938.24 19,527.58 1,081.19 262.02 47,355.40 69.09 54,233.59 

Hubei 27,379.22 10,865.81 768.80 116.40 26,116.33 214.71 75,472.66 

Hunan 27,037.32 9,242.55 582.57 117.65 22,428.88 213.47 79,160.11 

Guangdong 67,809.85 20,264.13 1,962.65 185.23 47,693.66 145.89 53,895.33 

Guangxi 15,672.89 6,946.77 394.48 90.90 16,725.24 240.21 84,863.75 

Hainan 3,500.72 2,676.21 63.28 12.76 5,823.28 318.35 95,765.70 

Chongqing 14,262.60 6,446.10 954.34 88.20 14,835.67 242.92 86,753.32 

Sichuan 28,536.66 11,276.89 748.08 138.18 25,847.37 192.93 75,741.62 

Guizhou 9,266.39 10,485.06 239.89 141.69 25,703.53 189.43 75,885.45 

Yunnan 12,814.59 6,257.31 285.10 113.56 15,486.19 217.56 86,102.80 

Shaanxi 17,689.94 17,313.21 500.62 148.67 41,439.32 182.44 60,149.67 

Gansu 6,836.82 7,227.55 237.72 99.40 17,198.38 231.71 84,390.61 

Qinghai 2,303.32 2,041.64 42.18 28.88 4,552.12 302.23 97,036.86 

Ningxia 2,752.10 7,173.05 111.33 78.11 17,472.22 253.00 84,116.77 

Xinjiang 9,273.46 17,597.71 87.49 171.58 40,879.62 159.53 60,709.37 

Table 2. Raw date of 30 provinces (energy: 104 tons of coal equivalent; labor: 104 persons; value added: 108 RMB; SO2, NOX, and CO2: 
104 tons).
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3)	 CO2 emission: The ministry of finance proposes 
that the Chinese carbon tax should depend on the 
consumption of coal, natural gas, and petroleum. 
Carbon tax paying started in 2012 at 10 yuan per ton of 
CO2 emissions; by 2020, carbon tax can be increased 
to 40 yuan/ton. Assuming growth rate is constant, the 
price of CO2 emissions in 2016 is:

            (6)

Now we know the price of all output variables.

Results and Discussion

Judgment and Analysis of RTS 

We get all element of RTS judgment by using CCR 
and BCC models, then we figure out the result which 
is shown in Table 5. According to Table 5, we can find 
that all DMUs meet conditions (1) or (3) mentioned in 
Subsection 2.1, so the DMUs are all in a no increasing 
return to scale (NIRS) state.

Efficient Score in SBM Model

We apply the SBM model provided in Subsection 2.2 
with the data in Table 2 to calculate energy use and CO2 
emission efficient scores of 30 provinces. Considering 
that not all DMUs have slack movement, we only show 
the DMUs whose efficient scores are not 1 in Table 6.

According to Table 6, we can know that: (1) There 
are 10 provinces whose energy use and CO2 emission 
efficient score are all equal to 1: Beijing, Tianjin, Inner 
Mongolia, Shandong, Jiangsu, Hunan, Guangdong, 
Hainan, Qinghai, and Xinjiang. (2) Energy use and CO2 
emission efficient scores for Hebei, Shanxi, Henan, 
and Ningxia are below 0.4 – especially Shanxi, whose 
efficient score was only 0.1643. (3) We can see from 
Table 6, for efficiency improvement, that low energy 
consumption and CO2 emissions have considerable space 
to improve. (5) Provinces like Hainan and Qinghai are 
not developed provinces, but their efficiency scores are 
all equal to one. Provinces like Shanxi and Liaoning 

Fuel Coal Crude 
oil

Natural 
gas

Standard coal efficiency 
(kgce/kg) 0.7143 1.4286 1.3300

CCF (tons carbon/trillion 
Joules) 27.28 20.1 15.32

HE (trillion Joules/104 tons) 192.14 448 0.384

COF (%) 92.3 98 99

Table 3. CO2 emission factors in China (standard coal efficiency: 
kgce/kg; CCF: tons carbon/trillion Joules; HE: trillion Joules/104 

tons; COF: %).

DMU
Input price

DMU
Input price

Labor
(1RMB/per person)

Energy
(1RMB/ton)

Labor
(1RMB/per person)

Energy
(1RMB/ton)

Beijing 30,195.00 1,871.99 Henan 14,650.66 920.36

Tianjin 23,208.28 1,336.73 Hubei 15,454.72 1,171.33

Hebei 14,522.47 854.14 Hunan 13,912.10 1,044.46

Shanxi 16,162.40 420.86 Guangdong 25,233.87 1,518.37

Inner Mongolia 17,060.59 713.25 Guangxi 15,376.98 1,368.31

Liaoning 15,472.22 1,497.44 Hainan 14,357.27 1,929.08

Jilin 13,953.30 1,083.98 Chongqing 16,179.08 1,192.64

Heilongjiang 11,173.92 1,275.10 Sichuan 14,941.17 1,048.14

Shandong 21,541.75 1,224.63 Guizhou 13,586.23 924.98

Shanghai 33,075.58 1,591.57 Yunnan 15,014.08 710.83

Jiangsu 21,833.94 1,126.73 Shaanxi 16,378.55 991.18

Zhejiang 24,444.72 1,266.08 Gansu 13,120.98 1,111.70

Anhui 15,433.22 1,004.27 Qinghai 13,927.05 945.63

Fujian 21,330.41 1,299.80 Ningxia 15,117.56 492.53

Jiangxi 14,649.78 1,013.22 Xinjiang 15,408.19 888.70

Table 4. Price of input variables.
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DMU SE ∑λ* in CCR DMU SE ∑λ* in CCR

Beijing 1 1 Henan 0.8973 2.0138

Tianjin 1 1 Hubei 0.9255 1.1444

Hebei 0.8911 2.2564 Hunan 1 1

Shanxi 0.9276 1.4284 Guangdong 0.9441 2.8673

Inner Mongolia 0.8874 1.7288 Guangxi 0.9175 1.0542

Liaoning 0.8907 2.2462 Hainan 1.0000 1

Jilin 0.9707 1.0426 Chongqing 0.6092 1.2193

Heilongjiang 0.9302 1.2509 Sichuan 0.9184 1.1573

Shandong 0.8535 4.3985 Guizhou 0.9224 1.0897

Shanghai 0.9125 1.1064 Yunnan 0.9312 1.0406

Jiangsu 0.8690 2.6901 Shaanxi 0.9201 1.5131

Zhejiang 0.9126 1.6767 Gansu 0.6810 1.1962

Anhui 0.9176 1.5497 Qinghai 1.0000 1

Fujian 0.9121 1.1187 Ningxia 0.5509 1.2696

Jiangxi 0.9259 1.0494 Xinjiang 1.0000 1

Table 5. Elements of RTS judgment.

DMU Efficiency score
Slack movement

Labor Energy SO2 and NOX CO2

Hebei 0.3631 0 11,843.86 147.77 29,006.14

Shanxi 0.1643 212.85 23,026.32 187.49 57,341.84

Liaoning 0.5066 22.57 13,002.59 69.38 30,276.57

Jilin 0.6881 37.50 3,256.36 48.73 8,509.09

Heilongjiang 0.4752 144.15 6,976.18 73.18 17,257.52

Shanghai 0.8608 0 1,869.15 1.89 4,471.84

Zhejiang 0.8563 0 2,940.00 9.82 7,143.04

Anhui 0.6229 93.84 5,073.07 49.86 12,762.48

Fujian 0.8376 0 2,566.21 4.34 6,199.37

Jiangxi 0.7764 0 1,490.56 77.31 4,654.54

Henan 0.3575 0 10,225.85 187.41 26,147.04

Hubei 0.7782 0 3,184.36 38.79 8,259.17

Guangxi 0.7927 95.56 482.62 41.91 1,697.77

Chongqing 0.4681 463.59 3,028.59 63.02 7,578.27

Sichuan 0.7981 0 2,715.47 44.73 5,632.42

Guizhou 0.4568 64.99 6,014.59 111.77 15,520.45

Yunnan 0.7777 41.52 682.65 73.08 2,620.07

Shaanxi 0.4230 151.61 10,352.94 87.63 25,093.51

Gansu 0.4583 108.48 3,686.63 63.68 9,094.66

Ningxia 0.3419 60.53 4,983.00 48.55 12,568.51

Table 6. Efficiency score and slack movement in SBM model (energy: 104 tons of coal equivalent; labor: 104 persons; value added: 108 
RMB; SO2, NOX, and CO2: 104 tons).
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DMU Efficiency score
Slack movement

Labor Energy SO2 and NOX CO2

North

Beijing 1 0 0 0 0

Tianjin 1 0 0 0 0

Hebei 0.7747 0 7,408.03 138.88 25,775.98

Shanxi 0.4320 212.73 17,484.13 0 6,887.00

Inner Mongolia 1 0 0 0 0

average 0.8413 42.55 4,978.43 27.78 6,532.60

Northeast

Liaoning 0.4455 62.54 15,682.52 68.00 29,616.48

Jilin 0.6741 0 4,234.01 0 4,635.60

Heilongjiang 0.4665 0 9,071.25 0 11,680.66

average 0.5287 20.85 9,662.59 22.67 15,310.91

East

Shandong 1 0 0 0 0

Shanghai 0.7601 158.37 2,183.59 0 4,071.10

Jiangsu 1 0 0 0 0

Zhejiang 0.8627 179.73 1,546.24 0 0

Anhui 0.6553 27.08 3,749.73 0 4,143.85

Fujian 0.8612 12.65 2,579.76 0 5,487.87

average 0.8566 62.97 1,676.55 0.00 2,283.80

Central

Jiangxi 0.8288 116.67 0 23.50 0

Henan 0.8097 147.00 4,626.10 124.42 16,749.09

Hubei 0.7598 196.83 2,447.37 0 3,535.29

Hunan 1 0 0 0 0

average 0.8496 115.13 1,768.37 36.98 5,071.10

South

Guangdong 1 0 0 0 0

Guangxi 0.6789 26.43 1,776.02 0 0

Hainan 1 0 0 0 0

average 0.8930 8.81 592.01 0.00 0.00

Southwest

Chongqing 0.4215 650.75 1,102.35 8.25 0

Sichuan 0.8517 134.73 1,331.47 16.71 1,866.68

Guizhou 0.4958 0 6,650.86 9.23 0

Yunnan 1 0 0 0 0

average 0.6923 196.37 2,271.17 8.55 466.67

Northwest

Shaanxi 0.4585 77.70 8,989.32 0 7,505.37

Gansu 0.4362 0 3,993.11 0 1,246.40

Qinghai 1 0 0 0 0

Ningxia 0.4241 0 1,250.52 3.90 0

Xinjiang 1 0 0 0 0

average 0.6638 15.54 2,846.59 0.78 1,750.35

Table 7. The results of RE/CE model.
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are more developed than Yunnan and Qinghai, while 
their performances are so poor, meaning that energy 
consumption and development level are not all factors 
that affect it. So we should use a new model that has the 
ability to consider more factors about energy use and 
CO2 emission efficiency.

Efficient Score in RE/CE Model

We measure the energy use and CO2 emission 
efficiency with a price factor of 30 provinces mentioned 
in Subsection 3.1. Then we got Table 7, including the 
results of efficiency score, inputs, and undesirable 
outputs reduction in the RE/CE model.

From Table 7 we can see: (1) 11 provinces that 
performed very well, their energy use, and CO2 emission 
efficient scores are all equal to one. (2) 8 provinces’ 
efficient scores are lower than 0.5. (3) The average of all 
DMUs efficient scores is higher than that in the SBM 

model, reflecting the energy use and that CO2 emission 
efficient scores of 30 provinces actually are at a higher 
level when we consider the truly existing price. 

For better analysis in a bigger area, we group 30 
provinces into 7 categories: north, northeast, east, 
central of China, south, southeast, northwest. Then we 
have the following conclusions. (1) Energy use and CO2 
emission efficiency average of these areas are 0.8413 
(northern China), 0.5287 (northeastern China), 0.8566 
(eastern China), 0.8495 (central China), 0.8930 (southern 
China), 0.6923 (southeastern China), and 0.6638 
(northwestern China), which indicates that southern 
China has the best performance. Northern, eastern, and 
central China have similar performance with efficiency 
scores all between 0.84 and 0.86. Northeastern China 
has the worst performance among these areas. (2) In 
northern China, 3 out of 5 provinces are efficient, and 
Shanxi drives down the efficiency level of this area 
obviously. (3) Eastern and central China also performed 

Fig. 2. Energy and CO2 emission reduction of seven areas.

Fig. 1. Efficiency under the different models.
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well on energy use and CO2 emission efficient score, and 
the efficiency of these provinces belonging to these two 
areas has no significant difference. (4) The northeastern 
area has the worst performance among these areas, with 
the highest score of this area being 0.6741 (Jilin).

For reflecting the impact of price factor on efficient 
score, we made Fig. 1: The efficiency under the different 
models and Fig. 2: Energy and CO2 emission reduction 
of seven areas. In Fig. 2 we only list the DMUs having 
slack movement.

From Fig. 1 we can find that: (1) Price factor has a 
significant influence on energy use and CO2 emission 
efficient score for some provinces, especially like Heibei, 
Shanxi, and Shanhai, etc. (2) Some province like Heibei, 
Shanxi, Henan, and Ningxia have efficiency scores 
higher than in the SBM model. Because these provinces 
have or are near rich energy sources, the price of energy 
and costs of energy transportation are low. When we 
consider the price factor, energy use and CO2 emission 
efficiency will be higher than before. (3) Some provinces 
like LiaoNing and Shanhai have efficiency scores all 
lower than before because the places like them are more 
developed, far from rich energy resources, and the price 
of energy and cost of energy transportation are high. 
When we use the model with price, the efficiency scores 
of these places will be lower. 

According to Fig. 2: (1) Hebei, Shanxi, Liaoning, 
Heilongjiang, Henan, Guizhou, and Shaanxi have the 
heavier task of energy and CO2 emission reduction. (2) 
Beijing and Tianjin as the municipalities directly under 
the central government have great efficiency. But we 
should realize that this is more or less related to their 
location and political status. (3) The provinces with more 
energy reduction task and less CO2 emission reduction 
task like Shanxi and Shaanxi, should take more effort 
on energy consumption reduction to improve efficiency 
score. Instead, provinces like Hebei, Liaoning, and 
Yunnan with less energy reduction task and more CO2 
emission reduction task should pay more attention to the 
improvement of energy conversion technology.

Conclusions

The energy shortage and a large amount of CO2 
emissions have been a huge threat to the world, 
especially in developing countries such as China. As the 
largest energy consumer and CO2 emitter, China faces 
great responsibility of energy efficient use and reducing 
CO2 emissions, but it is unwise to evaluate energy use 
and CO2 emission efficiency without considering the 
price factor.

In this paper, we evaluate the energy use and 
CO2 emission efficiency of 30 provinces with price 
and allocate the reduction mission to each of them. 
In particular, after judging the RTS of 30 provinces, 
we first use the SBM model to provide more accurate 
efficiency. It is also able to capture excess slack 
movement of inputs and outputs of 30 provinces. Lastly, 

considering economic variables such as price of energy 
and CO2 emission, the RE/CE model is given to allocate 
the waste gas emission and energy-effective reduction 
among the province based on cost of inputs and revenue 
of outputs.

Our empirical study concludes: 
1)	 From a regional perspective, southern China has the 

most efficient score. Northern, eastern, and central 
China have similar performance, with efficiency 
scores all between 0.84 and 0.86. Northeastern 
China has the worst performance (0.5287) among 
these areas. The efficiency scores of southeastern 
and northwestern China are little higher than for 
northeastern China, but there are also some provinces 
such as Shanxi, Chongqing, Guizhou, Shaanxi, and 
Gansu whose efficiencies are below 0.5. 8 provinces 
performed poorly with efficiency scores lower than 
0.5, but higher than before.

2)	 Price factor has a significant influence on energy use 
and on the CO2 emission efficiency scores of some 
provinces — especially Heibei, Shanxi, Shanhai, 
Henan, Guangxi, Yunnan, and Ningxia. The average 
of all DMU efficiency scores is higher than that in the 
SBM model, reflecting the energy use and that CO2 
emission efficiency scores of 30 provinces actually 
are at a higher level when we consider the true price. 

3)	 Northern and northeastern China should put more 
effort toward energy consumption reduction in order 
to improve efficiency scores. Instead, northeastern 
and central China should pay more attention to the 
improvement of energy conversion technology in 
order to increase their energy use and CO2 emission 
efficiency.
The following avenue is given for further research. 

First, we can analyze the efficiency score from different 
areas and different industries. Second, according to the 
government policy, research the appropriate interval 
of carbon tax. Calculate efficiency scores of different 
regions under the different carbon tax. Third, study the 
trend of efficiency score in a period of time.
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