
Introduction

In recent years, short-term power load forecasting 
is playing an increasingly important part in the stable 
operation of electrical power systems, which is essential 
for the development of preventive maintenance plans 
[1-2]. With increasingly market-oriented electric power 
production and consumption, more accurate short-term 
power load forecasting is needed for maintaining the 
secure and stable operation of the electrical power grid, 
which can also promote the sustainable development of 

the electricity industry [3]. Therefore, it is indispensable 
to develop power load forecasting techniques to achieve 
a more accurate simulation result [4-5].

Thus far, short-term power load forecasting methods 
mainly include conventional methods, intelligent 
methods, and hybrid forecasting methods. Conventional 
methods mainly include many mathematical statistics 
methods such as multiple linear regression analysis 
[6], the grey-forecasting model [7], autoregressive 
integrated moving average (ARIMA) [8-9], state space 
model [10], box-Jenkins model [11], general exponential 
smoothing [12], and so on. Although these methods 
have the advantage of capturing linear characteristics, 
they cannot accurately forecast short-term power load 
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showing non-linear and non-stationary characteristics. 
To capture nonlinear characteristics and obtain accurate 
prediction results, many intelligent methods such as 
artificial neural network (ANN) [13], support vector 
regression (SVM) [14-15], and intelligent evolutionary 
algorithms [16] have been proposed to forecast short-
term power loads. ANN and SVM are well-known 
models, and they have obvious prediction advantages 
compared with conventional methods. Taking into 
account the fact that each single forecasting model has 
its own prediction shortcomings, an increasing number 
of researchers are adopting hybrid forecasting methods 
because they can avoid the shortcomings of each single 
forecasting model and deal with the complex problem 
more effectively.

ARIMA and Grey prediction models, as typical 
representatives of conventional methods, have been 
widely used and applied to solve many forecasting 
problems. The main idea of these models is to look 
for the trend of data changes, according to the trend 
equation, to forecast future data [17]. They are suitable 
to smooth and linear time series prediction, not good 
at grasping the trend of nonlinear sequence changes. 
With the rapid development of the artificial intelligence 
method, artificial intelligence forecasting technology 
has been gradually replacing conventional forecasting 
technology in the field of power load forecasting. Back 
propagation (BP) neural network, as a common ANN, 
has the ability to learn by itself, and it has been proposed 
by many researchers to apply to the short-term power 
load forecasting problem [18]. But the BP neural network 
is easily trapped in local minimum value [19]. Hence, 
many optimization algorithms have been proposed, but 
the computation burden is greatly increased. Compared 
with the BP neural network, the SVM algorithm  
has advantages of good robustness and strong 
generalization ability, avoiding falling into local 
minimum [20]. But the training time of the SVM 
increases exponentially by increasing the dimension of 
input vector. A new learning algorithm for the single-
hidden-layer feed-forward neural network (SLFN) 
– called the extreme learning machine (ELM) – has 
recently been proposed [21]. In the learning process of 
ELM, since ELM requires only a single-pass training 
stage without any iteration for weight adjustment,  
it has very fast learning processing [22]. And it is able 
to solve the problem of stopping criteria, learning rate, 
learning epochs, and local minimum [23]. In recent 
years, the ELM has been applied in various fields and 
has become a significant method in nonlinear modeling 
[24-26].

Considering the non-stationary and chaotic 
properties of short-term power load data, the time 
series decomposition technique is applied to decompose 
the original power load sequence into several sub-
sequences. Empirical mode decomposition (EMD), 
based on Hilbert-Huang transform (HHT), can 
effectively extract the components of the basic mode 
from non-linear or non-stationary time series. Owing 

to its attractive features, it has been applied to many 
economic and financial issues such as predicting 
crude oil prices [27], electricity prices [28], and so on. 
But EMD has many disadvantages, including lack of 
exact mathematical model, interpolation choice, and 
sensitivity to both noise and sampling [29]. Then a new 
multiresolution called variational mode decomposition 
(VMD) was introduced as an alternative to the EMD 
algorithm to overcome its limits. VMD has the ability 
to separate tones of similar frequencies, contrary to 
EMD [30]. And much literature [31-33] has come to the 
conclusion that VMD was more effective in modeling 
and forecasting economic and financial data compared 
with EMD.

Then in this paper, hybrid ELM-VMD intelligence 
is proposed for forecasting short-term power load. In 
particular, the number of modes decomposed by the 
VMD model makes a great influence on analysis, and 
the number of hidden layer nodes plays an important 
role in prediction accuracy. And both of them must 
be predetermined. So, how to determine the number 
of modes and the number of hidden layer nodes is a 
highlight of this paper. The point is specifically made 
in the remainder of this paper. After determining the 
number of modes and the number of hidden layer nodes, 
the VMD is applied to decompose power load data into 
several modes that have specific sparsity properties. 
Then ELM is constructed to forecast these modes 
individually. And all of these forecasting values are 
aggregated to produce the final power load forecasting 
results. Eventually, by contrast, the proposed method 
is compared with other alternative models such as 
the GM (1,1), ARIMA, single BP, single SVM, single 
ELM, hybrid BP-EMD, hybrid BP-VMD, and ELM-
EMD models. Simulation results demonstrate that the 
proposed model performs more effectively and obtains 
more accurate prediction results.

Material and Methods

Variational Mode Decomposition (VMD)

The purpose of the VMD is to decompose the 
original signal into K discrete number of modes that 
have specific sparsity properties while producing the 
main signal. Thus, each mode uk is required to be mostly 
compact around a center pulsation ωk determined along 
with the decomposition. Compared with EMD, VMD 
has the ability to separate tones of similar frequencies. 
Meanwhile, the VMD model searches for a number of 
modes and their respective center frequencies, such 
that the band-limited modes reproduce the input signal 
exactly or in a least-squares sense. The VMD algorithm 
to assess the bandwidth of a one-dimensional signal is as 
follows [24]:
1) For each mode uk, compute the associated analytic 

signal by means of the Hilbert transform to obtain a 
unilateral frequency spectrum.
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2) For each mode, shift the mode’s frequency spectrum 
to baseband (narrow frequency) by mixing with an 
exponential tuned to the respective estimated center 
frequency.

3) Estimate the bandwidth through Gaussian smoothness 
of the demodulated signal; for example, the squared 
L2-norm of the gradient.
Then, the decomposition process is realized by 

solving the following optimization problem [24]: 
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…where f is the signal to be decomposed, u is its 
mode, ω represents the frequency, δ is the Dirac 
distribution, t represents time script, * denotes 
convolution, j2 = –1 , and k is the number of modes. In 
this framework, the mode u with high-order k expresses 
low frequency components. 

To address the constrained variational problem 
noted above, a quadratic penalty factor α and Lagrange 
multipliers λ(t) are introduced. The combination of these 
two terms benefits from both considerable convergence 
properties of the quadratic penalty at finite weight 
and the strict enforcement of the constraint by the 
Lagrangian multiplier. Therefore, the above optimization 
problem is changed to an unconstrained one as below 
[24]:
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The optimization methodology denoted as the 
alternate direction method of multipliers (ADMM) is 
then used to obtain the saddle point of the augmented 

Lagrangian by updating 1+n
ku , 

1+n
kω , and 

1+n
kλ  

alternately. The convergence criterion of the algorithm 
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convergence tolerance. So, the final updated equations 
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…where n represents the iteration number and τ devotes 
the time step of the dual ascent. And the concrete 
procedures of the VMD algorithm are illustrated in  
Fig. 1.

Extreme Learning Machine

The extreme learning machine (ELM) was a new 
method for learning the single-layer feed-forward neutral 
network (SLFNs), which was first introduced by Huang 
et al. [21]. It tends to provide superior generalization 
performance and extremely fast learning speed by 

Fig. 1. Concrete procedures of the VMD algorithm.
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randomly choosing the input weights and analytically 
determining the output weights [24]. And only the 
number of hidden layer neurons is set, in which case the 
unique optimal solution will be obtained.  

The typical structure of ELM is shown in Fig. 
2, which includes input, hidden, and output layers. 
Assuming that the network has p input layer neurons and  
l hidden layer neurons, for N arbitrary distinct samples 

mn
ii RRtX ×∈),(  the SLFN with hidden neurons can 

be described as:

1
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…where Wj = [Wi1, Wi2,...,Win]
T is the input weight vector 

connecting the input nodes and the j th hidden node, 
ηj = [ηj1, ηj2,...,ηjn]

T is the weight vector connecting the 
jth hidden neuron and output neuron, Xi is the ith 
training example, oj = [oi1, oi2,...,oin]

T is the output vector,  
bj is the bias of the j th hidden node, and f(.) denotes the 
activation function of the hidden neuron.

If the above ELM can approximate the N samples 
with a zero error, then we can obtain:
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Different from the traditional function approximation 
theory, the input weights and hidden biases of the ELM 
are randomly generated. Thus, training the ELM is 
appropriately equal to find a least-square solution of the 
linear function Hη = T[].

ˆ minH T H T
η

η η− = −
              (11)

Then the solution of the above form is

ˆ=H Tη +
                           (12)

…where H + represents the Moore-Penrose generalized 
inverse of the hidden layer’s output matrix H.

Evaluation Criterion

To quantitatively measure the performance of 
the proposed model, mean absolute percentage error 
(MAPE), root mean square error (RMSE), and the 
coefficient of determination (R2) are used to calculate 
forecasting accuracy. The overall fitting effect of the 
proposed model can be evaluated by RMSE and R2. The 
MAPE is also one important indicator, and the smaller 
the MAPE values, the closer the predicted power load 
time series values to those of the actual value. The 
definitions of the above-mentioned criteria are:
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Fig. 2. Typical structure of the ELM.
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…where iy  and ˆiy  represent the actual and forecasting 
power load values at time i, respectively; iy~  is mean 
value of the predicted value; and n is the number of the 
all load data.

Approaches of ELM-VMD Model

It is worth noting that both the number of hidden 
layer nodes l and the number of decomposed sub-
signal K play an important role in prediction accuracy. 
Thus, in this paper it makes sense to find their optimal 
combinations, which this section discusses in detail. 

Since the number of sub-signals decomposed by 
VMD requires it to be given in advance, the range 
of change varies depending on the number of IMFs 
obtained by EMD. For instance, if the number of IMFs 
is n, then parameter K used to determine the number 
of decomposition to obtain by EMD is n–3, n–2, n–1, 
n, n+1, n+2, and n+3 [34]. In order to avoid missing the 
optimal number of hidden layer nodes, in this paper the 
number of hidden layer nodes is set within a wide range 
– from 5 to 100. In this paper, predetermined training 
samples are divided into sub-training samples and sub-
testing samples. MAPE, a benchmark for evaluating 
prediction accuracy, is used to determine the optimal 
combinations. Thus, there is a three-dimensional 
relationship among them. The specific steps are 
presented as follows:
1) Determine sub-training samples and sub-testing 

samples. 
2) Apply VMD to decompose the original power 

load data into K stationary modes with different 
frequencies.

3) A rolling forecasting process is studied, and ELM is 
used to forecast each mode decomposed by VMD; in 
order to improve the forecasting accuracy of the ELM, 
all the original power load series and decomposed 
sub-series must be normalized primarily as follows: 

                   (16)

…where x is original sample data,  represents 
normalized sample data, and xmax and xmin represent the 
maximum and minimum of the data
4) The final power load forecasting result is obtained 

by aggregating all de-normalized values of the ELM 
outputs.

5) Calculate MAPE and obtain l and K with the minimum 
value of MAPE; then l and K are determined.
In fact, parameters l and K are obtained after 

7 × 96 = 672 calculations. Then, using the parameters 
already obtained, repeat steps (2), (3), and (4) to forecast 
short-term power load. The flowchart of the forecasting 
procedure is shown in Fig. 3.

Results and Discussion

Description of Data

To verify the effectiveness of the proposed  
ELM-VMD model, five-minute load data from Hebei 
Province in China was used in this case study. The 
power load data obtained from one day, with a total of 
288 data points, was selected as experimental samples. 
A rolling forecasting process is studied in which the 
previous half-hour data is used to forecast the next data. 
That is, the first six load data points are used to forecast 
the seventh data, namely the last five load data (xn–6, 
xn–5, xn–4, xn–3, xn–2, xn–1) are used as the input variables 
of the ELM, and the output variable is xn. The details are 
shown in Fig. 4. 

Fig. 3. Forecasting procedures of the ELM-VMD forecasting 
model.
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In this paper, the previous 21 hours of data, including 
252 data points, were used as the training set, and the 
remaining 36 data points were used as the testing set. To 
determine the parameters l and K, the previous 18 hours 
of the training set data were selected as sub-training 
set and the remaining data points were used as the 
sub-testing set. All computations are implemented in a 
MATLAB (2015a) environment on a computer with Intel 
core i5, 1.6 to 2.3 GHz CPU, and 4 GB of RAM.

Determine Parameters l and K

The fluctuation of short-term power load is severe, as 
is shown in Fig. 5. Thus, EMD is exploited to decrease 
the non-stationary characteristics of the original short-
term power load time series. The results are shown 
in Fig. 6, in which the short-term power load data is 
decomposed into six different IMFs and one residue. 
It can be clearly seen that the frequencies of IMF1 and 
IMF2 are too high, which mainly indicates the random 
information of power load. The frequencies of IMF3 
to IMF6 are moderate, which actually are the periodic 
components of the original short-term power load series. 
And the residue represents the long-term variation 
tendency of the original power load series. 

Then, in parameter K the number of decomposed 
modes varies from 3 to 9, according to the number of 
IMFs decomposed by EMD. Since the decomposed 
modes are normalized between 0 and 1, the sigmoid is 
selected as activation function in this paper. The sub-
training power load data is used to train ELM, and 
the sub-testing sample is used to calculate MAPE. 
Because the minimum value is not easy to observe in 
the image, the inverse of MAPE is introduced to have 

Fig. 4. A rolling-forecasting mechanism for short-term power load forecasting: a) for training set and b) for testing set.

Fig. 5. Original short-term power load time series.
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a better representation and understanding of obtained 
results, which is shown in Fig. 7. It is clearly observed 
that the inverse of MAPE reaches a maximum with 8 
decomposed modes together with 26 hidden layer nodes, 
namely achieving the best performance in this case. 
The other conclusions we can draw are that with the 
increase of decomposition levels, the prediction accuracy 
is basically increasing. After 8 decomposed levels, 
the prediction remains almost constant. Therefore, the 
decomposition of signal into 8 levels is the best choice, 
which simply increases the computational burden with 
more decomposition levels. And with the number of 
hidden layer nodes increasing, the prediction error first 
increases and then decreases. We can observe that the 
prediction effect will keep well when the hidden nodes 
range approximately from 10 to 50.

Then the original short-term power load series was 
decomposed into 8 modes by VMD (Fig. 8). Figure 
8 shows that the first and second modes primarily 
represent the long-term trend of power load series. 
While the last two modes, with high frequency, capture 
short variations of power load series. 

Short-Term Power Load Forecasting Results

To verify the effectiveness of the ELM as forecasting 
part in this paper, many forecasting models existing in 
other literature such as GM (1,1), ARIMA, BP neutral 
network, and SVM are applied as contrast. Then the 
forecasting results are obtained by using original power 
load data that has not been decomposed. The parameters 
of BP neutral network are set as follows. Obviously, the 
input layer node and output layer node were set to 6 and 
1, respectively. As a general rule of thumb, the hidden 
layer node was set to 10 in this paper. The maximum 
number of training steps was set to 100, the learning 
rate was set to 0.1, and the error precision was set to  
1.0 × 105. As for SVM model, the sigmoid kernel 
function is selected to map the original feature space 
into a high-dimensional space. The epsilon in loss 
function of epsilon-SVM is set to 0.01. Owing to the 
randomness of prediction results for BP neural network, 
the BP neural network runs 10 times and the average 
value of the predicted results is used as the final result. 
Then, the obtained results are shown in Table 1 and 
the absolute error values are depicted in Fig. 9 for the 
above-mentioned forecasting tools. The forecasting 
errors of ARIMA and GM (1,1) are too large, so their 
absolute error values are not shown in the above Figure 
9 for the rendering effects of the whole image. As can 
be seen from Table 1, the ELM has the best forecasting 
accuracy among all forecasting tools. The forecasting 
accuracy of GM (1,1) and ARIMA is far lower than other 
forecasting tools because they are suitable for stable and 
smooth time series. Compared with them, intelligence 
algorithms such as BP neutral network, SVM, and 
ELM are able to keep on learning, then they can deal 
with non-linear and non-stationary time series more 
effectively. The MAPE, RMSE, and R2 of the ELM are 
superior to the BP neutral network because the inherent 
characteristics of the BP neutral network may fall 

Fig. 6. EMD decomposition results for short-term power load time series; from top to bottom: first IMF to residue.

Fig. 7. Results of determining parameters using MAPE as error 
index.



2150 Li W., et. al.

into local optimum and the hidden nodes of BP neural 
network highly depend on trial and error procedure. The 
SVM usually has very good forecasting performance 
when the input and output dimensions are high, but the 
SVM does not work well in this rolling prediction. And 
it even performs worse than the BP neutral network. 
From the standpoint of computing time using ELM, the 
computing time of the forecasting process is 0.0605s, 
which is very short among all applied forecasting tools. 
Although the computing time of GM (1,1) is rather short 
(0.0396 s), it has large forecasting errors. What’s more, 
the SVM has the longest forecasting time of 44.0478s. 
If SVM combined with the VMD is proposed, the 
forecasting time will be approximately 44 × 8 = 352 s. 
Compared with the ELM-VMD, its forecasting time is 
much greater than the computing time of the ELM-VMD 
(approximately 0.6 × 0.8 = 0.48 s). Thus, the SVM model 
combined with other signal decomposed techniques 
was not taken into consideration because of its too-long 
calculation time.

Moreover, to demonstrate the superiority of applying 
VMD to signal analysis, EMD as a signal processing 
tool is introduced to provide comparison results. When 
it comes to the ELM-EMD model, to be consistent 
with the proposed method, using sub-training set and 
sub-testing set to gain the predetermined optimal 
hidden nodes. The result is shown as Fig. 10. Thus, 
in this condition the hidden nodes of the ELM were 
set to 11. When it comes to the BP-VMD model, the 
predetermined number of decomposition K  ranges from 
3 to 9, the BP neural network also runs 10 times and 
obtains average value. 

The obtained forecasting errors of hybrid forecasting 
methods are given in Table 2. It can be seen that the 
MAPE and RMSE of the hybrid ELM-VMD model 
are the smallest and the goodness of fit reaches 0.998, 
which is the best of all models. As Tables 1 and 2 show, 
the hybrid models have better prediction accuracy than 
the corresponding single format. This indicates that 
the forecasting performance will be improved after 

Fig. 8. VMD decomposition results for short-term power load time series; from top to bottom: first mode to eighth.

Forecasting model
Error index

Computing time (s)
MAPE (%) RMSE (MW) R2 (MW)

GM(1,1) 84.59 24.469 0.9774 0.0396

ARIMA 71 22.4301 0.9272 32.2625

BP 2.66 4.6517 0.9869 17.989

SVM 3.07 5.024 0.9904 44.0478

ELM (proposed model) 2.42 4.3732 0.9906 0.0605

Table 1. Error statistics for single forecasting model.
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original data are decomposed by signal processing tools. 
It is worth noting that the BP-EMD model has worse 
performance than the single BP model because the BP 
neutral network may fall into the local minimum value. 
The forecasting finite IMFs and residue are added to 
obtain the final result, and the forecasting error may 
increase. As shown in Table 2, the VMD-based approach 
performs better than the EMD-based approach in terms 
of MAPE and RMSE, which illustrates the advantage 
of the VMD-based approach for forecasting short-term 
power load. One possible reason is that the EMD has the 
disadvantage of mode mixing, while the EMD has the 
ability to separate tones of similar frequencies. Table 2 
also showed that the ELM-VMD model outperformed 
the BP-VMD model in terms of MAE, RMSE, and R2 

for all values of K. The BP-VMD model performs 
better than the ELM-EMD model in terms of MAPE 
and RMSE, with K = 6,7,8,9. This also means that 
signal preprocessing has great influence on prediction 
accuracy. The absolute error values are also depicted in 
Fig. 11. For diverse decomposed modes, it has different 
forecasting results of the BP-VMD. The case of the best 
performance with K = 8, as the represented case of all 
cases for the BP-VMD model is shown in Fig. 11.

In summary, the experimental results fully 
demonstrate the efficiency of ELM in power load 
forecasting and the advancement of VMD in signal 
processing. At the same time, it confirms that 
establishing three-dimensional relationships to 
determine coefficients l and K is a good idea to obtain 

Fig. 9. Absolute error of single models in the short-term power load forecasting.

Fig. 10. Result of determining hidden nodes using MAPE as error index.
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proposed. First of all, it uses a sub-training set and sub-
testing set, establishing three-dimensional relationships, 
to obtain the number of variational modes and hidden 
nodes of ELM. Then, in consideration of the volatility 
of power load, the original load series is decomposed 
into predetermined modes. Next, rolling prediction is 
studied step by step and the ELM is applied to forecast 
individual modes. Finally, the different forecasting series 
are reconstructed to get the final forecasting results.

Experiments with different statistical criteria 
(MAPE, RMSE, R2) clearly testify that the ELM-
VMD model achieved the lowest forecasting error. 

accuracy forecasting results. And it also indicates that 
the proposed model is effective and efficient for short-
term power load forecasting. In fact, the forecasting 
process time of ELM-VMD is approximately 0.48s, and 
its computational time is much smaller than other hybrid 
models. 

Conclusions

In this paper, a new hybrid short-term power load 
forecasting model based on ELM and VMD has been 

Fig. 11. Absolute error of all hybrid models in short-term power load forecasting.

Hybrid model
Error index

MAPE (%) RMSE (MW) R2 (MW)

BP-EMD 3.32 4.6295 0.9938

BP-VMD

K = 3 2.41 4.286 0.9916

K = 4 2.14 4.0633 0.9938

K = 5 2.23 4.1313 0.9935

K = 6 1.5 3.4094 0.9963

K = 7 1.55 3.457 0.9963

K = 8 1.18 3.0533 0.9977

K = 9 1.21 3.0804 0.9977

ELM-EMD 0.0218 3.8119 0.997

ELM-VMD (proposed hybrid model) 0.0107 2.9356 0.998

Table 2. Statistics error for all hybrid forecasting models.
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Compared with other hybrid or single models, it has 
a very fast forecasting process and saves significant 
computational time, which means that the ELM-VMD 
model can be used as a very promising methodology  
for short-term power load prediction. In this paper, 
several other conclusions can be acquired as follows:
A) Establishing three-dimensional relationships to 

obtain the number of variational modes and hidden 
nodes of ELM, as a highlight of this paper, achieves 
fine performance.

B) As a new adaptive multiresolution technique, VMD 
has better performance and it is more robust for 
analyzing noisy signals than EMD.

C) The intelligent algorithm is more suitable for 
predicting the non-stationary and nonlinear time 
series than conventional method.

D) Compared with other forecasting algorithms in  
the hybrid models, the ELM has the lowest  
forecasting error and the shortest computation time. 
As a result, the proposed hybrid model in this paper is 
simple to implement and it provides fast learning and 
convergence when the sample size is large. 
The whole process – from selecting optimal 

parameters to obtaining the final forecasting result – is 
easy to understand. Thus, all of these reasons make it 
more suitable for forecasting short-term power load and 
even other time series.

However, in this paper, only the one-step-ahead 
forecasting model is constructed, with regards to future 
research directions, to construct the multi-step-ahead 
forecasting model should also be taken into account. 
Besides, short-term power load forecasting is equivalent 
to time series forecasting in this paper, and other factors 
such as temperature, wind power, and precipitation are 
excluded from the proposed hybrid model. Thus, a future 
study should verify the superiority of the proposed 
model in multi-step-ahead forecasting and incorporate 
those influencing factors to develop the comprehensive 
hybrid forecasting model. 
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