
Introduction

Significant differences in climate and land use 
between adjacent or neighbouring areas are relatively 
common and may have many causes, but geographic 
factors are especially important [1]. In studying these 
causes, we must compare the different variables that 
may interact to produce unique climates and ecosystems. 
Such variables include latitude, altitude, relief, sunshine, 

rainfall, humidity, temperature, and proximity to water 
bodies, and can produce a characteristic landscape. 
The rural abandonment, associated with demographic 
and economic changes also produce changes in the soil 
surface [2].  

A natural region is an area bound by criteria of 
physical geography, mainly those related to relief, 
but also to climate, hydrography, vegetation, soil, and 
others [3]. Physical factors allow us to consider the 
natural region as a homogeneous and individual area. 
In Spain, the study of natural regions began in the mid-
20th century [4]. Orographic regions are determined by 

Pol. J. Environ. Stud. Vol. 27, No. 5 (2018), 2071-2080

              Original Research             

Environmental Differences between Two 
Neighboring Regions of Southern Spain 

María-Dolores Huete-Morales1*, José-Manuel Quesada-Rubio1, 
María-Jesús Rosales-Moreno2, Esteban Navarrete-Álvarez2, 

María-José Del-Moral-Ávila2

1Department of Statistics and Operational Research, Faculty of Labour Sciences, University of Granada, 
C/Rector López Argüeta, s/n. Granada, Spain

2Department of Statistic and Operational Research, Faculty of Sciences, University of Granada,
 Campus de Fuente Nueva, s/n. Granada, Spain

Received: 27 June 2017
Accepted: 14 October 2017

Abstract

The aim of this paper is to identify the main factors that determine territorial differences between two 
large neighbouring provinces (Granada and Almería) that each occupy both sides of the Sierra Nevada 
mountain range in southern Spain. Our analysis produced a prediction model for riverside woodland 
cover, one of the variables that most strongly characterizes the differences between the two provinces. 
A general linear model was constructed for spatial analysis (spherical model with REML estimation), 
taking into account the location of the municipalities (longitude, latitude, and elevation) and other factors 
related to soil type, vegetation, or woodland cover. Interpolation of spatial data was performed by ordinary 
kriging. The predictions obtained over a grid of locations enabled patterns in each region to be derived 
and visualised, with very clear results. The pattern of riverside woodland cover is highly differentiated 
between the two provinces, despite their presenting adjoining areas.

Keywords: climate, neighbouring zones, ordinary kriging, spatial modelling, soil characteristics

*e-mail: mdhuete@ugr.es

DOI: 10.15244/pjoes/78625 ONLINE PUBLICATION DATE: 2018-04-13



2072 Huete-Morales M.D., et al.

the predominant relief, phytogeographic regions by the 
plant formations present, and climatic regions by their 
latitude.

Climate is the set of events that characterise an 
area. To specify the climate of an area can require up 
to 30 years’ study of atmospheric events, precipitation, 
and temperature, as well as atmospheric circulation, 
pressure, and other aspects. Although on a world scale 
and even within Europe, Andalusia is characterised as 
having a Mediterranean-type climate, the geographical 
factors of this area, such as the layout of the relief and 
the altimetry, create a climatic regionalisation with 
different bioclimatic zones. One such is the valley of 
the river Guadalquivir. This area is important not only 
for its considerable size, but because it presents some 
of the most characteristic features of the Mediterranean 
climate (high temperatures, irregular precipitation 
and strong insolation). In inland areas, the features of 
continentality are intensified. Moreover, the mountain 
areas of Andalusia are of great territorial significance, 
presenting lower temperatures due to the altitude and 
higher probabilities of precipitation and frost.

As we move inland and east, and also in the coastal 
mountains (which are not exposed to Atlantic winds), 
precipitation levels fall significantly and, therefore, 
aridity increases. The greater continentality and 
altitude of eastern Andalusia means that in areas such 
as Sierra Nevada, Cazorla, Segura, and Filabres, cooler 
average temperatures are recorded. The coastal zone 
is affected by the marine influence and enormously 
high levels of insolation (for example, the lower part 
of the Guadalquivir Valley receives more than 3,000 
hours of sun per year). Within this area, Atlantic and 
Mediterranean slopes can be differentiated [5].

Another extreme of climatic diversity is the arid 
southeast, where the prevailing conditions (very high 
insolation and temperatures, very scant precipitation) 
make it a desert environment, with characteristics of 
Saharan flora and fauna [6].

Geostatistical modelling, the methodological 
approach adopted in this study, can be applied in many 
areas of land-type analysis. By performing a spatial 
study of land characteristics, taking into account 
relevant physical variables, we can achieve a spatial 

differentiation that is very useful as a first step in 
territorial studies – especially when heterogeneous 
environmental characteristics may be present. Many 
research projects have made use of this technique. The 
literature in this area includes analyses of soil properties 
[7] or its contaminants [8] and territorial life cycle 
assessment, which is a methodological framework for 
the environmental assessment of territories [9]. 

Material and Methods 

Description of the Study Area 

The provinces of Granada and Almería (Fig. 1) are 
located in southeastern Spain, sheltered from the west 
by mountain ranges and exposed to a Mediterranean 
climate from the southeast. These provinces have 
surface areas of 12,635 km2 and 8,774 km2, respectively 
[10], and a joint population of 1.6 million inhabitants 
(919,319 and 700,000, respectively, according to the 
2013 census) [11]. The boundaries of the two provinces 
were established as part of the national territorial re-
organisation carried out in the mid-19th century, 
which sometimes produced strange shapes [12]. Thus, 
the province of Granada is elongated, for political-
economic reasons, and contains significant differences 
in its terrain. The province of Almería is somewhat more 
homogeneous in shape but has erosion problems [13-15]. 
Therefore, the study area presents a large topographic 
and climatic heterogeneity [16], not only across regions 
but within each region [17].   

Each province is characterized by the presence of a 
large mountain range, the Sierra Nevada, which divides 
it transversely and gives rise to distinct microclimates, 
with Atlantic influence in the western part and a 
Mediterranean component in the eastern part [18]. 
However, this upland axis is not the only one, in either 
province, and other mountain ranges are to be found in 
both territories. The principal mountain range rises to 
altitudes of more than 3,000 m above sea level, and is 
accompanied by lesser ones that still rise above 2,000 
m – a circumstance that distinguishes Granada/Almería 
from all other territories in the Iberian Peninsula. 

The province of Granada is composed of three 
major areas: the coastal strip, separated from the rest 
by the Sierra Almijara and Sierra Nevada ranges; 
the sheltered inland area in the centre, where most of 
the population is concentrated; and the northeastern 
plateau, which is relatively arid and more sparsely 
populated. In recent years oak groves and grasslands 
have increased and, in contrast, olive groves, bare soils, 
and dry herbaceous crops have decreased [19]. Almería 
is more homogeneous, but two distinct areas can be 
distinguished: the southern part, bordering the coast and 
bounded to the north by the Sierra Nevada, and a less-
populated sector in the northeast. In the coastal area, 
traditional crops have been substituted with intensive 
and extensive greenhouse crops under plastic, benefiting Fig. 1. Municipalities of Granada and Almería.
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from the prevailing mild climate [20]. The area, called 
Las Alpujarras and which is shared between the two 
provinces, lies on the southern slopes of the Sierra 
Nevada massif and has a clear maritime influence. 
Accordingly, the climate is mild despite the high 
mean altitude. In the northern part of both provinces, 
population density is lower, the land is poorer, and 
annual temperatures more extreme. Precipitation is more 
abundant in NW, because the relief causes orographic 
rainfall by forcing masses of humid air to rise; when this 
air rises above the summits, it descends, its temperature 
increases again, and the air becomes dryer (the Föehm 
effect). Thus, the mountain barrier creates a division, 
isolating the different climatic regions [21-22].

The information supplied by the National Institute 
of Statistics and the Spanish Agency of Meteorology 
[23] from 1 January 1997 to 1 December 2012 show that 
the average number of hours of sunshine per month in 
Granada is 248.49 and 252.58 in Almería, although the 
smoothed series are fairly stable. The monthly average 
maximum temperature is 29.48ºC in Granada and 
28.73ºC in Almería. The average monthly minimum 
temperature is 3.55ºC in Granada, while it rises to 
11.50ºC in Almería. The monthly average humidity 
is 52.95% in Granada, while in Almería it is 59.53%. 
The average number of clear days per month is 9.99  
in Granada and 9.11 in Almería. The average number  
of cloud-covered days per month is 5.36 in Granada, 
while it is only 2.63 in Almería. The average monthly 
total rainfall is 37.87 ml in Granada, while it is only 
18.29 ml in Almería. Fig. 2 shows the monthly rainfall 
in both provinces for this period. Therefore, despite 
the proximity of both areas, climatic differences are 
important.

Theoretical/Analytical Framework 

Let Y the variable under study defined on si, i:1…N, 
where N denotes the available spatial divisions. In 
order to determine the spatial structure of the riverside 
woodland cover, this variable is taken as a response 
variable in a general linear model, which is going to 
be derived. The coordinates of Y(si), i:1…N where si 
= (xi, yi ), i:1…N represent the longitude and latitude 
of the centroids (central point) of the polygon for each 

municipality. This method takes into account variations 
that are spatially dependent in order to establish 
spatial dependence in terms of the distance between 
data locations. It is assumed that measurements of the 
variable of interest for areas in close proximity would 
have similar values, i.e., the correlation between pairs 
of variables in the process would depend on the distance 
between them.

Authors such as Noel Cressie and Peter Diggle first 
applied geostatistical spatial techniques assuming 
a single Gaussian response. However, geostatistical 
analysis has since been extended, with the application 
of classical and Bayesian approaches to distributions of 
discrete variables or to multivariate responses [24-26], 
thus expanding the study of geographically referenced 
data of all kinds; such extensions include classical 
geostatistical approaches such as studies by [27-30]. 
Diggle et al. [31] extended the analysis to non-Gaussian 
responses in a model that assumed an underlying 
Gaussian process.

The main aim of the present analysis (assuming 
a continuous Gaussian response) is to determine 
the statistical significance of the spatial structure 
of riverside woodland cover density using spatial 
modelling techniques including kriging prediction. 
The fundamental purpose of the latter is to obtain a 
mapped representation of the overall spatial distribution 
of this phenomenon, rather than that of obtaining 
concrete predictions for particular locations (since, 
in the case in question, this would only provide a very 
broad indication). Data consisting of locations si and 
the observed property Yi can be represented by a model 
expressed as the result of two components, a mean term 
μ(si) together with a certain additional variability (or 
error term) in the form Y(si) = μ(si) + ε(si), where μ(si) 
represents the overall (first-order) trend and where 
the error term ε(si) describes the local (second-order) 
behaviour, described by a given covariance function 
[32]. The trend obtained may be constant μ or non-
constant μ(s). A more technical approach to stochastic 
processes can be found in Cox and Muller [33]. In this 
study, we opted for a non-constant trend because this 
approach provides better estimates. We now describe 
this technique with a non-constant trend.

The model may have a mean value that is dependent 
on the coordinates (or other external variables) and 
then the process is not stationary; therefore, it can be 
expressed as Y(s) = μ(s) + ε(s) and its mean may be, 
for example, a polynomial function that depends on 
the coordinates of the locations (s). In this case, we 
wish to study the process error, which is defined as the 
difference between the variable and the trend, in order 
to describe the variability or structure of dependence 
around the average ε(s) = Y(s) – μ(s). In general, and 
unless the mean function of Y is constant, our interest in 
spatial structure analysis lies in the residuals. 

Spatial correlation structures are usually represented 
by the variogram function instead of the covariance 
function or the correlation function. A more detailed Fig. 2. Total monthly rainfall (mm) 1997-2012.
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description of the forms of correlation is given in  
[34-35]. The usual parameters that describe the 
variogram are the sill, range, or correlation and the 
nugget effect or purely random variation. 

Given a set of spatially localized data Y(si) = Yi, 
i = 1…N, the squared differences (Eq. 1) are termed 
empirical variogram ordinates, such that the behaviour 
of the expectations of the ordinates of the semivariogram 
is constant and equal to σ2 if the correlation is zero, i.e., 
if there is no spatial correlation.   

  (1)

In general, if correlation exists, it is expected to 
decrease with increasing distance between locations 
and will tend to disappear at large distances, such that 
the values   of the expectations of the ordinates of the 
empirical semivariogram will tend toward σ2 as the 
distance increases.

A graphic representation of the empirical variogram 
or of the correlation function corresponding to one or 
more models can help determine the goodness of fit of 
the model. The path of the empirical variogram points, 
its shape and its changes with distance will indicate the 
properties of the underlying process. The estimation 
of the variogram forms part of the analysis that can 
also be used to make predictions [36-37], although the 
reliability of the variograms obtained can be seriously 
affected by outliers or highly asymmetric distributions, 
and in such cases robust estimators of the variogram are 
recommended [38-39].

Two common approaches to fitting the model are 
to use unweighted or ordinary least squares (OLS) or 
the weighted least squares (WLS) criterion, either by 
numbers of pairs or by Cressie’s method. Parameter 
estimation can also be performed by the maximum-
likelihood (ML) or restricted maximum-likelihood 
(REML) procedure. The empirical variogram and the 
theoretical curve (the estimated parametric variogram) 
that gives the best fit can be shown together on a single 
graph. The theoretical form adopted (exponential, 
Gaussian, etc.) will approximately represent the 
trajectory of the points of the empirical variogram, 
assuming randomness. In the geostatistical context, 
references for this estimation method include [40-43].

Interpolation with Kriging Techniques

Knowledge of the parameters of the model is crucial 
to achieving one of the most important objectives in 
geostatistics, namely to make predictions for locations 
other than those observed for the phenomenon under 
study. Although our goal, given the nature of the 
information to be analyzed, is fundamentally that of 
description and exploration, we shall nevertheless make 
some predictions for the geographical area studied. In 
classical geostatistics, the kriging procedure is based 
on a knowledge of the variogram, while semivariances 

are used for the predictions. Kriging is a function of 
the data and of the correlation function or covariance, 
or of the variogram that characterizes the variability 
of the response variable being considered. Predictions 
in linear geostatistics are obtained as the sum of 
weighted data with kriging weights, dependent on the 
variogram, which vary depending on the strength of the 
spatial correlation and on the location of the point to be 
predicted with respect to the data sample. By obtaining 
predictions over a grid of locations, it is possible to 
graphically visualize the behaviour throughout the 
surface of the region.

Data and Variables 

Since our objective is to determine whether there 
are differences in relation to riverside woodland cover 
(analysis variable, Y), the following factors that could 

Fig. 3. Map, box-plot, and radar chart of altitudes in Granada and 
Almería by municipality.
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be closely related to this variable have been included 
in the model: total river surface (v1), riverside vegetal 
cover (v2), dense oak woodland cover (v3), dense conifer 
woodland cover (v4), dense eucalyptus woodland cover 
(v5), metamorphic rock (v6), sedimentary rock (v7), 
volcanic rock (v8), and intrusive rock (v9) [44]. In 
every case, the surface area is expressed as hectares/
km2 to enable comparability between municipalities 
of widely varying sizes. Following the guidelines in 
[45], we perform a geostatistical analysis with spatially 
referenced data. For this spatial analysis it is necessary 
to obtain maps or shapefiles for Spain [46] for the 
corresponding peninsular provinces, using the polygons 
and their centroids, with the ETRS89_30N system [47]. 
Geostatistical analysis was performed using R software 
[48]. 

Results and Discussion

Descriptive Analysis 

Altitudes in Granada and Almería are analyzed 
by reference to the location of the town hall of each 
municipality. As shown in Fig. 3, in general those 
of Granada are at higher altitudes. The difference in 
altitude is particularly apparent in the southern part of 
each province (where mean altitudes are lower in both 
cases) – especially in Almería. The box plot reveals the 
presence of higher altitudes in Granada, albeit with some 
outliers (most of which reflect particularly low altitudes) 
than in Almería. The dispersion of the observations 
around the median altitude is lower in Granada than in 
Almería, but the data are reasonably symmetrical with 

respect to this median value in both provinces.
A spatial analysis is also performed of the following 

physical variables in the municipalities of both provinces 
(as hectares/km2): in and around rivers and natural 
water courses (water surfaces, gallery forest, and other 
riverside vegetation); elsewhere – dense oak woodland; 
dense coniferous woodland; eucalyptus woodland; 
sedimentary rocks; metamorphic rocks; intrusive rocks; 
volcanic rocks. In cases for which data were missing, 
a linear model is constructed to predict these data, 
including as explanatory variables the altitude and 
centroid coordinates of each municipality.

With respect to the surface areas of rivers and 
natural streams (Fig. 4), the differences between the 
two provinces are evident as a prevalence of riverside 
vegetation in Almería, while gallery forests are mainly 
located in Granada. We also study the surface area of 
dense woodland per municipality (Fig. 4), and observe 
a predominance of oaks in Granada, conifers in Sierra 
Nevada (in both provinces) and eucalyptus in Almería. 
Regarding the types of rock to be found (Fig. 5), there is 
an almost total absence of intrusive and volcanic rocks 
(except two well-defined outcrops in the proximity of 
Sorbas and Cabo de Gata, respectively, both in Almería). 
Sedimentary rocks appear mostly in the northern part of 
Granada, and metamorphic rocks are more common in 
Granada than in Almería, mainly in areas with a high 
mean altitude.

Interpolation of Spatial Data: Kriging

In this analysis, the response variable is taken as the 
riverside woodland cover (Y) [49] and the explanatory 
variables are the spatial coordinate (x,y) and altitude z 

Fig. 4. Rivers, watercourses, and dense woodland in Granada and Almería by municipality: type of riverside vegetation.
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for each municipality. Other territorial measures are also 
considered as potential co-variables to fit the models 
(v1 to v9). An exploratory analysis of the data collected 
for Y (hectares/km2) shows that the data variability 
is considerable, with a significant number of outliers.  
A Box-Cox transformation [50] is performed to 
eliminate this variability (λ = 0.2795). The variables 
identified for possible inclusion in the model were 
transformed in the same way, thus eliminating excessive 
variability and the presence of outliers.

To eliminate the trend from the spatial information 
analyzed, and thus obtain a plausible constant trend 
hypothesis, the model is adjusted taking into account 

the reference coordinates for each region f(si) and the 
significant covariables (z and v1 to v9) included in the 
spatial model (Eq. 2), which are denoted as Z (si):

         (2)

The most suitable model thus obtained (adjusted 
R-squared = 0.5272; p-value <0.0001) is shown in  
Table 1. This table shows that the measures altitude, 
latitude, and longitude are the most influential variables. 
Only the total river surface variable is significant in the 
model. This is congruent with the descriptive analysis of 
the monthly precipitations. If rainfall is more abundant, 

Fig. 5. Types of rock in Granada and Almería by municipality.

Fig. 6. Residuals of the model according to the x and y coordinates.
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the river surfaces are higher and, therefore, riverside 
woodland cover is greater. The residuals present a 
normal behaviour pattern, and the scattergrams with 
respect to the geographical coordinates show that the 
trend has been successfully eliminated from the model 
(Fig. 6). 

The best correlation function for the residuals  
r(si) = Y(si) - μ(si) from the possible models (spherical, 
exponential, Gaussian, Matern, etc.) is selected using 
the experimental variogram. The following methods of 
parameter estimation are used: ordinary least squares 
(OLS), weighted least squares (WLS), Cressie’s method, 
maximum-likelihood (ML) and restricted maximum-
likelihood (REML). Of these, the best for our purposes 
is the spherical model with REML estimation, 
which presents the lowest degree of prediction error.  
The parameter values obtained are Beta = -0.0249, 
Tausq (nugget) = 0.4403, Phi (range) = 34104.28, 
SigmaSq = 0.1401, and maximised log-likelihood  
= -298.2. 

By obtaining predictions over a grid of locations, 
it is possible to graphically visualise the behaviour 
throughout the surface of the region. Fig. 7 shows the 
prediction of the study variable for a grid of 20,000 
quadrants obtained from the estimated parameters 
of the model (ordinary kriging). This prediction map 
clearly shows two well-defined spaces from west to east 
and distinguishes very clearly the differences in the 
predictions for riverside woodland cover (hectares/km2) 

of the two provinces. In SW Granada, the predictions 
are much higher (0.40 to 0.70) than for Almería, which 
obtains values of around 0.10. Fig. 8 shows the contour 
map with the earlier predictions, on a 20000-quadrant 
grid, together with the variance of the predictions. 

Discussion

Differences between the two provinces are 
significant with respect to minimum temperatures, 
humidity, rainfall, and cloudy days, while the other 
variables (sunshine hours, maximum temperatures, and 
sunny days) are not statistically relevant [51-52]. For this 
reason and despite its spatial proximity, the two regions 
have very different characteristics, accentuated by the 
Föehm effect. The peaks of Sierra Nevada cause humid 
air arriving from Guadalquivir Valley to rise, and when 
the humidity is high enough, rain will fall. When this 
mountain is left behind, the air temperature increases, 
humidity falls, and rainfall is scarce, thus creating the 
Tabernas Desert (in Almería) [53]. As a result, riverside 
vegetation is greater in Almería while gallery forests are 
more abundant in Granada. 

In geostatistics, a great variety of models, methods, 
and techniques may be employed in the analysis, 
estimation, and visualisation of multivariate data, and 
many significant contributions have been made in this 
field [54]. The spatial prediction technique employed 
in this study can be used in various fields, including 
environmental science, making it possible to conduct 
spatial interpolations to the required degree of data 
detail, according to the grid considered. Many authors 
have applied such geostatistical techniques in areas such 
as soil analysis (for spatial sampling of soil [55] or in the 
analysis of soil properties [56-57]), in hydrogeology (to 
analyse groundwater constituents [58], considered as 
independent variables those related to location (altitude, 
latitude, longitude) and using universal kriging [59], and 
in climatology (for precipitation [60-61], temperature, or 
climate prediction [62]).  

 In this study, we highlight the differential features 
of two zones that, although geographically proximate, 
are very different. Future analyses will include other 
hydrological variables to improve the predictions 
obtained.

Conclusions 

Our study highlights territorial differences between 
Granada and Almería, and the existence of significant 
climatic differences between these provinces. The relief 
of the terrain and, in particular, the orientation of the 
Penibetic System, as regards the incidence of sunlight 
and of prevailing winds, are of fundamental importance 
and must be taken into account in order to distinguish 
between the climates of the SE and NW faces of these 
mountain ranges. 

Coefficients Estimate p-value

Intercept 40.0647 0.0002

Longitude x –0.7118 <0.0001

Latitude y –1.2052 <0.0001

Altitude z 0.0016 <0.0001

Total river surface v1 –0.1722 0.0940

Table 1. Model adjusted for the response variable.

Fig. 7. Grid of points obtained by ordinary kriging; REML 
estimation and spherical model.
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Our spatial analysis confirms relevant territorial 
differences regarding the surface areas of rivers and 
natural streams and also in relation to the types of 
rock to be found. Taking into account relevant physical 
variables, the spatial study of land characteristics  
allows us to detect geospatial differentiation that 
is particularly useful in territorial studies when 
heterogeneous environmental characteristics may 
be present. Through interpolation of spatial data 
with ordinary kriging, we have derived a spherical  
model with WLS estimation which not only provides 
successful predictions over the selected grid of  
locations but also visualizes the behaviour throughout 
each region. Our study highlights the existence of 
significant differences in the predictions made using 
such a grid.
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