
Introduction

Soil moisture content plays an important role in 
vegetation growth, which in turn determines ecological 
balance [1-4]. A strong understanding of soil moisture 
content can help assess vegetation growth and water 
deficit status. Whether crops need watering or if there 
are drought conditions can be determined by measuring 
soil moisture content [5-9]. 

Traditionally, equipment was used to measure soil 
moisture content at the sampling points; however, this 
method has certain disadvantages, like slower speed, 
limited sampling points, and extensive area under 
measurement, and monitoring results hardly reflect 
general soil moisture content status [10-14]. It is feasible 
to obtain soil moisture content from spectral reflectance, 
considering differences in spectral reflectance as a result 
of differences in soil moisture content, and mineral and 

organic matter content. Since remote sensing images 
cover the entire study area, soil moisture content for 
the entire region can be monitored, instead of for just 
representative points [15-19]. That is to say, remote 
sensing technology combined with modeling offers a 
better solution [20-23]. 

It should be noted that the choice of mathematical 
modeling is highly important given variations in soil 
content in each study region. Spectral measurement and 
soil moisture content measurement were first performed 
in this study using a spectrometer. The relationship 
between spectral bands and soil moisture content was 
later established through multiple linear regression 
techniques.

ASD FieldSpec Pro FR was used for spectral 
measurement of different soil types in the Maoergai 
Region, and spectral reflectance curves for each soil 
type were obtained. Similarly, soil samples were 
collected from different areas and dried to a constant 
weight. The spectral bands sensitive to soil moisture 
content were then identified. The reflectance of the 
most sensitive band having the largest coefficient of 
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determination was chosen using multiple regression 
analysis. A model was then built between reflectance 
of this sensitive band and soil moisture content. Finally, 
soil moisture content in the study area was retrieved 
using remote sensing images. This research sheds 
new light on drought monitoring over large areas and 
development of precision agriculture.

Material and Methods

An Overview of the Study Area

The Minjiang River is a tributary of the Yangtze 
River, and is located in the middle of Sichuan Province. 
Flowing at an altitude of 3,000-4,000 m, the Minjiang 
has rich vegetation and animal resources. Its full  
length is 337 km and the area of the drainage basin 
is 22,000 km2. The annual average temperature is 
5-6ºC, with high precipitation throughout the year. 
The upper reaches of the Minjiang include counties 
such as Wenchuan, Dujiangyan, Maoxian, Lixian, and 
Songpan, where water conservation facilities are more 
developed. Since the ecosystem of the upper reaches 
directly influences that of the lower reaches of Chengdu 
Plain and the Yangtze River, the upper reaches of the 
Minjiang were chosen as the representative region. The 
soil moisture content in this region was then gauged. 

In the extensive upper reaches of the Minjiang, the 
focus was on the Maoergai Region, which covers an 
area of 0.18 km2 and lies between Songpan and Heishui 
counties, as shown in Fig. 1. This region has diverse soil 
types featuring high soil moisture content. 

Soil Sample Collection and Processing

Sampling sites for each soil type were selected. 
Surface humus was removed during collection, and 
collection depth was 0-10 cm. The soil samples were 
weighed, placed into sealed bags, and numbered. 
The geographical position of the sampling point was 
determined with a hand-held GPS receiver, and the 
sampling point was numbered using its geographical 
position. 

The soil weight was recorded as a1 (exact to 
0.0001 g, including the aluminum case’s weight). 
At the laboratory, the soil sample was transferred to 
another dry aluminum case (with the same weight 
as the original case) and placed in an oven with 
temperature adjusted to 120ºC. The soil was weighed 
again after drying for 6-8 h with weight recorded as a2 
(including the aluminum case). The soil moisture content 
was calculated using the formula: 
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Spectral Data Acquisition and Processing

ASD FieldSpec Pro FR (measuring range 350-2,
500 nm) was used to collect spectral data of the soil.  
As the spectrometer was exposed to environmental 
factors, the soil’s measured reflectance may contain 
some deviations. Therefore, respective values were 
corrected using a standard whiteboard. The reflectance 
was measured thrice and values recorded three times 

Fig. 1. Sketch map of study area.
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each using a spectrometer for each measurement. Hence, 
9 measurements were obtained for each sampling site. 
The reflectance of the soil was calculated using the 
formula: 
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…where ρi is soil reflectance at i; Ii  and Ii
0 are radiation 

intensity of soil and whiteboard, at i, respectively; ρi
0  is 

whiteboard reflectance; and n is the number of sampling 
points, which is 9 in this study. 

Denoising was then performed on the spectral 
data collected in the field. The raw data was corrected 
using ViewSpec Pro software; the reflectance was 
subsequently averaged (of 9 measurements) after a 
smoothing process (by moving the averaging method 
under the MATLAB environment). 

The spectral reflectance curves after denoising and 
smoothing are displayed in Figs 2 and 3, and can be 
compared to those before smoothing. It can be seen that 
the curves are better after smoothing. 

Construction of Soil Parameter 
Prediction Model

The reflectance curves for different bands seem 
to coincide. To choose the most sensitive band, 
mathematical conversion was performed for the soil 
reflectance data. The logarithm of reflectance, reciprocal 
of reflectance, first-order differential of reciprocal of 
reflectance (Fig. 4), first-order differential of reflectance, 
and first-order differential of logarithm of reflectance 
were calculated. By doing so, the characteristic points 
on the spectral curves were obtained so as to determine 
the most sensitive band, and the non-linear influence was 
removed. 

The noise was especially large in the range  
350-450 nm and 2,451-2,500 nm using ASD FieldSpec 

Pro FR. Thus reflectance data within these two 
ranges were eliminated [10]. Correlation analysis 
was performed between each converted form of 
reflectance and soil moisture content. The coefficient 
of determination was calculated under MATLAB 
environment, as shown in Table 1.

After selecting the most sensitive band, the 
relationship between soil moisture content and 
reflectance of this sensitive band was modeled, as shown 
in Table 2. The largest coefficient of determination was 
found with reciprocal of reflectance. For the sake of 
comparison, soil moisture content was retrieved using 
reciprocal of reflectance and first-order differential of 
reflectance, respectively. 

Results and Discussion

Pretreatment of TM Images

To eliminate errors related to environmental factors 
(atmospheric reflection and refraction) and system-based 
sensor errors, the following procedures were performed: 
remote sensing images were corrected, including 

Fig. 2. Spectral reflectance curves after smoothing.

Fig. 3. Effect diagram of the rectangle in the above figure.

Fig. 4. First-order differential of logarithm of reflectance for 
A001 sample.
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radiation calibration, FLAASH atmospheric correction, 
image mosaics, and TM images of the study area were 
clipped (see Fig. 5). 

Obtaining Sensitive Bands on TM Images

For TM images with fewer bands, spectral 
reflectance at a longer wavelength needs to be retrieved 
accurately. In this case, spectral reflectance was obtained 
by fitting on TM images. This method had higher 

accuracy compared to using reflectance of an adjacent 
band as the reflectance, at a specific wavelength. 

Before fitting, reflectance of each band on TM 
images was determined as reflectance at the central 
wavelength of each band. Then reflectance at a specific 
wavelength was fitted, based on reflectance at the central 
wavelength of the adjacent band. 

For instance, spectral reflectance and corresponding 
reflectance at the central wavelength for a certain 
pixel in the fourth and the fifth bands were plotted on 
y-axis and x-axis, respectively, as shown in Fig. 6. The 

Converted form of reflectance Sensitive band (nm) Coefficient of determination

Reflectance 584   1085    1932 0.39009   0.22248  0.38427

Reciprocal of reflectance 584   1055    1271   1831 0.32474   0.29019  0.28969  0.26055

Logarithm of reflectance 584   1070    1930 0.40500   0.28236  0.22504

First-order differential of reflectance 856   1351    1611   2162   2256 0.77429   0.6936   0.53579  0.68900  0.68674

First-order differential of reciprocal 
of reflectance 673   1419    1635   2176   2257 0.74287   0.57351  0.57138  0.61766  0.74116

First-order differential of logarithm 
of reflectance 711   1423    1596   2176   2257 0.83206   0.85108  0.71136  0.80185  0.75118

Table 1. Converted forms of reflectance and corresponding sensitive bands.

Converted form of reflectance Mathematical model between soil moisture content 
and each form of reflectance

Coefficient 
of determination

Reflectance Y=0.2869+3.423x1085+( -11.342)x1932 R2=0.545177

Reciprocal of reflectance Y=0.2346+0.0050x584-0.0305 x1055+ 0.0199 x1831 R2=0.866349

Logarithm of reflectance Y=-0.05354 -0.09811 x584+0.24645 x1070 -0.16604 x1930 R2=0.678145

First-order differential of reflectance Y=0.20367+ 1249.3914 x2162 -1367.6815x2256 R2=0.708648

First-order differential of reciprocal of reflectance Y=0.20605 -0.78472 x673 -1.29663 x2257 R2=0.807532

First-order differential of logarithm of reflectance Y=0.95137 +32.96367x711 -0.78826 x1423-145.07185 x1596 R2=0.803321

Table 2. Mathematical model between soil moisture content and reflectance of the sensitive band.

Fig. 5. Pretreatment of TM images of the study area. Fig. 6. Curve before fitting.
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curve is shown in Fig. 7 after fitting and logarithmic 
transformation. 

Quantitative Retrieval of Soil Moisture Content

Under MATLAB environment [13] the image 
data was stored in ASCII format and subjected to 
mathematical processing. The images were then restored 
using remote sensing image processing software. Since 
the data in ASCII format was huge, all the data could 
not be read at a time; hence, the files in ASCII format 
were segmented. For instance, each TM images’ band 
had 1,996,446 double values, which means a large data 
load is required for fitting. After calculation, the files 
in ASCII format were segmented into 6 parts to be 
processed separately, as shown in Table 3. 

Classification maps based on soil moisture content 
retrieved from first-order differential of the reciprocal of 
reflectance are displayed in Fig. 8. 

It can be seen that the entire study area had high 
soil moisture content. Statistics derived from pixel 
values revealed that soil moisture content using the two 
methods differed slightly. Average soil moisture content 
retrieved from reciprocal of reflectance was 44.92%, 
while that retrieved from first-order differential of the 
reciprocal of reflectance was 66.59%. In earlier soil 
sample analysis, soil moisture content was generally 

around 40%. Soil moisture content retrieved from 
reciprocal of reflectance was more accurate than that 
retrieved from first-order differential of the reciprocal of 
reflectance. This coincided with the fact that coefficient 
of determination was higher when reciprocal of 
reflectance was used than when first-order differential of 
the reciprocal of reflectance was used.

Calculation of Soil Moisture Content 
in the Study Area 

Total Soil Moisture Content was Calculated 
for the Study Area

Assuming that soil density was 2.65 g/cm3, soil 
thickness was 0.1 m and pixel size of TM image was  
30 m, based on soil moisture content results (Fig. 8), then 

m s h wρ= ⋅ ⋅ ⋅∑                          (3)

…where m is total moisture content in surface soil, ρ is 
soil density, s is area of a single pixel, h is soil thickness 
and equal to 0.1m, and w is soil moisture content of each 
pixel. 

Moisture content of surface soil in the study area was 
then calculated as 2.14×108 t. 

Conclusions

In this paper the relationship between soil moisture 
and spectrum is analyzed using mathematical 
correlation. Soil moisture and soil spectral rate in 

Fig. 8. Classification map based on soil moisture content 
retrieved from first-order differential of reciprocal of reflectance.

Fig. 7. Curve after fitting.

Initial value 
for the 

second band

End value for 
the second 

band

Initial value 
for the third 

band

End value 
for the third 

band

1 332742 1 332742

332743 665484 332743 665484

665485 998226 665485 998226

998227 1330968 998227 1330968

1330969 1663710 1330969 1663710

1663711 1996446 1663711 1996446

Table 3. Initial values for each part.
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the study area was measured in the field, leading to 
the conclusion that correlation coefficients of soil 
moisture were relatively larger at 584 nm, 711 nm, 
1,055 nm, 1,420 nm, 1,635 nm, 2,176 nm, and 2,257 nm, 
respectively. Finally, the most appropriate regression 
model was selected by inverting the soil moisture 
through remote sensing images of the area under study:

584 1055 1831

673 2257

0.2346 0.0050 0.0305  0.0199 
0.20605 0.78472 1.29663 

Y x x x
Y x x

= + − +
= − −

(4) 

Surface soil moisture is 2.14×108 t, calculated 
based on Formula (3) and the TM image pixel. Thus, 
this provides a reference for studying soil moisture and 
environmental evaluation of larger areas using remote 
sensing data. 
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