
Introduction

Drought often occurs and is the costliest one of all 
natural disasters over the world, leading to significant 
societal, economic, and ecologic impacts [1-2]. Drought 
usually affects human lives more than any other form of 
natural hazards, and is widely considered to be the most 

complex and least understood of all the natural hazards 
[3-4]. Drought not only affects agricultural systems but 
also has a serious impact on the environment. Therefore, 
drought monitoring and assessment and so on, are hot 
topics among hydrologists and meteorologists, and attract 
world-wide attention [5-9].

In order to prevent and mitigate the effects of future 
occurrences of drought, a number of drought indices 
exist that have been used to represent different types 
of drought, including meteorological or climatological, 
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agricultural and hydrological drought, such as the Palmer 
index [10],the crop moisture index [11], the standardized 
precipitation index (SPI) [12], and the standardized 
precipitation evapotranspiration index (SPEI) [13] and 
so on. The Palmer index and SPI are traditionally the 
most welcome indices for forecasting drought due to 
their standardization. For the purposes of comparing 
drought conditions from different areas, which often 
have different hydrological balances, the most important 
characteristic of a drought index is its standardization [14]. 
Standardization of a drought index ensures independence 
from a geographical position, as the index in question 
is calculated with respect to the average precipitation in 
the same location [15]. The most important difference 
between Palmer and SPI is that Palmer has a complex 
structure with a very long memory, while SPI is an easily 
interpreted and simple-moving average process [16]. This 
characteristic has made SPI the most universal drought 
index. The SPEI index is based on precipitation and 
evapotranspiration, and the SPEI is used in risk analysis 
and decision-making analysis such as SPI, because it 
is simple, spatially invariant in its interpretation, and 
probabilistic. For the above reasons, we chose SPI and 
SPEI for drought forecasting in this paper.

Due to the impact of drought, an effective and timely 
monitoring system is required, the effective monitoring 
of drought can aid in the development of an early warning 
system [17].  At present a lot of models have been 
accepted as efficient tools for the modeling of complex 
hydrologic systems widely employed for forecasting, such 
as artificial neural networks (ANNs) and autoregressive 
moving average approach (ARMA) [18-20]. The ARMA 
technique assumes the time series to be stationary and 
to follow the normal distribution [21]. However, drought 
time series is usually characterized by features of both 
nonlinearity and unstableness; thus, linear-related 
time series forecasting techniques are not sufficient to 
capture the characteristics of hydrological time series 
[22]. Nevertheless, ANNs possess the strong ability of 
nonlinear function approximation and self-organizing 
and self-adaptive function. Some specific applications of 
ANNs to hydrology include the hybrid models for water 
quality prediction [23], the modeling of the rainfall-
runoff process [24], hydrologic time series modeling [25], 
sediment concentration estimation [26], and runoff and 
sediment yield modeling [27]. Although the utility of the 
ANNs approach for long-term forecasting of drought 
events has been certified [28], slow learning convergence 
speed is one of defects of ANNs for two key reasons: 
1) the slow gradient-based learning algorithms are 
extensively used to train neural networks, and 2) all the 
parameters of networks are tuned iteratively by using such 
learning algorithms. In order to overcome the drawback, 
an extreme learning machine (ELM) was proposed, and 
then online sequential extreme learning machine (OS-
ELM) and self-adaptive evolutionary extreme learning 
machine (SADE-ELM) were developed in the following 
years. ELM has been used to predict water electrical 
conductivity (EC) [29], groundwater level [30], fluoride 

contamination [31], monthly mean streamflow water level 
[32], wind speed [33-36], and drought [37]. OS-ELM has 
been used to recognize the different positions of arm 
movement [38], predict river water discharge [39], and 
diagnose the sensor fault of an aero engine [40]. SADE-
ELM has been used to predict the scour depth around 
bridge piers [41] and electricity price [42], and estimate soil 
temperature [43]. However, ELM, OS-ELM, and SADE-
ELM are rarely used in drought prediction applications in 
the meantime. Furthermore, to date no research has been 
published that uses an OS-ELM or SADE-ELM model to 
predict drought. The main objective of the present study 
is to investigate the ability of the ELM, OS-ELM, and 
SADE-ELM to predict drought in the Cai River Basin of 
east Vietnam.

Material and Methods 
 

Case Study Site and Data Collection

Case Study Site

The basin that we studied lies between latitudes 
12°02 4́9″and 12°36´13″N and between longitudes 
108°40´03″-109°11́ 38″E in Khanhhoa Province, Vietnam, 
with a total area of 1,889 (Fig. 1). This basin is located 
in a tropical monsoon zone that exhibits rather unique 
deformational features, and an oceanic climate. The 
average annual temperature and evaporation in the period 
1982-2012 was 26.9ºC and 1,310 mm, respectively. The 
average rainfall in the period 1982-2012 was 1,616 mm, 
and there are two distinct seasons: rainy and dry. The 
rainy season usually lasts from May to December, and 
rainfall is largely concentrated in September, October, 
and November, comprising 55% of the average annual 

Fig. 1. Cai River basin, Vietnam.
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rainfall. During many dry-season months no rain 
falls. With a high temperature foundation, the average 
annual temperature during many years is 26.7ºC, and 
the difference in temperature between the months is 
relatively small. The potential evaporation in this region 
is high, averaging approximately 1,200-1,600 mm/year.

Data Collection 

The daily 1983-2012 time series of rainfall and 
temperature datasets were collected from Khanhvinh 
Meteorological Station in Khanhhoa Province, Vietnam. 
The homogeneity and reliability of the datasets have 
been checked and firmly controlled by the Vietnam 
Institute of Meteorology and Hydrography. The Four 
SSTA datasets in the Nino12, Nino3, Nino4, and NinoW 
zones were obtained from the Comprehensive Ocean 
Atmosphere Data Set (COADS) online [44-45]. The data 
was standardized by dividing standard deviations and 
collected from 1982 to 2012 – a duration of 31 years. Due 
to the purposes of this research, the field of SSTA used in 
the Nino12, Nino3, Nino4, and NinoW zones was within 
the corresponding coordinates of (0°N-10°S; 90°E-80°W), 
(5°N-5°S; 150°W-80°W), (5°N-5°S; 160°E-150°W), and 
(15°N-0°S;130°E-150°E). A 2° latitude × 2° longitude 
resolution was applied, by using averaged computations 
from the original 1 × 1grid point datasets. 

Methods

Extreme Learning Machine

An extreme learning machine (ELM) proposed by 
[46] has been applied in order to study some problems, 
such as regression analysis and classification recognition. 
The ELM model is based on a single-hidden layer feed-
forward neural network (SLFN), which overcomes the 
shortcomings of training speed slowly, obtaining a local 
optimal solution easily, and being affected by the learning 
rate, when the traditional SLFN is training [47-49]. The 
primary advantage of the ELM is that the algorithm 

randomly produces the connection weight between the 
input layer and the hidden layer and the threshold of the 
hidden layer neuron, there is no need to adjust as much 
as the traditional neural network during training – we 
only need to set the number of the hidden layer neurons, 
and the only optimal solution can be obtained [48, 50]. 
The ELM model used in this study is shown in Fig. 2. 
The circle nodes are used to reflect different neurons.  
A three-layer structure of ELM divides into input layer, 
one hidden layer, and output layer. The individual 
neurons are connected between two layers; there is only a 
connection weight between adjacent two layers.

Assume data set X (model inputs variables) and 
Y comprised of N training data samples, i.e., 
(xi, yi) ∈ Rn × Rm, i = 1,2,L, N, and the hidden layer has 
l neurons. w is connection weight between the input 
layer neurons and the hidden layer neurons. β is 
connection weight between the hidden layer neurons 
and the output layer neurons. An ELM model can be 
expressed as follow [51]: 
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...where H represents the output matrix of the hidden 
layer and T is the label matrix.

It has been proven that if l = N, for any w and b 
randomly chosen, the training samples can be 
approximated with zero error by ELM and  

1
0

N

j j
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− =∑ . While N is larger, in order to reduce the 

amount of calculation we usually select l as smaller than 
N, and the training error by ELM can approximate any 
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value of test samples.
Hence, when the activation function g(x) is infinitely 

differentiable, the parameters of ELM do not need to be 
fully adjusted, while w and b can be randomly chosen and 
remain unchanged during training. Meanwhile, β can be 
obtained by the method of minimum norm least-squares 
and the solution of 'min H T

β
β −  is unique, which is 

^
'H Tβ += , where H+ is the Moore-Penrose generalized 

inverse of Matrix H.

Fig. 2. The structure of the ELM model.
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As analyzed in the above works, the modeling steps of 
ELM generally include the following:
 – Step 1. Determine the number of hidden layer neurons 

and randomly set the values of w and b
 – Step 2. Choose an activation function g(x), which is 

infinitely differentiable, and calculate Matrix H
 – Step 3. Calculate 

^
β :

^
'H Tβ +=

Online Sequential Extreme Learning Machine

An online sequential extreme learning machine 
(OS-ELM), as a new algorithm, was proposed by [52] 
for training sequential data. Compared to the ELM, the 
regularization parameters are used in the optimization 
ELM to increase accuracy and generation performance 
[51]. OS-ELM is composed of an initialization phase 
and sequential learning phase [53]. 

In the initialization phase, the output weight of the 
feed-forward neural networks is obtained through a 
few training samples. The sequential learning phase 
included using a single sample or a block of samples  
to update the output weight of the feed-forward  
neural networks acquired during the initialization 
phase. As described above, the aim of ELM is  

to calculate β0 to make 0 0min H T
β

β −
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TK H H P −= = . For the sake of simplicity, set 
k = 0, where k is a parameter that shows the number of 
data sets that are presented to the network. When k = 1, 
in order to calculate β1 as:
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Therefore, Eq.(5) is expressed:

                  (8)

When k = k + 1, the recursive formula is obtained as 
follow:

           (9)

From Eq. (9), in order to calculate 1kβ + , 
1
1kK −

+  is 
obtained using the Woodbury formula.

   (10)

And 1
1 1k kP K −

+ += , Eq.(9) is modified by using (10)

1 1 1 1 1( )T
k k k k k k kP H T Hβ β β+ + + + += + −        (11)

As analyzed above, the modeling steps of OS-ELM 
generally include the following:
 – Step 1) Calculate β0  in the way same as ELM.
 – Step 2) Use a single sample or a block of samples to 

update β0 to β1 .
 – Step 3) Return the final β.

Self-Adaptive Evolutionary Extreme 
Learning Machine

The self-adaptive evolutionary extreme learning 
machine (SADE-ELM) was developed by [54], which 
chooses trial vector generation strategies and some 
relative control parameters adaptively. A self-adaptive 
differential evolution algorithm is used to optimize the 
network input weights and hidden node biases, and the 
extreme learning machine is used to derive the network 
output weights [55-57]. We summarize SADE-ELM in 
the following steps.

Step 1. Initialization
Given a set of training data and l hidden nodes with 

an activation function g(x), a set of NP vectors where each 
one includes all the network hidden node parameters are 
initialized as the populations of the first generation

, 1,( , ) ,( , ) 1,( , ) ,( , ), , , , ,T T T T
k G k G l k G k G l k Ga a b bθ  = ∈ L L

   (12)

…where aj and bj  ( j = 1,2,…,l) are randomly generated, G 
represents the generation and k = 1, 2, …, NP.

Step 2. Calculate output weights and root mean square 
error

Calculate the network output weight matrix and root 
mean square error (RMSE) with respect to each population 
vector with the following equations, respectively:

, ,k G k GH Tβ +=                              (13)
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In the first generation, the population vector with the 
best RMSE is stored as θbest,1 and RMSEθbest,1.

Step 3. Mutation and crossover
The trial vector produces a strategy from a candidate 

pool for each target vector according to probability pt,G, 
where pt,G represents the probability that the strategy t 
(t = 1, 2, 3, 4) should be chosen at the Gth generation. 
It defines a fixed number of iterations (generations) as the 
learning period (LP), and the probability pt,G is updated in 
the following ways.
1. When G≤LP, all strategies have equal probability of 

selection, i.e., ,
1
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…where nst,G denotes the number of trial vectors produced 
by the tth strategy at gth generations (iterations) that 
can successfully enter the next generation while nft,g is 
the number of trial vectors generated by tth strategy at 
gth generations (iterations) that are discarded in the next 
generation. LP generations’ success and failure numbers 
of trail vectors are stored. Once the iterations go beyond 
the initial LP generations, the earliest records are removed 

and the new numbers in the current generation are stored. 
ε is a small positive constant value to avoid the possible 
null success rate. Meanwhile, a set of control parameters 
F and crossover rate CR are randomly generated for 
each target vector according to the normal distributions 
N(0.5,0.3) and N(0.5,0.1). For a given problem, proper 
values of CR usually fall into a small range, the mean 
value of CR is gradually adjusted using the values of 
previous CR that have successfully generated trail vectors 
and are able to enter the next generation.

Step 4. Evaluation
All the trail vectors uk,G+1 generated at the (G+1)th 

generation are evaluated using the equation above, where 
ε represents the preset small positive rate of tolerance. 
A smaller weight is used to make the neural network 
perform better in this respect and one more criteria 
is added as a norm of the output weight β. Steps 3 and 
4 continue until the finally set goal is reached or the 
maximum learning iterations are achieved.

Applying the Models in Forecasting Drought 

Calculating SPI and SPEI

SPI was established by [12]. The calculation  
formula is:

     

2
0 1 2

2 3
1 2 3

( )
1

c c c t
SPI S t

d t d t d t
+ +

= −
+ + +           (18)

…where 
2ln1/t F= , 1S =  when 0.5F > , 1S = −  

when 0.5F ≤ , F  is an accumulative probability function, 
0 2.515517c = , 1 0.8022853c = , 2 0.010328c = , 
1 1.432788d = , 2 0.189269d = , and 3 0.001308d = .

In order to calculate SPI, a long-term precipitation 
record is required to fit the gamma probability density 
function to the observed data. Based on the precipitation 
data from 1983 to 2012, SPI of different time scales (i.e., 
1, 3, 6, and 12 months) was calculated by using the SPI 
program online [58]. 

In order to calculate SPEI, which was introduced by 
[13], index (D) is cited to distinguish rainfall (P) and 
potential evaporation (PET). Index (D) indicates the 
redundancy or shortage of humidity, from which we can 
determine wet or dry conditions. Each period of increase 
or decrease in water discharge can be defined as:

               i i iD P PET= −                          (19)

Here, the Thornthwaite method is used to calculate 
PET. In the incremental or decremental series of water 
discharge, a negative value may occur. Therefore, SPEI 
uses 3 parameters of log-logistic probability distribution 
function to describe the probability of an event. The form 
of accumulative probability function is expressed as:
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...where parameters α, β, and γ may use the linear moments 
method to determine conformance. SPEI was calculated 
in the same manner as SPI.

According to the World Meteorological Organization 
(WMO), SPI and SPEI were classified by climatic 
conditions (drought or wet) and are shown in Table 1 [59].

Selection of Forecast Factors

To obtain reliable forecast results, it is important 
that the model chooses the reasonable predictors.  
The correlation matrices between SSTAs at four  
ENSO activities observation zones, which are Nino12, 
Nino3, Nino4, and NinoW with SPI/SPEI used to analyze 
the selection of potential factors serving the drought 
forecast.

Correlation equations are a way of studying  
the association between two or more random variables. 
We chose the correlation equation between SSTA and 
SPI/SPEI for determining correlation coefficients. If the 
correlation coefficient is positive (reflecting a covariant 
relationship), then the absolute value of correlation 
coefficient is greater, and the level of linear dependence 
between SSTA and SPI/SPEI is greater. The reverse 
holds if the correlation coefficient is negative (reflecting a 
counter covariant relationship).

In order to confirm a correlation matrix between 
SSTA and SPI/SPEI, we will employ the correlation 
between an SSTA data chain { }1 2, , , nx x x xL  and an SPI/
SPEI data chain { }1 2, , , ny y y yL , with n observatory 
value pairs{ },i ix y  ( 1, 2, , )i n= L . The data chains used 
for our calculation are described as follows:
1) Our SSTA data chain includes factors from SSTA 

in the Nino12, Nino3, and Nino4, and NinoW zones 
with time scales of 1, 3, 6, and 12 months. These are 
designated for the respective zones as N12j, N3j, N4j, 
and NWj. The index signs j = 1,2,L,12 indicate SSTA 
data at the jth  time (j = 1 at SSTA indicates the same 
period as SPI/SPEI, j = 2 indicates SSTA at one month 
ahead of SPI/SPEI, and j = 12 indicates SSTA at  
11 months prior to SPI/SPEI).

2) The comparative element series is given by the 
SPI/SPEI value series at the case study site, whose 
objects are denoted by SPIk, and SPEIk, where index 
k = 1,23,4. Here, k = 1 when SPI/SPEI is for one-month 
time scales, k = 2 when SPI/SPEI is for 3-month time 
scales, k = 3 when SPI/SPEI is for 6-month time scales, 
and k = 4 when SPI/SPEI is for 12-month time scales.
The correlation matrix results between SSTA and 

SPI/SPEI are shown in Fig. 3. The correlation between 
SSTA and SPI is greater than the correlation between 
SSTA and SPEI. However, there is one notable shared 
characteristic. That is, the correlation between SSTA and 
SPI/SPEI decreases gradually from NinoW to Nino4, then 
to Nino3, and is smallest in Nino12 zones. The correlation 
between SSTA and SPI/SPEI in NinoW is positive, while 
it is negative in most other cases. The SSTA and SPI/SPEI 
over 12-month time scales is most often the greatest, 
while it is smallest over 1-month time scales. 

The results for the correlation coefficient value 
between SSTA and SPI/SPEI indices show that the 
correlations at Nino3 and Nino12 zones are weaker than 
the correlation at NinoW and Nino4 zones, and when SPI/
SPEI is larger than SSTA from a range of 1 to 3 months, 
the highest correlation coefficient always occurs. We can 
find that the linear dependence between SSTA and SPI/
SPEI in the NinoW and Nino4 zones is high and close. 
Hence, we will choose SSTA data from these zones with 
a high coefficient of correlation with SPI/SPEI as forecast 
factors.

SPI/SPEI Classification SPI/SPEI Classification

2.00 or more Extremely -0.50 to -0.99 Mild drought

1.50 to 1.99 Very wet -1.00 to -1.49 Moderate drought

1.00 to 1.49 Moderately wet  -1.50 to -1.99 Severe drought

0.50 to 0.99 Mildly wet -2.0 or less Extreme drought

 -0.49 to 0.49 Normal

Table 1. Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI) classifications.

Fig. 3. Correlation between SSTA and SPI/SPEI.
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Input Variables

As mentioned above, SSTA data at the two zones 
NinoW and Nino4 with high correlation coefficient with 
SPI/SPEI are used as input variables. The SPI/SPEI values 
may contain a 1/3/6-month dry and a 1/3/6-month wet 
period in short-term periods, and this causes instability. 
Passages between positive and negative values occur 
more frequently, and this also results in instability. 
For this sake, the SPI/SPEI outputs for 12 months, as 
a long-term period, are considered to generate these 
models with ELM, OS-ELM, and SADE-ELM methods 
in this study. In the construction of the estimation 
models, different models are generated for the SPI/SPEI  
(12 months) outputs. The datasets are divided into 2 sub 
sets: training and testing datasets. The training dataset 
includes data records measured between the years 1983 
and 2008. In order to achieve a more reliable evaluation 
and comparison, the models are tested by evaluation if 
a dataset was not used during the training process. The 
testing dataset consists of data records observed between 
2009 and 2012.

Data Normalization

In order to accelerate the learning speed of the models, 
we need to carry out normalization processing with the 
value of SSTA and SPI/SPEI. Retaining original data 
makes the values in [-1, 1]. The normalization formula is 
as follows:

  
max min min

min
max min

( ) ( )
nor

x x x x
x x

x x
− ⋅ −

= +
−         (21)

…where x, xmax, and xmin are the original data, the maximum 
data, and the minimum data of the original data, and xnor 
is the normalized data. The mapminmax function is used 
to achieve this process in MATLAB.

Structures of the Models

The model structures have a great influence on the 
prediction results, and one of the most important steps is 
especially the selection of the input variables. Therefore, 
different estimation models are constructed for each 
phase. According to the research of [60], the lagged 
observations of the index (SPI) itself and precipitation 
were used as input variables to build the SPI forecasting 

model, and good predicting results were obtained. Hence, 
in this research, the lagged observations of SSTA data 
are used similarly. The models for 12 months are named 
SPI/SPEI-12. Four models with different input numbers 
and structures are constructed for each phase using 
these variables. In this study, forecasting models based 
on various combinations of SSTA events in NinoW and 
Nino4 are constructed (Table 2). The SSTA events in 
NinoW and Nino4 are named SSTAw and SSTA4.

Model Input structure Output

M1 SSTAw(t-1),SSTAw(t-2),SSTAw(t-3),SSTAw(t-4),SSTAw(t-5),SSTAw(t-6) SPI(t),SPEI(t)

M2 SSTAw(t-1),SSTAw(t-2),SSTAw(t-3),SSTAw(t-4),SSTAw(t-5),SSTA4(t-1) SPI(t),SPEI(t)

M3 SSTAw(t-1),SSTAw(t-2),SSTAw(t-3),SSTA4(t-1),SSTA4(t-2),SSTA4(t-3) SPI(t),SPEI(t)

M4 SSTAw(t-1),SSTAw(t-2),SSTAw(t-3),SSTAw(t-4),SSTA4(t-1),SSTA4(t-2) SPI(t),SPEI(t)

Table 2. Structures of forecasting models.

Neurons 
Networks Models Hidden neurons

ELM

SPI12

1 13

2 17

3 25

4 28

SPEI12

1 8

2 19

3 22

4 35

OS-ELM

SPI12

1 8

2 8

3 123

4 17

SPEI12

1 8

2 8

3 123

4 17

SADE-ELM

SPI12

1 3

2 3

3 3

4 3

SPEI12

1 4

2 6

3 3

4 2

Table 3. Optimal hidden neurons of all the models.
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The performance of the models for training and testing 
datasets is evaluated according to statistical criteria, 
such as the correlation coefficient (CORR), coefficient 
of determination (R2), and root mean square error 
(RMSE). CORR is a commonly used statistic, providing 
information on the strength of the linear relationship 
between the observed and computed values. R2 is one of 

the most widely employed statistics for evaluating model 
performance. The value of CORR and R2 close to 1.0 
indicates good model performance. The RMSE statistic 
indicates a model’s ability to predict a value separated 
from the mean, and a value of RMSE close to 0 indicates 
a good model performance.

Models
Training set Testing set

Times
RMSE CORR RMSE CORR

M1(for SPI-12)

ELM 0.5255 0.6686 0.5843 0.3540 0.0012 

OS-ELM 0.5068 0.6909 0.5457 0.5372 0.1370 

SADE-ELM 0.5317 0.7112 0.5406 0.5469 3.2906 

M1(for SPEI-12)

ELM 0.6305 0.6541 0.6998 0.3971 0.0431 

OS-ELM 0.5087 0.6801 0.5204 0.6134 0.1267 

SADE-ELM 0.5874 0.5791 0.6155 0.5267 

M2(for SPI-12)

ELM 0.5301 0.6638 0.5264 0.4096 0.0210 

OS-ELM 0.5084 0.6873 0.5982 0.5635 0.1241 

SADE-ELM 0.4613 0.4809 0.4747 0.5500 3.0625 

M2(for SPEI-12)

ELM 0.5431 0.6394 0.5793 0.4824 0.0312 

OS-ELM 0.5861 0.7036 0.6046 0.6205 0.1052 

SADE-ELM 0.4621 0.7273 0.5274 0.6251 3.4750 

M3(for SPI-12)

ELM 0.4711 0.4543 0.5202 0.2382 0.0341 

OS-ELM 0.7415 0.6820 0.7671 0.6786 0.0918 

SADE-ELM 0.4511 0.6353 0.4603 0.5708 3.5469 

M3(for SPEI-12)

ELM 0.5028 0.4887 0.5227 0.4758 0.0217 

OS-ELM 0.7146 0.6735 0.7002 0.7610 0.1093 

SADE-ELM 0.4506 0.7997 0.4933 0.7079 3.2110 

M4(for SPI-12)

ELM 0.5251 0.6694 0.5850 0.3450 0.0311 

OS-ELM 0.5639 0.7334 0.6061 0.5670 0.1121 

SADE-ELM 0.4339 0.7093 0.4372 0.6521 3.4610 

M4(for SPEI-12)

ELM 0.5362 0.6472 0.5673 0.5308 0.0112 

OS-ELM 0.6038 0.7550 0.6300 0.6047 0.1301 

SADE-ELM 0.4803 0.7501 0.5125 0.6525 3.2656 

Table 4. The average results of all the models during training and testing.
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Development of the Models

The ELM, OS-ELM, and SADE-ELM models are 
developed in a MATLAB environment. The computations 
related to all of the models including ELM, OS-ELM, and 
SADE-ELM were implemented in a computer with Inter 
core i5, 2.3-GHz CPU, and 8GB of RAM. The number 
of hidden nodes of each model is changeable for better 
accuracy, and the number of hidden neurons is selected 
via a trial and error method. The number of neurons 
between 1 and 200 is tested in hidden layers of these 
models. In each trail, the number of nodes in the hidden 
layer is increased gradually until the optimal nodes are 
achieved. There are a lot of popular activation functions, 
such as sigmoid, sine, hard-limit, and radial basis. The 
“sigmoid” activation function is chosen to develop the 
ELM models. The focus of the article is to compare the 
ability of the ELM and the ELM optimized by on  line 
sequence and self-adaptive evolutionary algorithm in 
drought prediction, so the OS-ELM and SADE-ELM 
models select the same activation function as ELM models 
for objective performance analysis and comparison. 
The optimal hidden neurons are listed in Table 3. Each 
model is run 10 times for the instability of the ELM, 
OS-ELM, and SADE-ELM methods, and all these results 
are collected by averaging multiple trails in the following 
section. According to the real world application, the 
number of populations NP is set to be 8 in the SADE-
ELM method. 

Results and Discussion

The average performance of a model (M1) with input 
variables including SSTAw at zone NinoW (the highest 
correlation SSTA and SPI/SPEI) and models (M3-M4) 
with input variables including SSTAw and SSTA4 trained 
by the ELM, OS-ELM, and SADE-ELM methods for 
predicting drought in both training and testing stages is 
shown in Table 4, respectively. From Table 4, it is seen 
that the SPI index delivers a similar performance to 
SPEI in all models. Higher prediction errors obtained by 
models in the testing dataset, compared with the training 
dataset, indicate that these models exhibit relatively 
better generalization as compared with the predictions. 
Meanwhile, the computer time required of OS-ELM and 
SADE-ELM is much more than the single ELM without 
the updating and optimization processes. 

It is clear from Figs 4 and 5 that almost all SADE-
ELM forecasting models for SPI/SPEI obtain the smallest 
RMSE, and the biggest CORR compared with the other 
models, and the ELM forecasting models for SPI/SPEI are 
superior to the OS-ELM forecasting models in terms of 
RMSE. However, it turns out just the opposite in terms 
of CORR. From the average results of all models, we can 
see that M2 by ELM, M1 by OS-ELM, and M4 by SADE-
ELM for SPI and M3 by ELM, M1 by OS-ELM, and 
M3 by SADE-ELM for SPEI are the best performance 
because the models have comparatively small RMSE and 
big CORR.

Fig. 4. Comparison of the average performances of the ELM, OS-ELM, and SADE-ELM models for SPI-12.

Fig. 5. Comparison of the average performances of the ELM, OS-ELM, and SADE-ELM models for SPEI-12.
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When the results for all models are compared for 
every trial, the models with highest performance are 
M2 (for SPI) and M3 (for SPEI) as trained by the ELM 
method, M1 (for SPI) and M1 (for SPEI) as trained by the 
OS-ELM method, and M4 (for SPI) and M3 (for SPEI) 

as trained by the SADE-ELM method. Figs 6-8 show 
the best performance in testing stages. R2 for the ELM, 
OS-ELM, and SADE-ELM models for SPI are 0.6243, 
0.6966, and 0.7122, respectively. Meanwhile, The R2 for 
the ELM, OS-ELM, and SADE-ELM models for SPEI 

Fig. 6. The best results of ELM model for SPI/SPEI.

Fig. 7. The best results of OS-ELM model for SPI/SPEI.
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Fig. 8. The best results of SADE-ELM model for SPI/SPEI.

Fig. 9. The boxplot of 10 times test of M4 for SPI.

Fig. 10. The boxplot of 10 times test of M4 for SPEI.
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are 0.6340, 0.7486, and 0.7355, respectively. We can find 
that the above-mentioned models trained by OS-ELM and 
SADE-ELM perform better than the models by ELM via 
the value of R2.

In order to compare the stability of ELM, OS-ELM, 
and SADE-ELM methods, and as it may require too much 
space to show the results for each phases, only a boxplot 
is used to present the results of 10 times test of the M4 
model by these methods. These results of M4 model are 
presented in Figs 9 and 10. Fig. 9 shows that the OS-ELM, 
and SADE-ELM for SPI are more stable than ELM. The 
reason is that the initial weights and thresholds of ELM 
are randomly chosen to make the results quite different. 
From Fig. 10, it is seen that SADE-ELM is still most 
stable, and OS-ELM is more stable than ELM in terms of 
CORR, but the stability of OS-ELM is almost the same 
as ELM in terms of RMSE. For the result of RMSE, the 
reason may be as follow: When each batch dataset was 
input to the model trained for updating the output weight 
by OS-ELM method, the data itself may lead to poor 
stability of the model.

As a result, it can be concluded from the forecasting 
results of the experiments of this study that the models 
trained by ELM for drought forecasting cannot give a 
satisfactory performance. Additionally, the OS-ELM 
method can achieve better performance than ELM. 
Meanwhile, the SADE-ELM method can be successfully 
applied and provide the highest accuracy and stability for 
drought forecasting.

Conclusions

This study investigated the ability of the ELM,  
OS-ELM, and SADE-ELM models to predict drought in 
Khanhhoa Province of Vietnam. The results demonstrated 
that the ELM, OS-ELM, and SADE-ELM models can 
be successfully applied for drought forecasting, but the 
ELM models cannot obtain satisfactory performance 
compared with OS-ELM and SADE-ELM models 
for drought prediction. Furthermore, the SADE-ELM 
models can provide higher accuracy and more stability 
for drought forecasting than OS-ELM models, and the 
OS-ELM models can achieve better performance than 
ELM. Additionally, this study found that using the lagged 
observations of SSTA data as input variables can predict 
drought in the study area effectively. Meanwhile, it was 
obtained that the computation time of ELM models is less 
than OS-ELM and SADE-ELM models, without a batch 
input and optimized process.
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