
Introduction

Deep learning as an important part of machine 
learning, and there is a very wide range of application 
space. TensorFlow as the representative of deep learning 
the mainstream framework is also increasingly favored 
by the majority of research workers. The autoregressive 
model mainly uses the linear combination of stochastic 

variables at a specific time to describe the random variable 
at a certain time later [1]. With the development of time, 
many researchers have expanded the autoregressive 
model and applied it to many fields such as Bayesian, 
structural vector, spatial heterogeneous [2-4], and so 
on. LSTM is a long- and short-memory artificial neural 
network proposed by Hochreiter et al. and modified and 
promoted by Alex Graves [5]. LSTM can learn the short- 
and long-term dependent information of time series. 
Since the neural network contains a time memory unit, 
it is suitable for processing and predicting the interval 
and delay events in the time series [6-9]. In the prediction 
of hydrological time series, SENF C. and others [10] 

Pol. J. Environ. Stud. Vol. 28, No. 2 (2019), 795-802

	  		   			    		   		  Original Research             

Simulating and Predicting of Hydrological Time 
Series Based on TensorFlow Deep Learning

Jinbo Qin1, Ji Liang1*, Tao Chen2, Xiaohui Lei3**, Aiqing Kang3

1Huazhong University of Science and Technology,Wuhan, China
2Electric Power Research Institute, Jilin Electric Power Co., Changcun, China

3State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin and China Institute 
of Water Resources and Hydropower Research, Beijing, China 

Received: 15 November 2017
Accepted: 23 December 2017

Abstract

Hydrological time series refers to the observation time point and the observed time value.  
The simulation and prediction of hydrological time series will greatly improve the predictability  
of hydrological time series, which is of great significance for hydrological forecasting. TensorFlow,  
the second generation of artificial intelligence learning system in Google, has been favored by a large 
number of researchers by virtue of its high flexibility, portability, multi-language support, and performance 
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the hydrological time series. The effect of the model was tested by fitting degrees and other indexes.  
The fitting degree of the AR model is 0.9551, and the fitting degree of the LSTM model is 0.8012,  
which shows the feasibility of the model for predicting the hydrological time series, and puts forward  
the solution for the limitation of the existing analysis results.
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adopt the Bayesian model; while XU M. and others use 
the Echo state network [11]. In addition, several modern 
analysis techniques, such as neural network, wavelet 
analysis, support vector machine, self memory model, 
and chaos theory are also used in hydrological time series 
prediction [12-15]. However, the traditional hydrological 
model or statistical model has the problems of local 
optimization, over fitting, or low operational efficiency. 
It is difficult to predict and simulate the current large 
amount of data, large number of iterations, and harsh 
environment of parameters. 

The AR model has a good autoregressive property. 
The model can push out the data at the front or rear 
of point N by the model, so its essence is similar to 
interpolation. Although its purpose is to increase the 
valid data, the AR model is a recursion from point N, 
and the interpolation points are derived from two points 
(or a few points). Therefore, the AR model is better than 
the traditional interpolation method. The LSTM model 
is different from the traditional neural network model in 
that it adds a practical processor that is set with three 
doors. The door can be judged according to the forgetting 
factor related to the model, to decide whether to leave the 
information, which will effectively avoid the cumulative 
error transmission and greatly improve the accuracy of 
forecasting and simulation. In view of the reasonable 
structure of the AR and LSTM models, it is suitable 
for dealing with the characteristics of time series.  
This paper attempts to apply deep learning technology 
to the LSTM and AR models, takes hydrological time 
series as the research object, and explores the application 
of deep learning in hydrology. And the ideal fitting effect 
is obtained.

Model Method and Operating Environment

TensorFlow Frame and its Characteristics

TensorFlow was originally developed by the Google 
Brain Group, part of the Google Machine Intelligence 
Research Institute, and is used primarily for deep neural 
networks and machine learning [16]. Google believes 
that machine learning is a key part of the future of new 
products and new technologies. The research in this area is 
also global and evolving quickly, but lacks a standardized 
tool, for which Google will open TensorFlow to create 
an open standard that allows all users to brainstorm and 
promote machine learning[17].

TensorFlow has the following features[18-20]:
1)	 High degree of flexibility: TensorFlow supports user-

defined data flow diagrams, the user can build a map, 
and describe the drive to calculate the internal period. 
By using the rich and practical toolkit provided by 
TensorFlow, users can assemble their own “subgraph” 
to achieve a special neural network function.

2)	 True portability: TensorFlow supports running on 
the CPU and GPU, which means that TensorFlow can 
not only run on a server with a special configuration, 

but for personal computer users can run unimpeded. 
TensorFlow can now scale on a number of CPU 
operations, and can be used in mobile apps.

3)	 Automatic differential design: a machine learning 
algorithm is based on the gradient of the calculation, 
and Tensorflow has the ability to automatically seek 
the differential for such operations. In use, it only 
needs to define the structure of the prediction model, 
this structure and the objective function together, and 
add data; Tensorflow will automatically calculate the 
relevant derivative for you.

4)	 Performance optimization: Tensorflow’s full support 
for threads, queues, asynchronous, and other 
operations can all play the computing power of 
personal computing equipment potential. The user can 
freely assign the calculated elements in the Tensorflow 
diagram to different devices, and Tensorflow can help 
you manage these different copies.
TensorFlow in development did not consider the 

backward compatibility issues, so the compatibility 
between the various versions of the poor, the AR model, 
and LSTM model were implementated using TensorFlow 
3.0 (released in July 2017). In this version of the 
introduction a TensorFlow Time Series module is used to 
simulate and predict time series.

Hydrological time series

In general, the time series consists of two parts  
[21-25]: the observed point in time and the observed  
actual value. In the field of hydrology, the observed time 
point is defined as the time point of the hydrological 
series. The specific time point is the daily date (d), and 
the observed actual value is defined as the daily flow 
(m3/s).

Operating environment

Currently TensorFlow has been running in the system 
environment for Windows 10 Professional (64bit). Python 
is an object-oriented interpreted computer programming 
language, with the advantages of simple and concise 
syntax. Both the AR model and the LSTM model use 
Python as the programming language, with version 3.5.4 
(64-bit). PyCharm is a Python IDE with a set of tools 
that can help users improve their efficiency when using 
Python. Use PyCharm as the Python IDE compilation 
platform, version 2017.2.2 for 64-bit.

Establishing the model

Establishing the AR model

The autoregressive model (which can be referred to 
as AR model) is one of the basic methods for statistically 
processing time series models [26-28]. In the TensorFlow 
time series module, an autoregressive model has been 
implemented.
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(1) Read hydrological time series data
Save the hydrological time series data in the CSV 

file by reading the tf.contrib package in the tensorflow 
framework and further calling the CSVReader command 
in the time series module to read the hydrological series 
data into the model. The code is:
csv_file_name = ‘./data/period_trend6.csv’
reader = tf.contrib.timeseries.CSVReader(csv_file_name)
(2) Define the input of the model

Create a train_input_fn as the input variable for the 
model. Call the RandomWindowInputFn command in the 
time series module, and you need to set the parameters 
of batch_size and window_size. Where batch_size 
represents the number of batches in the model (which 
means the smallest batch of data within the model), 
window_size represents the length of each series within 
a batch whose value is equal to the sum of the input and 
output values. The code is:

train_input_fn=tf.contrib.timeseries.
RandomWindowInputFn

(reader, batch_size=9, window_size=30)
(3) Define the AR model

The AR model is defined. Call the ARRegressor 
command in the time series module, where you need to 
set periodicities, input_window_size, output_window_
size, num_features, and loss five parameters. Where 
the periodicities represent the regularity of the series, 
this is 365 (yearly scale) or 30 (monthly scale). Output_
window_size represents the value of each output of the 
model, and the sum of input_window_size and output_
window_size is equal to the window_size value in the 
model input train_input_fn. Where window_size is 30, 
input_window_size is 20, and output_window_size is 
10, which means that the length of each series within 
a batch is 30, where the first 20 numbers are treated as 
input values for the model and the last 10 numbers as 
input values the target output value. The last parameter 
loss specifies which loss to take. There are two kinds of 
loss to choose: NORMAL_LIKELIHOOD_LOSS and 
SQUARED_LOSS, for the hydrological time series, with 
the choice of NORMAL_LIKELIHOOD_LOSS making 
for a better calculation. The num_features parameter 
represents the dimension of the number observed at a 
point in time. Each step here is a separate value, so num_
features is 1. The code is:

ar=tf.contrib.timeseries.ARRegressor
(periodicities=30, input_window_
size=20, output_window_size=10,

num_features=1,
loss=tf.contrib.timeseries.ARModel.
NORMAL_LIKELIHOOD_LOSS)

(4) Model training
For the defined AR model, call the train method for 

training, where steps for the training times can be set and 
where the training times is set to 2000 times. The code is:

ar.train(input_fn=train_input_fn, steps=2000)
(5) Model evaluation

The model evaluation indicates that the model is used 
to validate the fitting effect of the model by using the 

trained model to calculate it on the measured training 
set. The meaning of the AR model is to receive an input 
observation series of length 20 each time and output a 
prediction series of length 10. The entire training set 
(measured hydrological series) is a series of length 1000 
(based on the length of the hydrological series, where 
the length is assumed to be 1000). The first 20 numbers 
are entered as an “initial observation series” into the 
model, and the predicted values of the last 10 steps can 
be calculated. The next step, continue to take 20 numbers 
to predict, then 10 of these 20 numbers are the predicted 
values for the previous step, so the number of 20 new 
results as the next input value, and so on. Since the first 
20 numbers are unpredictable, we will eventually get 980 
predictions (simulate values) and record 980 predictions 
(simulate values) in evaluation [‘mean’]. There are several 
other key values, such as evaluation [‘loss’] for total 
loss, evaluation [‘times’] for evaluation time [‘mean’].  
The code is:

evaluation_input_fn = tf.contrib.timeseries.
WholeDatasetInputFn(reader)

evaluation = ar.evaluate(input_
fn=evaluation_input_fn, steps=1)

(6) Model prediction
For the established model, the value of the measured 

hydrological time series is predicted. The number of the 
predicted value is the prediction value of the model. When 
the step value is 31, it is the monthly prediction, and when 
the time value is 366, it is the annual prediction. The code 
here predicts 31 time points after 1000 steps (assuming 
an input series length of 1000). The corresponding value 
is stored in predictions [‘mean’]. The code is:

(predictions,) = tuple(ar.predict
(input_fn=tf.contrib.timeseries.
predict_continuation_input_fn

(evaluation, steps=31)))
(7) Output graphical simulation, prediction results

Data represents the measured value of the hydrological 
series, evaluates the model’s simulation value, predictions 
represent the predicted value of the model and call the 
matplotlib toolkit to plot the measured hydrological 
series value, the simulated value of the model, and the 
predicted value of the model on a graph and save it as a 
“predict_result.pdf” pdf file.

The code for importing the matplotlib toolkit is:
import matplotlib

matplotlib.use(‘agg’)
import matplotlib.pyplot as plt

Use the matplotlib toolkit in the drawing function and 
graphics file save function, the corresponding code:

plt.figure(figsize=(15, 5))
plt.plot(data[‘times’].reshape(-1), data[‘values’].

reshape(-1), label=’origin’)
plt.plot(evaluation[‘times’].reshape

(-1),evaluation[‘mean’].reshape(-1), label=’evaluation’)
plt.plot(predictions[‘times’].reshape

(-1),predictions[‘mean’].reshape(-1), label=’prediction’)
plt.xlabel(‘time_step’)

plt.ylabel(‘values’)
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plt.legend(loc=4)
plt.savefig(‘predict_result.pdf’)

Establishing the LSTM model

Long short term term (LSTM) is a time-recurrent 
neural network suitable for dealing with and predicting 
the relatively long events in the time series [29-31]. 
LSTM is different from recurrent neural network 
(RNN), mainly because it adds a “processor” to the 
algorithm that is useful or not. The structure of this 
processor is called cell. A cell that was placed three 
doors, respectively, called the input door, forget the door, 
and the output door. A message into the LSTM network, 
according to the rules to determine whether it is useful. 
Only to meet the algorithm authentication information 
will be left, do not match the information through the 
forgotten door was forgotten. That is, into the work of 
two out of the principle, you can solve the neural network 
in the repeated operation of long-term problems. It has 
been proven that LSTM is an effective technique for 
solving long-term dependency problems, and that the 
universality of this technology is very high, resulting in 
a great deal of change. Researchers have made their own 
variable versions based on LSTM, which allows LSTM 
to handle the ever-changing problems.
(1) Read hydrological time series data:

Save the hydrological time series data in the CSV 
file by calling the tf.contrib package in the tensorflow 
framework and further calling the CSVReader command 
in the timeseries module to read the hydrological series 
data into the model. The code is:
csv_file_name = path.join(“./data/eriod_trend_lstm.csv”)
reader = tf.contrib.timeseries.CSVReader(csv_file_name,

column_names=((tf.contrib.timeseries.
TrainEvalFeatures.TIMES,)

+ (tf.contrib.timeseries.TrainEvalFeatures.VALUES,)))
(2) Define the input of the model

Create a train_input_fn as the input variable for the 
model. Call the RandomWindowInputFn command in the 
timeseries module, and you need to set the parameters 
of batch_size and window_size. Where batch_size 
represents the number of hydrological seriess randomly 
selected in a batch, which means the smallest batch of 
data within the model, and window_size represents the 
length of each series within a batch. The code is:

train_input_fn = tf.contrib.timeseries.
RandomWindowInputFn(reader, batch_

size=17, window_size=30)
(3) Define the LSTM model

The LSTM model is defined. Call the timeseries 
module _TimeSeriesRegressor command, here need 
to set num_features, num_units, learning rate three 
parameters. Where num_features is 1, and its meaning 
is a univariate time series, that is, the amount observed 
on each point in time is only a single value; num_units 
is 128, which means that the LSTM model with a hidden 
layer size of 128 is used. Using the AdamOptimizer 

optimization algorithm provided by the train module 
in the TensorFlow framework to control the learning 
speed, AdamOptimizer achieves a learning rate of 0.001 
by using momentum, that is, the moving average of the 
parameters to improve the traditional gradient drop and 
to promote hyperparameter dynamic adjustment. The 
code is:

estimator = ts_estimators._TimeSeriesRegressor(
model=_LSTMModel(num_features=1, num_units=128),

     optimizer=tf.train.AdamOptimizer(0.001))
(4) Model training

On the definition of the LSTM model variable 
estimators, call train method for training, where steps for 
the training times can be set. The training times here is 
set to 2000 times.  The code is:

estimator.train(input_fn=train_input_fn, steps=2000)
(5) Model evaluation

Through the use of trained models in the measured 
training set on the calculation, the model of the 
fitting effect. The simulate values are recorded in the 
“evaluated” of the variables. Evaluated_times represents 
the corresponding point in time. Observed indicates 
the measured value, observed_times represents the 
corresponding point in time. The code is:

evaluation_input_fn = tf.contrib.timeseries.
WholeDatasetInputFn(reader)

evaluation = estimator.evaluate(input_
fn=evaluation_input_fn, steps=1)

(6) Model prediction
For the established model, the value of the measured 

hydrological series is predicted and the number of the 
predicted value is the prediction value of the model. When 
the step value is 31, it is the monthly prediction, and when 
the time value is 366, it is the annual prediction.  The 
“predicted” value is recorded in the variable. predicted_
times represents the corresponding point in time. The 
code is:

(predictions,) = tuple(estimator.predict(
input_fn=tf.contrib.timeseries.predict_

continuation_input_fn(evaluation, steps=31)))
(7) Output graphical simulation, prediction results

“Observed” represents the measured hydrological 
sequence values, “evaluated” represents the simulation 
values of the model, and “predicted” represents the 
prediction values of the model. By calling the matplotlib 
toolkit, the measured hydrological series values, the 
model’s simulation values and predictions are plotted on 
a graph. And save it as a “predict_result.pdf” pdf file.
Import the matplotlib toolkit corresponding code:

import matplotlib
matplotlib.use(“agg”)

import matplotlib.pyplot as plt
Use the matplotlib toolkit in the drawing function and 

graphics save function, the corresponding code:
plt.figure(figsize=(15, 5))

plt.axvline(181, linestyle=”dotted”, 
linewidth=4, color=’r’)

observed_lines = plt.plot(observed_times, 
observed, label=”observation”, color=”k”)



799Simulating and Predicting of Hydrological...

evaluation_lines = plt.plot (evaluated_times, 
evaluation, label = “evaluation”, color = “g”)
predicted_lines = plt.plot(predicted_times, 
predicted, label=”prediction”, color=”r”)
plt.legend(handles=[observed_lines[0], 
evaluated_lines[0], predicted_lines[0]], 

loc=”upper left”)
plt.savefig(‘predict_result.pdf’)

Results and Discussion

Model Effect Indicators

There are three statistical indicators used to evaluate 
the effect of the model: root mean square error (RMSE), 
the coefficient of determination (also known as coefficient 
of determination (R2)), and mean absolute error (MAE). 
RMSE is used to evaluate the residuals between the 
measured and predicted values and can be expressed as:

( )
N

yy
N

i
f

RMSE
∑

=

−
= 1

2
0

                   (1)

…where N is the total number of all values, y0 is 
the observed value, and yf  is a prediction value or an 
simulate value.

R2 is used to illustrate the degree to which the model’s 
predictive series interprets the measured hydrological 
series, which can be expressed as:

2

2

1

2

1

2
00

1
00

∑ 


 −∑ 


 −




 −∑ 


 −

==

==
N

i
ff

N

i

ff
N

i

yyyy

yyyy
R

           (2)

… where N is the total number of all values, y0 is the 
observed value, yf is a prediction value or an simulate 

value, 0y is the average of the observed values, and fy is 
the average of the predicted or simulated values.

MAE represents the absolute mean error between the 
measured value and the predicted value, which can be 
expressed as:
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…where N is the total number of all values, y0 is 
the observed value, and yf  is a prediction value or an 
simulate value.

For the three effect indicators, the smaller the MAE 
and RMSE, the higher the accuracy of the model; the 
closer the R2 is to 1, the better the model works.

Analysis of Model Operation Results

In this paper, the model data of the Hanjiang River 
Basin are used to calculate the model. The measured 
data of the AR model are from July 2015 to June 2016, 
and test data for prediction of measured data in July 
2016. The simulation uses data from January 2016 to 
June 2016, using the July 2016 flow data as simulation 
data. For the LSTM model, the prediction is based on 
the flow data from January 2016 to June 2016, which is 
used to evaluate the measured data in July 2016. The flow 
data from January 2006 to December 2015 are used as 
measured data. In January 2016 to December 2016 flow 
data as simulation evaluation data.

The operating parameters of the model are determined 
by the empirical method. Due to the large number of 
parameters, the parameters or variables of AR model 
parameter calibration are: input and output value, period, 
training times, and time scale; LSTM model parameter 
calibration of the parameters or variables: number of 
batch (batch_size), hidden layer size (num_units), period, 
training times, and time scales.

Table 1. AR model prediction/simulation parameters.

Table 2. LSTM model prediction/simulation parameters and results.

Input and output values Period (days) Training times Time Scale

Prediction
Input 20, output 10 30 2000 12 months-1 month

RMSE= 110.79 R2= 0.5080 MAE= 104.47

Simulation
Input 40, output 10 30 2000 6 months-1 month

RMSE= 29.05 R2= 0.9551 MAE= 13.30

Batch_size Num_units Period (days) Training times Time Scale

Prediction
20 200 30 3000 6 months-1 month

RMSE= 122.01 R2= 0.4543 MAE= 115.82

Simulation
20 200 30 2000 10 years-1 year

RMSE= 84.89 R2= 0.8012 MAE= 52.1062
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RMSE, goodness of fit (R2) and MAE were used to 
evaluate the effect of the two models. In the range of 
partial parameters, the corresponding parameters and the 
evaluation indexes are shown in Tables 1 and 2 when the 
optimal effect is reached.

From the simulation results we can see that the two 
models are better. Goodness of fit (R2) of the AR model 
is 0.9551, and the RMSE and MAE are small. In contrast, 
the LSTM model has a goodness of fit (R2) of 0.8012, and 
its simulation effect is within the qualified range, and its 
RMSE and MAE model error is greater. On the whole, 
the simulation results of the two models are above the 
qualified level, which shows that the two models are more 
feasible for the prediction of hydrological time series and 
have further research value.

Conclusion

Figs 1 and 2 show the comparison between the 
measured values and the simulated values. In terms 
of the prediction results, there are some limitations in 
the predicting abilities of the two models, which may 
be highly nonlinear and uncertain to the hydrological 
series [32] and so on. Compared with the LSTM model, 
the goodness of the AR model (R2) is better, and 
the RMSE and MAE are smaller, indicating that  

the residual between the measured value and the  
predicted value poor and absolute mean errors are 
smaller. On the whole, the prediction results of the two 
models under the existing parameters are not good, but 
the simulation results are better, indicating that the two 
models are available and there is still much room for 
improvement.

It is worth noting that the LSTM model has many 
parameters, and the learning rate and the optimization 
algorithm to improve the traditional gradient descent 
are also adjustable. If more comprehensive examination 
and comprehensive determination of each variable 
parameter or variable, its prediction effect will have more 
room for improvement. And there is a great difference 
between the maximum and the minimum values of the 
hydrological time series in the Hanjiang River Basin. If 
the non-stationary nature of the hydrological time series 
is reasonably analyzed and its stabilization is carried 
out, its simulation and prediction results will be greatly 
improved. 

Deep learning is currently a popular and widely 
used technology, its application in the hydrological area 
also needs further exploration, if the model of learning, 
training, prediction, and parameter automatic rate is 
linked to the use of optimization algorithm for automatic 
parameter calibration. And even that can be combined 
with TensorFlow’s distributed features, in the GPU to 

Fig. 1. AR model measured values ​​and simulated values.

Fig. 2. LSTM model measured values and simulated values.
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achieve distributed and efficient operation, which is the 
future depth of the field of learning a major trend, but 
also to achieve hydrological information, efficient, and 
correct choices.
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