
Introduction

Deep learning as an important part of machine
learning, and there is a very wide range of application
space. TensorFlow as the representative of deep learning
the mainstream framework is also increasingly favored
by the majority of research workers. The autoregressive
model mainly uses the linear combination of stochastic

variables at a specific time to describe the random variable
at a certain time later [1]. With the development of time,
many researchers have expanded the autoregressive
model and applied it to many fields such as Bayesian,
structural vector, spatial heterogeneous [2-4], and so
on. LSTM is a long- and short-memory artificial neural
network proposed by Hochreiter et al. and modified and
promoted by Alex Graves [5]. LSTM can learn the short-
and long-term dependent information of time series.
Since the neural network contains a time memory unit,
it is suitable for processing and predicting the interval
and delay events in the time series [6-9]. In the prediction
of hydrological time series, SENF C. and others [10]

Pol. J. Environ. Stud. Vol. 28, No. 2 (2019), 795-802

	 		 			 		 		 Original Research

Simulating and Predicting of Hydrological Time
Series Based on TensorFlow Deep Learning

Jinbo Qin1, Ji Liang1*, Tao Chen2, Xiaohui Lei3**, Aiqing Kang3

1Huazhong University of Science and Technology,Wuhan, China
2Electric Power Research Institute, Jilin Electric Power Co., Changcun, China

3State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin and China Institute
of Water Resources and Hydropower Research, Beijing, China

Received: 15 November 2017
Accepted: 23 December 2017

Abstract

Hydrological time series refers to the observation time point and the observed time value.
The simulation and prediction of hydrological time series will greatly improve the predictability
of hydrological time series, which is of great significance for hydrological forecasting. TensorFlow,
the second generation of artificial intelligence learning system in Google, has been favored by a large
number of researchers by virtue of its high flexibility, portability, multi-language support, and performance
optimization. However, the application of deep learning in hydrology is less. Based on the TensorFlow
framework, the AR model and the LSTM model are constructed in Python language. The hydrological
time series is used as the input object, and the model is deeply studied and trained to simulate and predict
the hydrological time series. The effect of the model was tested by fitting degrees and other indexes.
The fitting degree of the AR model is 0.9551, and the fitting degree of the LSTM model is 0.8012,
which shows the feasibility of the model for predicting the hydrological time series, and puts forward
the solution for the limitation of the existing analysis results.

Keywords:	 TensorFlow, deep learning, AR model, LSTM model, hydrological time series

*e-mail: larkwater1@163.com
**e-mail: lxh@iwhr.com

DOI: 10.15244/pjoes/81557 ONLINE PUBLICATION DATE: 2018-09-19

796 Qin J., et al.

adopt the Bayesian model; while XU M. and others use
the Echo state network [11]. In addition, several modern
analysis techniques, such as neural network, wavelet
analysis, support vector machine, self memory model,
and chaos theory are also used in hydrological time series
prediction [12-15]. However, the traditional hydrological
model or statistical model has the problems of local
optimization, over fitting, or low operational efficiency.
It is difficult to predict and simulate the current large
amount of data, large number of iterations, and harsh
environment of parameters.

The AR model has a good autoregressive property.
The model can push out the data at the front or rear
of point N by the model, so its essence is similar to
interpolation. Although its purpose is to increase the
valid data, the AR model is a recursion from point N,
and the interpolation points are derived from two points
(or a few points). Therefore, the AR model is better than
the traditional interpolation method. The LSTM model
is different from the traditional neural network model in
that it adds a practical processor that is set with three
doors. The door can be judged according to the forgetting
factor related to the model, to decide whether to leave the
information, which will effectively avoid the cumulative
error transmission and greatly improve the accuracy of
forecasting and simulation. In view of the reasonable
structure of the AR and LSTM models, it is suitable
for dealing with the characteristics of time series.
This paper attempts to apply deep learning technology
to the LSTM and AR models, takes hydrological time
series as the research object, and explores the application
of deep learning in hydrology. And the ideal fitting effect
is obtained.

Model Method and Operating Environment

TensorFlow Frame and its Characteristics

TensorFlow was originally developed by the Google
Brain Group, part of the Google Machine Intelligence
Research Institute, and is used primarily for deep neural
networks and machine learning [16]. Google believes
that machine learning is a key part of the future of new
products and new technologies. The research in this area is
also global and evolving quickly, but lacks a standardized
tool, for which Google will open TensorFlow to create
an open standard that allows all users to brainstorm and
promote machine learning[17].

TensorFlow has the following features[18-20]:
1)	 High degree of flexibility: TensorFlow supports user-

defined data flow diagrams, the user can build a map,
and describe the drive to calculate the internal period.
By using the rich and practical toolkit provided by
TensorFlow, users can assemble their own “subgraph”
to achieve a special neural network function.

2)	 True portability: TensorFlow supports running on
the CPU and GPU, which means that TensorFlow can
not only run on a server with a special configuration,

but for personal computer users can run unimpeded.
TensorFlow can now scale on a number of CPU
operations, and can be used in mobile apps.

3)	 Automatic differential design: a machine learning
algorithm is based on the gradient of the calculation,
and Tensorflow has the ability to automatically seek
the differential for such operations. In use, it only
needs to define the structure of the prediction model,
this structure and the objective function together, and
add data; Tensorflow will automatically calculate the
relevant derivative for you.

4)	 Performance optimization: Tensorflow’s full support
for threads, queues, asynchronous, and other
operations can all play the computing power of
personal computing equipment potential. The user can
freely assign the calculated elements in the Tensorflow
diagram to different devices, and Tensorflow can help
you manage these different copies.
TensorFlow in development did not consider the

backward compatibility issues, so the compatibility
between the various versions of the poor, the AR model,
and LSTM model were implementated using TensorFlow
3.0 (released in July 2017). In this version of the
introduction a TensorFlow Time Series module is used to
simulate and predict time series.

Hydrological time series

In general, the time series consists of two parts
[21-25]: the observed point in time and the observed
actual value. In the field of hydrology, the observed time
point is defined as the time point of the hydrological
series. The specific time point is the daily date (d), and
the observed actual value is defined as the daily flow
(m3/s).

Operating environment

Currently TensorFlow has been running in the system
environment for Windows 10 Professional (64bit). Python
is an object-oriented interpreted computer programming
language, with the advantages of simple and concise
syntax. Both the AR model and the LSTM model use
Python as the programming language, with version 3.5.4
(64-bit). PyCharm is a Python IDE with a set of tools
that can help users improve their efficiency when using
Python. Use PyCharm as the Python IDE compilation
platform, version 2017.2.2 for 64-bit.

Establishing the model

Establishing the AR model

The autoregressive model (which can be referred to
as AR model) is one of the basic methods for statistically
processing time series models [26-28]. In the TensorFlow
time series module, an autoregressive model has been
implemented.

797Simulating and Predicting of Hydrological...

(1) Read hydrological time series data
Save the hydrological time series data in the CSV

file by reading the tf.contrib package in the tensorflow
framework and further calling the CSVReader command
in the time series module to read the hydrological series
data into the model. The code is:
csv_file_name = ‘./data/period_trend6.csv’
reader = tf.contrib.timeseries.CSVReader(csv_file_name)
(2) Define the input of the model

Create a train_input_fn as the input variable for the
model. Call the RandomWindowInputFn command in the
time series module, and you need to set the parameters
of batch_size and window_size. Where batch_size
represents the number of batches in the model (which
means the smallest batch of data within the model),
window_size represents the length of each series within
a batch whose value is equal to the sum of the input and
output values. The code is:

train_input_fn=tf.contrib.timeseries.
RandomWindowInputFn

(reader, batch_size=9, window_size=30)
(3) Define the AR model

The AR model is defined. Call the ARRegressor
command in the time series module, where you need to
set periodicities, input_window_size, output_window_
size, num_features, and loss five parameters. Where
the periodicities represent the regularity of the series,
this is 365 (yearly scale) or 30 (monthly scale). Output_
window_size represents the value of each output of the
model, and the sum of input_window_size and output_
window_size is equal to the window_size value in the
model input train_input_fn. Where window_size is 30,
input_window_size is 20, and output_window_size is
10, which means that the length of each series within
a batch is 30, where the first 20 numbers are treated as
input values for the model and the last 10 numbers as
input values the target output value. The last parameter
loss specifies which loss to take. There are two kinds of
loss to choose: NORMAL_LIKELIHOOD_LOSS and
SQUARED_LOSS, for the hydrological time series, with
the choice of NORMAL_LIKELIHOOD_LOSS making
for a better calculation. The num_features parameter
represents the dimension of the number observed at a
point in time. Each step here is a separate value, so num_
features is 1. The code is:

ar=tf.contrib.timeseries.ARRegressor
(periodicities=30, input_window_
size=20, output_window_size=10,

num_features=1,
loss=tf.contrib.timeseries.ARModel.
NORMAL_LIKELIHOOD_LOSS)

(4) Model training
For the defined AR model, call the train method for

training, where steps for the training times can be set and
where the training times is set to 2000 times. The code is:

ar.train(input_fn=train_input_fn, steps=2000)
(5) Model evaluation

The model evaluation indicates that the model is used
to validate the fitting effect of the model by using the

trained model to calculate it on the measured training
set. The meaning of the AR model is to receive an input
observation series of length 20 each time and output a
prediction series of length 10. The entire training set
(measured hydrological series) is a series of length 1000
(based on the length of the hydrological series, where
the length is assumed to be 1000). The first 20 numbers
are entered as an “initial observation series” into the
model, and the predicted values of the last 10 steps can
be calculated. The next step, continue to take 20 numbers
to predict, then 10 of these 20 numbers are the predicted
values for the previous step, so the number of 20 new
results as the next input value, and so on. Since the first
20 numbers are unpredictable, we will eventually get 980
predictions (simulate values) and record 980 predictions
(simulate values) in evaluation [‘mean’]. There are several
other key values, such as evaluation [‘loss’] for total
loss, evaluation [‘times’] for evaluation time [‘mean’].
The code is:

evaluation_input_fn = tf.contrib.timeseries.
WholeDatasetInputFn(reader)

evaluation = ar.evaluate(input_
fn=evaluation_input_fn, steps=1)

(6) Model prediction
For the established model, the value of the measured

hydrological time series is predicted. The number of the
predicted value is the prediction value of the model. When
the step value is 31, it is the monthly prediction, and when
the time value is 366, it is the annual prediction. The code
here predicts 31 time points after 1000 steps (assuming
an input series length of 1000). The corresponding value
is stored in predictions [‘mean’]. The code is:

(predictions,) = tuple(ar.predict
(input_fn=tf.contrib.timeseries.
predict_continuation_input_fn

(evaluation, steps=31)))
(7) Output graphical simulation, prediction results

Data represents the measured value of the hydrological
series, evaluates the model’s simulation value, predictions
represent the predicted value of the model and call the
matplotlib toolkit to plot the measured hydrological
series value, the simulated value of the model, and the
predicted value of the model on a graph and save it as a
“predict_result.pdf” pdf file.

The code for importing the matplotlib toolkit is:
import matplotlib

matplotlib.use(‘agg’)
import matplotlib.pyplot as plt

Use the matplotlib toolkit in the drawing function and
graphics file save function, the corresponding code:

plt.figure(figsize=(15, 5))
plt.plot(data[‘times’].reshape(-1), data[‘values’].

reshape(-1), label=’origin’)
plt.plot(evaluation[‘times’].reshape

(-1),evaluation[‘mean’].reshape(-1), label=’evaluation’)
plt.plot(predictions[‘times’].reshape

(-1),predictions[‘mean’].reshape(-1), label=’prediction’)
plt.xlabel(‘time_step’)

plt.ylabel(‘values’)

798 Qin J., et al.

plt.legend(loc=4)
plt.savefig(‘predict_result.pdf’)

Establishing the LSTM model

Long short term term (LSTM) is a time-recurrent
neural network suitable for dealing with and predicting
the relatively long events in the time series [29-31].
LSTM is different from recurrent neural network
(RNN), mainly because it adds a “processor” to the
algorithm that is useful or not. The structure of this
processor is called cell. A cell that was placed three
doors, respectively, called the input door, forget the door,
and the output door. A message into the LSTM network,
according to the rules to determine whether it is useful.
Only to meet the algorithm authentication information
will be left, do not match the information through the
forgotten door was forgotten. That is, into the work of
two out of the principle, you can solve the neural network
in the repeated operation of long-term problems. It has
been proven that LSTM is an effective technique for
solving long-term dependency problems, and that the
universality of this technology is very high, resulting in
a great deal of change. Researchers have made their own
variable versions based on LSTM, which allows LSTM
to handle the ever-changing problems.
(1) Read hydrological time series data:

Save the hydrological time series data in the CSV
file by calling the tf.contrib package in the tensorflow
framework and further calling the CSVReader command
in the timeseries module to read the hydrological series
data into the model. The code is:
csv_file_name = path.join(“./data/eriod_trend_lstm.csv”)
reader = tf.contrib.timeseries.CSVReader(csv_file_name,

column_names=((tf.contrib.timeseries.
TrainEvalFeatures.TIMES,)

+ (tf.contrib.timeseries.TrainEvalFeatures.VALUES,)))
(2) Define the input of the model

Create a train_input_fn as the input variable for the
model. Call the RandomWindowInputFn command in the
timeseries module, and you need to set the parameters
of batch_size and window_size. Where batch_size
represents the number of hydrological seriess randomly
selected in a batch, which means the smallest batch of
data within the model, and window_size represents the
length of each series within a batch. The code is:

train_input_fn = tf.contrib.timeseries.
RandomWindowInputFn(reader, batch_

size=17, window_size=30)
(3) Define the LSTM model

The LSTM model is defined. Call the timeseries
module _TimeSeriesRegressor command, here need
to set num_features, num_units, learning rate three
parameters. Where num_features is 1, and its meaning
is a univariate time series, that is, the amount observed
on each point in time is only a single value; num_units
is 128, which means that the LSTM model with a hidden
layer size of 128 is used. Using the AdamOptimizer

optimization algorithm provided by the train module
in the TensorFlow framework to control the learning
speed, AdamOptimizer achieves a learning rate of 0.001
by using momentum, that is, the moving average of the
parameters to improve the traditional gradient drop and
to promote hyperparameter dynamic adjustment. The
code is:

estimator = ts_estimators._TimeSeriesRegressor(
model=_LSTMModel(num_features=1, num_units=128),

 optimizer=tf.train.AdamOptimizer(0.001))
(4) Model training

On the definition of the LSTM model variable
estimators, call train method for training, where steps for
the training times can be set. The training times here is
set to 2000 times. The code is:

estimator.train(input_fn=train_input_fn, steps=2000)
(5) Model evaluation

Through the use of trained models in the measured
training set on the calculation, the model of the
fitting effect. The simulate values are recorded in the
“evaluated” of the variables. Evaluated_times represents
the corresponding point in time. Observed indicates
the measured value, observed_times represents the
corresponding point in time. The code is:

evaluation_input_fn = tf.contrib.timeseries.
WholeDatasetInputFn(reader)

evaluation = estimator.evaluate(input_
fn=evaluation_input_fn, steps=1)

(6) Model prediction
For the established model, the value of the measured

hydrological series is predicted and the number of the
predicted value is the prediction value of the model. When
the step value is 31, it is the monthly prediction, and when
the time value is 366, it is the annual prediction. The
“predicted” value is recorded in the variable. predicted_
times represents the corresponding point in time. The
code is:

(predictions,) = tuple(estimator.predict(
input_fn=tf.contrib.timeseries.predict_

continuation_input_fn(evaluation, steps=31)))
(7) Output graphical simulation, prediction results

“Observed” represents the measured hydrological
sequence values, “evaluated” represents the simulation
values of the model, and “predicted” represents the
prediction values of the model. By calling the matplotlib
toolkit, the measured hydrological series values, the
model’s simulation values and predictions are plotted on
a graph. And save it as a “predict_result.pdf” pdf file.
Import the matplotlib toolkit corresponding code:

import matplotlib
matplotlib.use(“agg”)

import matplotlib.pyplot as plt
Use the matplotlib toolkit in the drawing function and

graphics save function, the corresponding code:
plt.figure(figsize=(15, 5))

plt.axvline(181, linestyle=”dotted”,
linewidth=4, color=’r’)

observed_lines = plt.plot(observed_times,
observed, label=”observation”, color=”k”)

799Simulating and Predicting of Hydrological...

evaluation_lines = plt.plot (evaluated_times,
evaluation, label = “evaluation”, color = “g”)
predicted_lines = plt.plot(predicted_times,
predicted, label=”prediction”, color=”r”)
plt.legend(handles=[observed_lines[0],
evaluated_lines[0], predicted_lines[0]],

loc=”upper left”)
plt.savefig(‘predict_result.pdf’)

Results and Discussion

Model Effect Indicators

There are three statistical indicators used to evaluate
the effect of the model: root mean square error (RMSE),
the coefficient of determination (also known as coefficient
of determination (R2)), and mean absolute error (MAE).
RMSE is used to evaluate the residuals between the
measured and predicted values and can be expressed as:

()
N

yy
N

i
f

RMSE
∑

=

−
= 1

2
0

 (1)

…where N is the total number of all values, y0 is
the observed value, and yf is a prediction value or an
simulate value.

R2 is used to illustrate the degree to which the model’s
predictive series interprets the measured hydrological
series, which can be expressed as:

2

2

1

2

1

2
00

1
00

∑ 


 −∑ 


 −




 −∑ 


 −

==

==
N

i
ff

N

i

ff
N

i

yyyy

yyyy
R

 (2)

… where N is the total number of all values, y0 is the
observed value, yf is a prediction value or an simulate

value, 0y is the average of the observed values, and fy is
the average of the predicted or simulated values.

MAE represents the absolute mean error between the
measured value and the predicted value, which can be
expressed as:

N

yy
N

i
f

MAE
∑

=

−
= 1

0

 (3)

…where N is the total number of all values, y0 is
the observed value, and yf is a prediction value or an
simulate value.

For the three effect indicators, the smaller the MAE
and RMSE, the higher the accuracy of the model; the
closer the R2 is to 1, the better the model works.

Analysis of Model Operation Results

In this paper, the model data of the Hanjiang River
Basin are used to calculate the model. The measured
data of the AR model are from July 2015 to June 2016,
and test data for prediction of measured data in July
2016. The simulation uses data from January 2016 to
June 2016, using the July 2016 flow data as simulation
data. For the LSTM model, the prediction is based on
the flow data from January 2016 to June 2016, which is
used to evaluate the measured data in July 2016. The flow
data from January 2006 to December 2015 are used as
measured data. In January 2016 to December 2016 flow
data as simulation evaluation data.

The operating parameters of the model are determined
by the empirical method. Due to the large number of
parameters, the parameters or variables of AR model
parameter calibration are: input and output value, period,
training times, and time scale; LSTM model parameter
calibration of the parameters or variables: number of
batch (batch_size), hidden layer size (num_units), period,
training times, and time scales.

Table 1. AR model prediction/simulation parameters.

Table 2. LSTM model prediction/simulation parameters and results.

Input and output values Period (days) Training times Time Scale

Prediction
Input 20, output 10 30 2000 12 months-1 month

RMSE= 110.79 R2= 0.5080 MAE= 104.47

Simulation
Input 40, output 10 30 2000 6 months-1 month

RMSE= 29.05 R2= 0.9551 MAE= 13.30

Batch_size Num_units Period (days) Training times Time Scale

Prediction
20 200 30 3000 6 months-1 month

RMSE= 122.01 R2= 0.4543 MAE= 115.82

Simulation
20 200 30 2000 10 years-1 year

RMSE= 84.89 R2= 0.8012 MAE= 52.1062

800 Qin J., et al.

RMSE, goodness of fit (R2) and MAE were used to
evaluate the effect of the two models. In the range of
partial parameters, the corresponding parameters and the
evaluation indexes are shown in Tables 1 and 2 when the
optimal effect is reached.

From the simulation results we can see that the two
models are better. Goodness of fit (R2) of the AR model
is 0.9551, and the RMSE and MAE are small. In contrast,
the LSTM model has a goodness of fit (R2) of 0.8012, and
its simulation effect is within the qualified range, and its
RMSE and MAE model error is greater. On the whole,
the simulation results of the two models are above the
qualified level, which shows that the two models are more
feasible for the prediction of hydrological time series and
have further research value.

Conclusion

Figs 1 and 2 show the comparison between the
measured values and the simulated values. In terms
of the prediction results, there are some limitations in
the predicting abilities of the two models, which may
be highly nonlinear and uncertain to the hydrological
series [32] and so on. Compared with the LSTM model,
the goodness of the AR model (R2) is better, and
the RMSE and MAE are smaller, indicating that

the residual between the measured value and the
predicted value poor and absolute mean errors are
smaller. On the whole, the prediction results of the two
models under the existing parameters are not good, but
the simulation results are better, indicating that the two
models are available and there is still much room for
improvement.

It is worth noting that the LSTM model has many
parameters, and the learning rate and the optimization
algorithm to improve the traditional gradient descent
are also adjustable. If more comprehensive examination
and comprehensive determination of each variable
parameter or variable, its prediction effect will have more
room for improvement. And there is a great difference
between the maximum and the minimum values of the
hydrological time series in the Hanjiang River Basin. If
the non-stationary nature of the hydrological time series
is reasonably analyzed and its stabilization is carried
out, its simulation and prediction results will be greatly
improved.

Deep learning is currently a popular and widely
used technology, its application in the hydrological area
also needs further exploration, if the model of learning,
training, prediction, and parameter automatic rate is
linked to the use of optimization algorithm for automatic
parameter calibration. And even that can be combined
with TensorFlow’s distributed features, in the GPU to

Fig. 1. AR model measured values ​​and simulated values.

Fig. 2. LSTM model measured values and simulated values.

801Simulating and Predicting of Hydrological...

achieve distributed and efficient operation, which is the
future depth of the field of learning a major trend, but
also to achieve hydrological information, efficient, and
correct choices.

Acknowledgements

This research is supported by the 2017 Independent
Innovation Fund-General Program (2017KFYXJJ202)
and National Key R&D Program of China
(2017YFC0405900).

Conflict of Interest

The authors declare no conflict of interest.

References

1.	 TERASVIRTA T. Estimation and evaluation of smooth
transition autoregressive models. Journal of the American
Statistical Association, 89 (425), 208, 1994.

2.	 HAN X., HSIEH C.S., LEE L.F. Estimation and model
selection of higher-order spatial autoregressive model: an
efficient bayesian approach. Regional Science & Urban
Economics, 63, 97, 2017.

3.	 TSIONAS M.G., CHEN Z., WANKE P.A. Structural vector
autoregressive model of technical efficiency and delays
with an application to chinese airlines. Transportation
Research Part A Policy & Practice, 101, 1, 2017.

4.	 HWANG E., DONG W.S. Stationary bootstrapping for
structural break tests for a heterogeneous autoregressive
model. Communications for Statistical Applications and
Methods, 24 (4), 367, 2017.

5.	 RIVEST F., KALASKA J.F., BENGIO Y. Conditioning and
time representation in long short-term memory networks.
Biological Cybernetics, 108 (1), 23, 2014.

6.	 CAI M., LIU J., CAI M., LIU J., CAI M., LIU J. Maxout
neurons for deep convolutional and lstm neural networks in
speech recognition. Speech Communication, 77, 53, 2016.

7.	 HANSSON M. On stock return prediction with lstm
networks. Asaio Journal, 40 (4), 928, 2017.

8.	 HANSON J., YANG Y., PALIWAL K., ZHOU Y.
Improving protein disorder prediction by deep bidirectional
long short-term memory recurrent neural networks.
Bioinformatics, 33 (5), 685, 2017.

9.	 JIA G., LU Y., LU W., SHI Y., YANG J. Verification
method for chinese aviation radiotelephony
readbacks based on lstm-rnn. Electronics Letters, 53 (6),
401, 2017.

10.	 SENF C., PFLUGMACHER D., HEURICH M., KRUEGER
T. A bayesian hierarchical model for estimating spatial and
temporal variation in vegetation phenology from landsat
time series. Remote Sensing of Environment, 194, 155,
2017.

11.	 XU M., HAN M. Adaptive elastic echo state network for
multivariate time series prediction. IEEE Transactions on
Cybernetics, 46 (10), 2173, 2017.

12.	CHAYAMA M., HIRATA Y. When univariate model-free
time series prediction is better than multivariate. Physics
Letters A, 380 (31-32), 2359, 2016.

13.	 REICH N.G., LESSLER J., SAKREJDA K., LAUER
S.A., IAMSIRITHAWORN S., CUMMINGS D.A.T. Case
study in evaluating time series prediction models using
the relative mean absolute error. American Statistician, 70
(3), 285, 2016.

14.	 WU X., ZHAN F.B., ZHANG K., DENG Q. Application
of a two-step cluster analysis and the apriori algorithm
to classify the deformation states of two typical colluvial
landslides in the three gorges, china. Environmental Earth
Sciences, 75 (2), 146, 2016.

15.	 GHORBANI M.A., ZADEH H.A., ISAZADEH M.,
TERZI O.A. Comparative study of artificial neural
network (mlp, rbf) and support vector machine models for
river flow prediction. Environmental Earth Sciences, 75
(6), 1, 2016.

16.	 ZHANG M., XU H., WANG X., ZHOU M., HONG S.
Application of Google TensorFlow machine learning
framework . Microcomputer and Application, 36 (10), 58,
2017 [In Chinese].

17.	 ABADI M. Tensorflow: learning functions at scale. Acm
Sigplan Notices, 1, 1, 2016.

18.	 BAEK Y.T., LEE S.H., KIM J.S. Intelligent missing
persons index system implementation based on the opencv
image processing and tensorflow deep-running image
processing. Journal of the Korea Society of Computer and
Information, 22 (1), 15, 2017.

19.	 QUAN D., SON T.C., CHAUDRI J. Classification of
asthma severity and medication using tensorflow and
multilevel databases. Procedia Computer Science, 113,
344, 2017.

20.	XIA X.L., XU C., NAN B. Facial expression recognition
based on tensorflow platform. ITM Web of Conferences,
12, 01005, 2017.

21.	 BAGNALL A., LINES J., BOSTROM A., LARGE J.,
KEOGH E. The great time series classification bake off:
a review and experimental evaluation of recent algorithmic
advances. Data Mining & Knowledge Discovery, 31 (3),
606, 2017.

22.	XIAO W., HU Y., ZHAO X., CHEN Y., LI R. Time
series based urban air quality predication. Big Data &
Information Analytics, 1 (2/3), 171, 2017.

23.	LINDEN A., YARNOLD P.R. Using machine learning to
identify structural breaks in single-group interrupted time
series designs. Journal of Evaluation in Clinical Practice,
22 (6), 851, 2016.

24.	HAN H., LINTON O., OKA T., WHANG Y.J. The cross-
quantilogram: measuring quantile dependence and testing
directional predictability between time series. Journal of
Econometrics, 193 (1), 251, 2016.

25.	GAO Z.K., SMALL M., KURTHS J. Complex network
analysis of time series. Epl, 116 (5), 50001, 2016.

26.	TSAI L.C., MACALALAD E.P., LIU C.H. Taiwan
ionospheric model (twim) prediction based on time
series autoregressive analysis. Radio Science, 49 (10), 977,
2016.

27.	 LIU X., XIAO H., CHEN R. Convolutional autoregressive
models for functional time series. Journal of Econometrics,
194 (2), 263, 2016.

28.	CHEN C.W.S., LEE S. Generalized poisson autoregressive
models for time series of counts. Computational Statistics
& Data Analysis, 99, 51, 2016.

29.	 ZHAO Z., CHEN W., WU X., CHEN P.C.Y., LIU J. Lstm
network: a deep learning approach for short-term traffic
forecast. Iet Intelligent Transport Systems, 11 (2), 68, 2017.

30.	GAO L., GUO Z., ZHANG H., XU X., SHEN H.T.
Video captioning with attention-based lstm and semantic

802 Qin J., et al.

consistency. IEEE Transactions on Multimedia, 19 (9),
2045, 2017.

31.	 CHEN H., CHEN J., HU R., CHEN C., WANG Z. Action
recognition with temporal scale-invariant deep learning
framework. China communications (English Edition), 14
(2), 163, 2017.

32.	CAO D., XU S.A Fast&Accurate Image Classifier Based
on the Pre-training Models of TensorFlow. Journal of
Hanjiang Normal University, 37 (03), 27, 2017 [In Chinese].

