
Introduction

Climate change has drawn widespread concern 
all over the world, and it remains one of the most 
complex challenges. China is in a crucial period of 
rapid development of urbanization and industrialization. 
The power industry is a major industry in China. With 
the rapid development of China’s economy, the power 
industry is growing, and the production and consumption 
of electricity are also increasing. The power generation 
industry, which is dominated by thermal power 

generation, is also expanding its scale and increasing the 
output of electricity, which means that there will be more 
CO2 emissions. Therefore, in order to complete China's 
energy-saving emission reduction targets, we should 
pay more attention to the CO2 emissions reduction of 
the power industry in China. Recently there has been 
extensive research on CO2 emissions. These studies are 
mainly focused on the following two aspects: on the one 
hand, some scholars from the perspective of influencing 
factors studied and analyzed CO2 emissions in China. On 
the other hand, other scholars have studied CO2 emissions 
from the perspective of regional differences.

Muangthai [1] decomposed the CO2 emissions from 
power industry in Thailand into the level of economic 
growth, power intensity, CO2 emissions coefficient, and 
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fuel intensity. Moutinho et al. [2] introduced renewable 
energy consumption into the study and proposed that 
energy integration was one of the major drivers of 
reducing CO2 emissions. Furthermore, Can and Gozgor [3] 
pointed out that the industrial structure had a significant 
contribution to CO2 emissions in France. Liu [4] studied 
the basic trend of carbon intensity change in the power 
industry. Employing the exponential decomposition 
method, combined with the relevant carbon intensity 
factor decomposition technology, the carbon intensity of 
the power industry was decomposed into energy carbon 
emission coefficient, power generation structure, power 
generation intensity, power generation ratio, power 
consumption intensity, and industrial structure. The 
results showed that the power consumption intensity 
was the dominant factor affecting the carbon intensity 
change in the power industry, and the decline of 
carbon intensity in power industry was the result of the 
interaction of various factors. Zhu [5] pointed out that 
electricity consumption was the main factor leading to 
the growth of China’s power system CO2 emissions from 
2007 to 2012, resulting in a positive contribution of about 
96% of carbon dioxide emissions, while the negative 
contribution of CO2 emissions increments in China’s 
power system were mainly from the power generation 
technology and thermal power factor during this period. 
Zhang [6] found the factors affecting the change of CO2 
emissions in power production through introducing the 
status of carbon emissions in power production, namely 
emission factors, energy structure, power structure, 
economic scale, industrial structure, living consumption, 
population size, and so on. And it was proposed to reduce 
carbon emissions by reducing energy consumption and 
energy waste.

Wang et al. [7] analyzed the factors influencing 
energy carbon emissions in Xinjing in 1997 from the 
regional perspective based on the input-output theory and 
structure decomposition (SDA) model. The results showed 
that from 1997 to 2007, energy-related carbon emissions 
of Xinjiang increased from 20.7 million tons to 40.34 
million tons, showing an overall increase of 94.88% over 
11 years. And per capita GDP, final demand structure, 
production structure, and population size change 
were the main factors leading to carbon growth, while 
carbon intensity was a factor curbing carbon emissions. 
Economic and population growth was not matched by 
optimization in economic structure and improvements 
in production techniques, leading to the rapid growth of 
carbon emissions in Xinjiang. Employing the logarithmic 
mean differentiation index (LMDI) based on the extended 
Kaya identity, Wang et al. [8] discussed the main driving 
factors of economic and energy-related carbon emissions 
from the regional perspective in Guangdong Province 
from 1990 to 2014. The results showed that the impacts 
of various factors were different at different development 
stages. Dietz and Rosz [9] constructed the STIRPAT 
model, which was the random form of the IPAT equation, 
and tried to introduce more relevant factors and study the 
impact of human factors on the natural environment. 

York et al. [10] analyzed the relationship between IPAT 
identity, ImPACT identity, and STIRPAT, and explored 
the relationship between CO2 emissions and population 
employing the extended STIRPAT model. Hubacek et 
al. [11] found that population growth had no significant 
effect on China’s CO2 emissions. The growing economy 
was the main driver of China’s CO2 emissions growth. 
Song et al. [12] constructed the STIRPAT model to study 
the impact of population scale, population structure, 
consumption structure, and energy intensity on CO2 
emissions in China. Using the STIRPAT model, Zhu and 
Zhang [13] studied the relationship between population, 
urbanization, per capita GDP, and CO2 emissions in 
Beijing. They proposed the necessary measures for 
carbon reduction in Beijing and provided a reference for 
Beijing to achieve high-quality economic development 
in the future. All of the above studies demonstrated that 
STIRPAT is an effective model for decomposing the 
influencing factors of CO2 emissions. Wang et al. [14] 
studied the main driving factors of energy-related carbon 
emissions in Xinjiang based on the extended STIRPAT 
model at the three stage of “reform and opening up,” “after 
the reform and opening up,” and “Western development” 
(1952-2012). The results showed that before reform  
and opening up, carbon intensity and population were two 
main factors of carbon emissions increases. After reform 
and opening up, economic growth and population are 
the two main factors of carbon increment, while during 
the western development period, fixed assets investment 
and economic growth are two factors in the increase in 
carbon emissions, and in the latter two stages, carbon 
intensity played an inhibitory role in carbon emissions.

Yue and Zhu et al. [15] divided the carbon emission 
types of 30 provinces other than Tibet into four regions 
based on two indicators, such as emissions and discharge 
efficiencies, by employing the cluster analysis method. 
Yao Yi and Ni Qin [16] constructed a projection pursuit 
model of comprehensive evaluation of carbon reduction 
capacity. By comparing the best projection values, the 
carbon reduction capacity and potential of each region 
in China from 1996 to 2008 were analyzed. The results 
showed that the level of economic development, opening 
up level, and energy consumption levels had a greater 
impact on carbon reduction. According to the research 
results, the corresponding suggestions are put forward 
for carbon reduction. Based on the accelerated genetic 
algorithm, Zhang [17] carried out the cluster analysis of 
carbon emissions in each province in China employing 
the Projection Pursuit model. The optimal projection 
direction was determined and the best projection value 
of the low carbon economy development level in each 
province was obtained. And carbon emissions in China 
were divided into four categories. Long Jia Yong [18] 
established a low-carbon economic development level 
evaluation index system for the economy, society, 
technology, environment, and industry. And by using the 
projection pursuit model, the influence degree of each 
factor on carbon emissions in provinces was determined, 
which was compared with the weight value of each index 
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obtained by the analytic hierarchy process. Chen Chao 
[19] analyzed the influencing factors of carbon emissions 
in Jiangsu Province from 2002 to 2011 by employing 
the projection pursuit model. The results show that 
economic growth was an important factor affecting 
carbon emissions reduction capacity. The economic 
development level is different and the carbon emissions 
reduction capacity will be different. Therefore, the 
carbon emissions reduction targets in Jiangsu Province 
should be achieved sub-regionally. 

In contrast to the wealth of studies mainly exploring 
the influencing factors of carbon emissions in China’s 
power industry, there has been less research looking at 
the relative indicators in power industry such as power 
consumption efficiency and electric power structure. To 
fill these gaps, through the extended STIRPAT model, the 
influencing factors of carbon emissions were decomposed 
into GDP, urbanization level, industrialization level, 
power consumption efficiency, and electric power 
structure. Through the projection pursuit model and the 
optimal projection value, 30 provinces in China could 
be divided into four groups, and the spatial distribution 
pattern was analyzed. According to the research results, 
this study proposed the corresponding policy measures 
and suggestions.

Methodologies

Carbon Emission Calculation Method

Since China has not yet announced CO2 emissions 
in the power sector, it is necessary to estimate CO2 
emissions. Based on various data of energy consumption 
in the power industry, and CO2 emissions factors of each 
energy from the 2006 IPCC reports [20], we calculated 
the power industry’s CO2 emissions from 2000 to 2014. 
So calculating CO2 emissions may be conducted as 
follows:

          (2-1)

…where C represents the power industry’s CO2 emissions; 
i is the energy type; E refers to energy consumption;  
K denotes the average low calorific value; ε is the  
carbon content of the energy; and η represents the  
carbon oxidation factor, which is usually replaced by 
constant 1.

Extended STIRPAT Model

The STIRPAT model, proposed by Dietz and Rosa in 
1997 [9], is usually employed to decompose contaminant 
emissions factors:

                    (2-2)

The meanings of each variable are shown in Table 1.
Eq. (2-2) may be converted to logarithmic form as:

        

(2-3)

In order to explore CO2 emission influencing factors 
of the power industry in China, Eq. (2-3) could be 
rewritten as:

            (2-4)

Each abbreviation is defined in Table 2.
To further explore the influencing factors of  

CO2 emissions from the power industry, the STIRPAT 
model is extended by introducing per capita GDP, 
industrialization level, urbanization level, power-
consumption efficiency, and electric power structure. 
The extended STIRPAT model can be established as:

 

    
(2-5)

Variable Definition Variable Definition

a Intercept term B Elasticities of environmental impact with p

P Size of the population C Elasticities of environmental impact with a

A Country’s affluence D Elasticities of environmental impact with t

T Technological progress ξ Random disturbance

Table 1. The meaning of each variable.

Variable Definition

CO2 CO2 emissions from power industry in China

POP Population scale

GDP The level of economic development

ENE Energy production input divided by its physical 
output

Table 2. The definition of each abbreviation.
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…where CO2 represents CO2 emissions from the power 
industry in China (104 tons). GDP denotes the per capita 
GDP, representing the economic growth level; IND 
represents the industrialization level; URB denotes 
urbanization level (%); PCE represents the power-
consumption efficiency; and EPS indicates the electric 
power structure.

Projection Pursuit

The projection pursuit model, proposed by Kruskal 
[21], is a multi-data processing method projecting 
high-dimensional data into low-dimensional space 
by numerical optimization calculation, so as to find 
the optimal projection reflecting the data structure 
characteristics. The model, a robust high-dimensional 
data processing method, has no special requirements 
for data and sample size, and could ignore the effects of 
variables that are not related to the structure and features 
of the data, and could effectively solve various practical 
problems [21]. The specific steps are as follows:

Step 1: Normalizing the evaluation index. The 
normalization process can eliminate the dimensions of 
the index and unify the range of the evaluation index.

Normalizing the forward indicator as follows:
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Normalizing the negative indicator as follows:
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…where {x*
(i,j)|i = 1,2...n, j = 1,2...p}, the sample set 

of each evaluation index, is the index j of sample i; n 
and P respectively refer to the sample size and number 
of indicators; xmax( j) and xmin( j) respectively denote the 
maximum and minimum values of index j; and x(i,j) is the 
normalized sequence of indicators.

Step 2: Constructing a projection function Q(a). 
The p-dimensional data, {x*

(i,j)|i = 1,2...n, j = 1,2...p}, is 
synthesized into Z(i), one-dimensional projection value 
with the projection direction a = {a(1), a(2),...a(p)}, which is 
the unit vector in the projection pursuit model.
Where,

     (2-8)

When Z(i) is integrated, the distribution of the 
projection value is as follows: the local projection point 
is as dense as possible; it is better to gather into several 
points; the whole projection point is scattered as much 
as possible. Therefore, the projection function may be 
denoted as follows:

( ) zza DSQ =
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Here Sz denotes the standard deviation of Z(i); Dz 
denotes the local density of Z(i); E(z) denotes the average 
of the sequence; R denotes the window radius of Dz; 
r(i,j) denotes the distance between the samples; and u(t)  
denotes the unit step function.

Step 3: Optimizing the projection index function. 
When the sample set of each index is gained, the 
projection function varies only with the projection 
direction. Therefore, the optimal projection direction 
may be calculated by solving the maximum problem of 
the projection function as follows:
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Step 4: The project value of each sample point could 
be obtained by substituting the best projection direction 

 obtained by step 3 to 
( ) ( ) ( )jixjaiZ

p

j
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. Since the 

projection index of the projection pursuit model is based 
on the clustering of projection eigenvalues, the most 
significant results of cluster analysis are obtained.

Data Resources

We chose data of 30 provinces from 2000 to 2014 
as panel data. All the observations were selected from 
the China Statistical Yearbook. The CO2 emissions from 
power industry were calculated by energy consumption, 
the average net calorific value of energy, and the CO2 
emissions factor, where the average net calorific of 
energy and the CO2 emissions factor came from the IPCC 
Guidelines for National Greenhouse Gas Inventories 
[20]. This study chose five factors as influencing factors, 
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including GDP, urbanization level, industrialization 
level, power consumption efficiency, and electric power 
structure. Per capita GDP was obtained by GDP divided 
by the total population. URB represented urbanization 
level (%). The industrialization level was obtained by the 
share of the added value of the secondary industry in the 
gross product, where the added value of the secondary 
industry and the gross product came from the National 
Bureau of Statistics of China. Power consumption 
efficiency was obtained by the ratio of total GDP to 
power consumption. The electric power structure was 
obtained by the proportion of thermal power generated to 
total electricity capacity.

Results and Discussion

Decomposition of Carbon Emissions Factors

A total of 30 provinces in the power industry of 
China from 2000 to 2014 were explored by employing 
the STIRPAT model, as shown in Table 3. The 
development trend of per capita GDP, urbanization level, 
industrialization level, power-consumption efficiency, 
electric power structure, and CO2 emissions from 2000 
to 2014 are shown in Fig. 1, and the correlations between 
the five indicators and CO2 emissions were analyzed 
through their development trends. 

As indicated in Fig. 1, CO2 emissions showed an 
upward trend on the whole. With the development of the 
national economy, the consumption of electricity was 
increasing, and the investment of the provinces in the 

power industry was also rising. Electricity is generated 
mainly through the consumption of coal, which would 
result in an increase in CO2 emissions. The development 
of power industry in various provinces and municipalities 
are inseparable from energy consumption, which will 
undoubtedly increase CO2 emissions. 

Per capita GDP reflects the level of national economic 
development, and it has been increasing, which would 
cause an increase in CO2 emissions. Per capita GDP 
is positively related to CO2 emissions from the power 
industry. The increase in per capita GDP indicates 
that living standards have improved. In pursuit of a 
more convenient life, electricity consumption has been 
increasing, resulting in an increase in CO2 emissions 
from the power industry. Therefore, China’s policy of 
slowing economic growth is conducive to carbon control.

Industrial level was inverted “U” form. 
Industrialization level reflects the level of development 
of the secondary industry. This paper mainly studied 
the proportion of the electricity industry. A high 
industrialization level indicated that the second industry, 
including the power industry, has developed rapidly. 
Investment in the power industry in China continues to 
increase, whether from power generation or residential 
electricity consumption. This will increase CO2 
emissions.

The power structure curve is characterized by 
volatility. In 2007, 2011, and 2013, CO2 emissions showed 
a downward trend, and the power generation structure 
also generally showed a downward trend, which indicated 
that the share of thermal power generation in China 
began to decline. The consumption of coal and other 

Year Per capita GDP Urbanization 
level

Industrialization 
level

Power-consumption 
efficiency

Electric power 
structure CO2

2000 8286.6175 38.9977 34.5918 6.7850 74.5065 3900.1249

2001 8889.8575 40.1135 34.3774 6.9872 73.2678 4216.3773

2002 9604.1495 41.2015 34.3505 6.9911 76.6305 4756.6052

2003 10456.7697 42.3238 35.6516 6.8979 78.0850 5651.3252

2004 11376.8746 43.4665 36.9268 7.1844 77.0504 6414.1992

2005 12572.9778 44.6261 38.3439 7.6387 77.0713 7295.0768

2006 13959.8392 45.5937 39.7910 7.8284 77.8668 8435.5936

2007 15689.2676 46.5410 40.2284 8.2652 78.3267 9644.9869

2008 16922.3729 47.6136 40.7769 9.3343 73.6310 9632.4497

2009 18244.5749 48.5537 39.2104 9.5721 76.1248 9639.2888

2010 19837.6162 50.2175 40.7918 10.0541 75.0698 10514.4962

2011 21517.7690 51.4368 41.2652 10.8512 77.2404 11823.2119

2012 22994.5970 52.6949 40.2458 11.4583 74.8405 11630.2713

2013 24561.2553 53.6862 38.3854 11.7813 74.7833 13124.9735

2014 26167.0820 54.7178 37.4258 12.2696 72.5448 13110.6014

Table 3. Five influencing factors and CO2 emissions.
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energy generated from thermal power generation was 
reduced, resulting in a reduction in CO2 emissions. Thus, 
the power structure has great impact on CO2 emissions.

Power consumption efficiency achieved rapid growth 
on the demand side, which indicated that the provinces 
had improved power consumption efficiency by adjusting 
the generation structure. Power-consumption efficiency 
refers to the unit power output. Higher unit power output 
indicated that the production of a unit of electricity could 
produce greater economic benefits. It could be understood 
that residents could achieve the same economic benefits 
with less electricity. Therefore, under the condition of the 

same life goal, electricity was saved and CO2 emissions 
were reduced. But Fig. 1 showed that power-consumption 
efficiency was increasing, while CO2 emissions also were 
increasing, which illustrated that power consumption 
efficiency had little effect on CO2 emissions. Improving 
power consumption efficiency may not be effective in 
reducing CO2 emissions.

There was no doubt that urbanization level was 
constantly improving. It could be seen from the Fig. 1 
that the urbanization level was growing rapidly, which 
was closely related to improving living standards.  
The pursuit of a more convenient life, to some extent, 

Fig. 1. CO2 emissions from the power industry, per capita GDP, industrialization level, electric power structure, power-consuming 
efficiency, and urbanization level over 2000-2014.
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would also promote the consumption of electricity, 
which caused the increase of CO2 emissions in the power 
industry.

Clustering Analysis

Based on the projection pursuit clustering analysis 
and six indicators (per capita GDP, industrialization 
level, power-consumption efficiency, power generation 
structure, urbanization level, and CO2 emissions), the 
30 provinces were divided into 4 categories (Table 4). 
According to the cluster analysis results, we can know 
that there was a huge difference in the CO2 emissions 
of the 30 provinces in China. The differences were 
determined by the economic development level, resource 
allocation, geographical location, and many other  
factors.

The first category consists of Beijing, Shanghai and 
other eastern coastal developed areas and Heilongjiang, 
Liaoning province. In Shanghai, Beijing, Tianjin, 
Shandong, Zhejiang, and Jiangsu provinces, the economy 
is developing faster, the urbanization level is high, and 
the people are living well. Therefore, the electricity 
consumption of residents was higher than other areas. But 
coal resources were scarce in these areas, and almost no 
power plant was established, CO2 emissions from thermal 
power generation were very small. Therefore, the increase 
in CO2 emissions from the power industry of these areas 
was driven by the growth of power consumption from 
urban residents and urban development. As for Liaoning 
and Heilongjiang, the regions are vast and there are many 
power plants. Therefore, a significant increase in coal 
consumption in Liaoning and Heilongjiang has led to an 
increase in the power industry’s CO2 emissions.

The second category consists of Inner Mongolia, 
Shanxi, and other areas of the Yellow River basin. In 
these areas, economic development is slower than that 
of the other three types, and there are the minimum per 
capita GDP and the low level of urbanization. Therefore, 
the power consumption of residents is not high, which 
will not lead to too much CO2 emissions. However, these 
areas are rich in coal resources and host the majority 
of power plants, and the proportion of thermal power 
generation was large. The proportion of coal in the energy 
structure was very large, and industry was excessively 
heavy. Therefore, the increase in CO2 emission from the 
power industry in these areas was mainly due to power 
generation in thermal power plants.

The third category consists of Shaanxi, Chongqing, 
and other central regions. These provinces see relatively 
slower economic development, higher per capita GDP, 
higher levels of urbanization, higher living standards, 
and more electricity consumption than the second 
category, which results in more CO2 emissions. Because 
coal resources are not very rich and few power plants are 
built, CO2 emissions from coal-fired power generation is 
rare. Therefore, CO2 emissions from the power industry 
in these areas are generally less.

The fourth category consists of Gansu, Guizhou, 
Sichuan, and other southwest regions. In these areas, 
economic development is slow and living standards 
are not high. People’s livelihood is mainly supplied by 
energy resources such as biomass energy, so the residents 
use very little electricity. Besides, because of the scarcity 
of coal resources in thes areas, almost no power plants 
have been built, and urban and domestic electricity 
is purchased from other provinces. Therefore, CO2 
emissions from the power industry are the least among 
four groups.

Conclusion and Policy Implication

In this paper we analyzed the power industry’s CO2 
emissions from 2000 to 2014 in China by employing 
the STIRPAT model and the Projection Pursuit model. 
Based on STIRPAT, we determined five influencing 
factors: per capita GDP, urbanization level, electric 
power structure, industrialization level, and power-
consumption efficiency. There were positive correlations 
between the five influencing factors and CO2 emissions, 
especially per capita GDP, power-consumption efficiency, 
and urbanization level. The influence of industrialization 
level and electric power structure fluctuates greatly. And 
through the projection pursuit model, 30 provinces were 
divided into four groups. The regional features of each 
type were analyzed.

Based on the five influence factors and the  
clustering results, the following policy implications  
were proposed.

First, the primary task is to optimize the electric 
power structure and actively reduce the proportion of 
thermal power generation. Reducing CO2 emissions from 
power generation is one of the approaches for sustainable 
development of power enterprises. In the process of 
electricity production, CO2 emissions mainly come from 

Regions Provinces

The first category Shanghai, Beijing, Tianjin, Jiangsu, Shandong, Guangdong, Liaoning, Heilongjiang, Zhejiang

The second category Hebei, Jilin, Inner Mongolia, Henan, Shanxi, Anhui, Fujian

The third category Shaanxi, Chongqing, Xinjiang, Jiangxi, Hainan, Ningxia, Hubei, Hunan

The forth category Gansu, Guizhou, Sichuan, Yunnan, Guangxi, Qinghai

Table 4. Four regions divided by projection pursuit.
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coal consumption of the thermal power plant, and in the 
process of power consumption, mainly caused by the 
heat generated. Therefore, according to the clustering 
results and the regional characteristics and development 
requirements of the provinces, it is necessary to reduce 
coal-based thermal power and develop new and clean 
energy to generate power. China has become the 
world’s largest solar photovoltaic in 2015, and has made  
great progress in the field of renewable energy, such  
as hydro-power, wind energy, and solar energy [22]. 
For the eastern coastal developed areas, due to dense 
population and low environmental carrying capacity, 
solar power should be used to generate electricity. For 
Xinjiang and other western regions, because of the vast 
territory, wind power generation would be employed. In 
Sichuan and Yunnan provinces, rich in water resources, 
hydroelectric power could be adopted. For Shanxi, Inner 
Mongolia, and other central regions that are rich in coal 
resources and have more thermal power generation, the 
government should formulate CO2 emissions standards 
and improve the utilization of coal. In addition, rural 
areas could be encouraged to employ bio-gas power 
generation.

Secondly, it is required to effectively improve the 
power-consumption efficiency by advanced technology 
and equipment. The improvement of power-consumption 
efficiency is related to the equipment and technology 
of the power industry. On the one hand, advanced 
technology and equipment should be introduced and 
popularized. With the rapid development of the eastern 
region, electrical equipment has been relatively perfect, 
and some power technology is also very mature. While 
the development of the western region is backward, 
the investment in power equipment is not large and 
the technology is not mature. Therefore, the state 
should encourage the central and western regions to 
learn advanced technology from the eastern region, 
and update the generation and utilization of electricity  
– thereby improving the efficiency of the terminal use 
of electricity. On the other hand, the government should 
encourage electric power enterprises to save electricity 
and strengthen the construction of the national power 
grid, especially the eastern areas with higher power 
consumption.

Thirdly, while accelerating the process of urbanization 
and industrialization, the government should promote 
the development and utilization of new energy resources. 
The process of urbanization should take the path to low-
carbon city, which is indispensable to control the growth 
of CO2 emissions. For one thing, the government should 
advocate an energy conservation and environmental 
protection lifestyle, which is necessary to improve the 
energy-saving function and the efficiency of household 
appliances. Vehicles powered by gasoline or other 
energy sources are supposed to be substituted by electric 
vehicles. The government should increase investment 
and support in new vehicles, making new-energy 
vehicles more popular, thereby reducing CO2 emissions 
from the high-carbon car exhaust emissions. For another, 

energy-saving construction should be encouraged. Some 
high-carbon materials could be replaced by low-carbon 
economic materials. And the government should absorb 
the intensive investment in infrastructure construction 
to promote urbanization and industrialization and 
strengthen the construction of small and medium-sized 
cities and new countryside to disperse the environmental 
and resource pressure of big cities. Besides, it is essential 
to raise residents’ awareness of energy conservation and 
environmental protection, and appeal to residents to take 
public transport and buy new-energy vehicles.

Four, the government should adhere to sustainable 
development and change the mode of economic growth, 
from the extensive growth mode of high energy 
consumption and low efficiency into the intensive growth 
mode of low energy consumption and high efficiency. The 
government should promote economic and environmental 
coordination and sustainable development, reducing 
CO2 emissions while ensuring the development of 
urbanization and industrialization.

Finally, establishing an effective regional 
cooperative mechanism among the provinces in China is 
indispensable. For those where total CO2 emissions from 
the power industry are low but the deterioration is faster 
(such as Qinghai and Yunnan provinces), the government 
should pay great attention to CO2 emission reduction 
based on the conditions of 30 provinces. The cities that 
reduce carbon emissions can sell the right to emit CO2 to 
those regions that produce more [22]. In some provinces 
of China, such as Anhui and Fujian, there are large 
economic scales, but the economic development models 
are crude. So the transformation from extensive economy 
to intensive economy is necessary, which not only could 
reduce CO2 emissions and energy consumption but 
ensure economic benefits. Therefore, the establishment 
of CO2 emissions accounting and comparison system is 
urgently required, and certain relevant professionals are 
required for guidance and analysis.

The purpose of the study is completed, and the 
expected results are obtained. Due to the limitations of 
research experience and various conditions, the following 
aspects need to be improved: first of all, carbon emission 
factors in power industry need to be further refined. 
There are vast factors effecting carbon emissions, and 
more accurate data need to be collected for further 
analysis and discussion. Secondly, the 30 provinces could 
be divided into smaller and more detailed segments in 
order to better analyze regional characteristics.
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